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Abstract— This paper proposes an improved ensemble learning model based on extreme gradient boosting 
(XGBoost) with Bayesian optimization cost-sensitive learning algorithm for dealing with highly imbalanced data 
in the semiconductor process to achieve the highest possible pass and fail accuracy or recall for the classification 
performances. Most of the existing models are biased toward the majority class neglecting the minority class. The 
proposed Bayesian optimization cost-sensitive XGboost model is configured to be applied to the semiconductor 
dataset. The obtained experimental results - based on benchmarking semiconductor industry dataset - show 
91.46% and 23.08% for the pass and fail accuracies, respectively. This confirms that the proposed model is 
significant for imbalanced cases in semiconductor applications. Moreover, this investigation reveals that the 
proposed model is able not only to maintain the performance of the majority class, but also to classify well the 
minority class. 
 

Keywords— XGBoost learning algorithm; Cost-sensitivity; Imbalanced data; Semiconductor classification; 
Ensembled model.   
     

1. INTRODUCTION  

Semiconductor industry has proliferated since its inception and has a worth of 476.7 

billion USD market all over the world with a yearly growth rate of 15.9% [1]. The demand for 

high-capacity and high-performance storage solutions such as hard disk drives and solid-state 

drives has been increasing rapidly and there is fierce competition among semiconductor 

industry players to stay ahead and control most of the market, i.e., the companies have to 

evolve and provide cutting edge technological solutions to meet the customers’ demands. 

One of the key building blocks of these innovations is related to semiconductor 

manufacturing.  

Semiconductor manufacturing is a highly complex manufacturing process composed of 

hundreds of steps [2], with numerous integrated circuits or “dies” are fabricated which diced 

from the wafer and put into the product. But, before the die is chosen, it must be classified 

based on its quality as depicted in Fig. 1. The dies are classified as “good” or “defective”, the 

partial edge dies are discarded. The good dies are used in manufacturing high-end products 

like hard disk drives, whereas the defective dies are either used for simple products like pen 

https://orcid.org/0000-0003-3199-5752
https://orcid.org/0000-0003-4358-7430
https://orcid.org/0000-0002-6317-3924
https://orcid.org/0000-0002-4072-3612


553                                             Jordan Journal of Electrical Engineering. Volume 9 | Number 4 | December 2023 

 

 

 

drives or being discarded. However, semiconductor manufacturer is currently facing the 

problem of classifying dies quality because of class imbalance and the high complexity of the 

data. The classification algorithms favour the majority class and a wide majority of the dies 

are classified as good which means that many of the defective dies are also classified as good 

which is objectionable.  

 

 
Fig. 1. Classification of dies quality in wafer fabrication. 

 

The imbalanced learning problem is concerned with the performance of learning 

algorithms in the presence of underrepresented data, and severe class distribution skews [3]. 

Generally, the principal rule of machine learning algorithms assumes that the number of 

objects in considered classes is roughly similar [4]. However, in many real-life situations, the 

distribution of examples is skewed since representatives of some classes appear much more 

frequently. Hence, researchers started to propose new methods that try to tackle the 

imbalanced class problem but without considering the different complexity levels in the data. 

In this study, the main contributions are in two folds;  

1. It focuses on the semiconductor domain of research by applying the SECOM industry 

benchmark dataset to maximize the classification quality of the algorithm. 

2. By using the Bayesian optimization cost-sensitive XGBoost, the performance of the 

model shows an improvement compared to past literature.  

There are several evaluation methods to measure the quality of a classification model. In 

addition to the existing evaluation methods, pass and fail accuracy are included as part of the 

evaluation measures. This strategy will enable the manufacturing company to ensure that 

product quality is not compromised under any circumstances. 

The paper is organized as follows; in section 2, the background and related work are 

discussed. In section 3, the methodology and evaluation measures are discussed. In section 4, 

the results are presented and evaluated, and finally, conclusions are drawn in section 5. 
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2. BACKGROUND AND RELATED WORK 

2.1. Dies’ Classification in Semiconductor Industry 

The classification of wafer dies in the semiconductor industry has been through 

extensive research and many solutions have been proposed for this classification. As example, 

Chen et. al [5] have proposed a two-stage approach; Least Absolute Shrinkage and Selection 

Operator (LASSO) detection and Random Forest algorithm with the embedded Status 

Variables Identification using sensors in wafers manufacturing to gather specific information 

about the wafer and die quality. However, this approach has focused primarily on operation 

selection and do not consider the class imbalance of the data and applicable only on specific 

machines.  

Furthermore, Baly et. al [6] has proposed the Support Vector Machines algorithm to 

separate the good die from the bad by using algorithms like the C4.5 decision tree, k-NN, PLS 

regression, and GRNN, wherein their use of SVM generates results with a higher precision 

value. The limitation of this model is that the features must be reduced to achieve a higher 

level of precision that led to incur a loss of information, specifically when dealing with high 

dimensional data.  

Meanwhile, an incremental clustering-based fault detection algorithm for class 

imbalanced process data proposed by Kwak et. al [7] has observed that this algorithm 

performs better than SVM and three instance-based fault detection algorithms. The study 

reported a higher accuracy with the incremental clustering-based fault detection algorithm 

but was limited by requirement to set the minority class to be exactly 20% for training and the 

synthetic test sets. Moreover, the data needed to follow a specified distribution, in which 

when dealing with real-world data, there is a slim chance the fault detection data will follow a 

purely elliptical or non-elliptical distribution like bivariate Gaussian or t-Copula. 

An automated approach proposed by Imoto et. al [8] that used convolutional neural 

networks to identify the defective dies using three-phase classification model. In this study, 

the accuracy is observed to be higher as compared to the automatic defect classification 

(ADC) method. Some types of errors occur more often than others, for such defects the 

algorithm performs very well. However, the accuracy declines for the type of defects that 

occur rarely. This research has taken a very granular approach to the classification of the 

defective dies as it is done from the quality control perspective. The limitation of this model is 

that it requires a relatively large amount of accurately labelled input data for every defect. 

When the input data is not sufficiently available for each class of defect, the performance of 

the model will be affected accordingly, wherein the underrepresented class of defect will be 

misclassified.  

2.2. Methods For Handling Imbalanced Data Classification 

Handling semiconductor data can be challenging as it is typically comprising with 

more than 500 steps, and the amount of data recorded during the entire production process 

are vast amounts. In addition, most of the time, failures are rarely seen in this process. Being 

a highly expensive process, semiconductor industry has evolved to be inherently controlled 

on all front to lower the number of failures that occur in the process. This fact gives rise to 
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the challenge of imbalanced dataset, in which failure instances create a small portion of all 

observed instances [9]. 

Due to imbalanced class problem, classification of fabricated wafer quality in 

fabrication process has hardly decided in between pass and fail. In semiconductor industry, 

the classification process between pass and fail die must be extremely precise so as not to 

mislabel a die and end up with a substandard product. Any misclassification at this stage 

will incur a loss on the part of the company; either discarded the perfectly good die or 

employed defective die which will resulting in a substandard product. These errors lead to 

significant disadvantages to the semiconductor manufacturing company in terms of profits 

and customer satisfaction. 

2.2.1. Under-Sampling and Over-Sampling Methods 

In under-sampling methods, data is cut down and reduced so that all the classes are 

given equal representation [10] that completely changes in data dynamic and inordinate 

amount of information is lost which is not desirable when dealing with real-world data. 

Meanwhile, over-sampling methods increase the minority class instances artificially by 

generating synthetic data based on the existing real data. In this case, the data characteristics 

are lost and as the data was generated synthetically, the results will remain improbable. In 

addition to the loss of information, these methods tend to overfit the model towards the 

minority class and generate a higher generalization error. When the model is trained upon 

under or oversampled data, it will predict all the classes in almost equal amounts. When such 

a model is tested on real data, that will inherently be imbalanced, the performance metrics 

such as precision accuracy and recall will be affected consequently. 

Oversampling on the other hand, is the most often used approach in dealing with the 

imbalanced class problem, as seen by the multitude of oversampling methods published in 

the last two decades. However, this does not necessarily imply that the oversampling 

approach is beneficial. Oversampling approaches boost the quantity of minority-class 

instances by creating new ones out of thin air based only on their similarity to one or more of 

the minority’s examples. This is troublesome since such methods may raise the likelihood of 

the learning process being overfitted [11]. Another more critical problem of oversampling is 

that the fabricated examples could exist in the world belonging to a different class, regardless 

of how similar it is to the minority’s examples, as we always have examples from class A that 

are the closest to examples from a different class B. Therefore, we argue that, even if such 

synthesizing generates favourable outcomes on paper, negative results can be easily obtained 

in practice. 

Oversampling methods consumed more time for modelling as there is an increase in the 

amount of data, whereas under-sampling is computationally expensive as the data pre-

processing is extensive. In general, Rekha et. al [12] has observed that under-sampling 

provides higher precision in her study, but it was coming at the cost of loss of information 

when many of the instances are removed to balance the data. When dealing with real-world 

data, where decisions must be made that will impact significant aspects of a business, these 

results might not be applicable or acceptable.  
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2.2.2. Cost Sensitive Learning 

Cost-sensitive learning can fill this gap in the modelling process, where no information 

is lost, and all relevant data is used to train the model for future cases of classification by 

assigning appropriate cost values to erroneous results. Using cost-sensitive learning is a better 

alternative to over and under-sampling the data. Defining cost measures to train the models is 

the critical part of cost-sensitive learning. Lower cost measures are unable to adjust the 

decision boundaries effectively, contrarily the higher cost measures lead to poor 

generalization capacity on non-penalized classes [13]. The particularities of costs are largely 

depending on the domain should be validated by experts. Cost-sensitive learning has been 

employed to tackle the class imbalance problem by numerous researchers in varied fields. But 

cost-sensitive learning alone is not the complete solution in most cases. Conjunction with pre-

processing methods like feature selection and sophisticated modelling methods like ensemble 

and hybrid algorithms can be applied. 

To date, only few researchers are investigating to resolve issues of highly dimensional 

and imbalanced data in semiconductor industry while maintaining the original data integrity 

to ensure that all characteristics of the data are used to train the model and no generalization 

is made. However, more computational capacity in classifying highly imbalanced data and 

cost sensitive algorithm processing is needed to resolve these issues. Therefore, this study 

aimed to develop a new optimized model using cost sensitive learning algorithm for 

classification in which the trained model is penalized with a predefined cost parameter, which 

enables the classifier to take the potential loss associated with a wrong decision into 

consideration.  

2.2.3. Machine Learning-Based Methods for Imbalanced Data Classification 

Recently, machine learning offered a wide range of algorithms to be employed in 

classification tasks where unseen instances must be put into a predefined category based on 

data attributes. These algorithms include but are not limited to decision trees, k-nearest 

neighbor, logistic regression, support vector machines, and naïve Bayes. Standard 

classification algorithms based on data with an imbalanced distribution will yield biased 

results in the favour of the majority class, whereas the minority class will be frequently 

misclassified. Class imbalance can be handled with a few techniques, i.e., over-sampling the 

underrepresented class, under-sampling the over-represented class, or using a cost function 

within the model, that will penalize the misclassification errors: cost-sensitive learning. 

Ensemble learning is a powerful technique in machine learning wherein two or more 

base learners are conjoined together to yield a better result than that generated by a single 

model  [14]. Machine learning models are many and the combination of two or more of these 

models allows researchers endless possibilities to enhance their performance metrics. 

Ensemble learning methods are mainly divided into sub-categories like voting, bagging, 

boosting, and stacking, etc. [15]. The most used methods in ensemble algorithms are Random 

Forest (RF) and XGBoost [16]. 

 RF works by combining multiple decision trees, each of which is trained on a randomly 

selected subset of the training data and a random subset of the features. During training, the 

algorithm searches for the best feature to split the data at each node, based on a measure of 

purity such as Gini impurity or information gain. Once the trees have been constructed, 
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predictions are made by aggregating the predictions of each individual tree. In classification 

problems, the final prediction is the class that receives the most votes from the individual 

trees [17].  

While RF can be a good model, some limitations of the algorithm such as it’s prone to 

overfitting when dealing with noisy data or datasets with high number of features [17]. In 

addition, RF can be slower in computation time when dealing with large datasets, especially if 

the number of features is high. This is because RF constructs multiple decision trees in 

parallel.  

On the other hand, XGBoost is an ensemble model in which decision trees are made for 

the classification task sequentially. Every data point is assigned a weight value, through 

which a probability is calculated which leads to the final decision of node allocation. Initially, 

all data points are given the same weights and these weights are then adjusted on every 

iteration where the model retains the decisions made on the previous weights and adjusts the 

weights in the next step based on the analysis. This process is repeated until the final classifier 

is built for classification [18]. 

An extreme gradient boosting algorithm or XGBoost is one of the most widely used 

Gradient Boosted Machine (GBM) in the field of industry and manufacturing because of its 

high performance in problem-solving and marginal need for feature engineering [19]. Since 

the data generated in the semiconductor industry is highly complex, further feature 

engineering makes the task even more complicated. The methods that eliminate the chance of 

confounding the data even further are more appropriate. The strengths of this classifier are 

considered carefully which has led to this algorithm being selected as one of the models to 

test on the dataset. 

2.3. Hyperparameter Optimization 

The utilization of machine learning algorithms has been extensive across various 

domains and fields. For a machine learning model to be applied to different problems, it is 

essential to fine-tune its hyperparameters. The performance of the model is directly impacted 

by the selection of the best hyperparameter configuration. To create an optimal ML model, a 

range of potential options must be explored. The process of designing an ideal model 

structure with the best hyper-parameter setup is referred to as hyperparameter tuning. 

Different techniques can be employed for hyperparameter optimization, including grid 

search (GS), random search (RS), Bayesian optimization (BO), and other approaches [20]. 

One of the popular techniques to investigate hyperparameter configuration space is 

known as GS [21]. This method can be considered as an exhaustive or brute-force search, 

which involves assessing all the possible combinations of hyperparameters on a given grid. 

The approach involves evaluating the cartesian product of a finite set of values specified by 

the user. Although GS can be easily implemented and parallelized, it suffers from a major 

limitation for high-dimensional hyperparameter configuration spaces. As the number of 

hyperparameters increases, the number of evaluations required increases exponentially, 

making GS inefficient. Therefore, it is recommended to use GS only when the 

hyperparameter configuration space is relatively small [20]. 

In contrast to GS, RS was introduced in [22]. This technique is similar to GS, but it 

randomly selects a set number of samples between the upper and lower bounds as 
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hyperparameter candidates and trains them until a given budget is consumed, instead of 

testing all the values in the search space. The underlying principle of RS is that if the 

configuration space is extensive enough, it is possible to detect the global optimum or at least 

approximate it. Although RS is more efficient than GS for vast search spaces, there may still 

be a significant number of unnecessary function evaluations since RS does not take 

advantage of the previously well-performing areas [20]. 

To conclude, the main limitation of both RS and GS is that every evaluation in their 

iterations is independent of previous evaluations; thus, they waste massive time evaluating 

poorly performing areas of the search space. This issue can be solved by other optimization 

methods, like Bayesian optimization that uses previous evaluation records to determine the 

next evaluation. 

Bayesian optimization (BO) is a well-known algorithm for solving HPO problems [23]. 

Unlike GS and RS, BO selects future evaluation points based on past results. It uses two main 

components, a surrogate model and an acquisition function, to determine the next hyper-

parameter configuration [24]. The surrogate model is responsible for fitting all observed 

points into the objective function, while the acquisition function balances exploration and 

exploitation to choose the best points to evaluate. Exploration involves sampling instances 

from unexplored regions, while exploitation involves sampling from regions that are likely 

to contain the global optimum based on the predictive distribution of the surrogate model. 

BO models balance exploration and exploitation to identify the most promising regions and 

avoid missing better configurations in unexplored areas [20]. 

Considering the related works in the domain of classification in the semiconductor 

industry and class imbalance problems, there are a few methods that can be applied to solve 

specific problems for the manufacturing process. As established, under-sampling and over-

sampling have their limitations in terms of information loss and synthetic information that 

may not reflect the true characteristics of the data. These gaps can be filled with a cost-

sensitive machine learning model that employs all the information in the original data 

without changing it to balance the class labels. At the same time, to optimize well the cost 

value, Bayesian optimization is relevant to be integrated due to the capability of the model in 

improving the parameter optimization. 

3. METHODOLOGY 

The research framework of this study is designed to propose a method for optimizing 

the Cost-Sensitive XGBoost model. The data used for this study is a public data from the UCI 

machine learning repository (SECOM) as semiconductor industry data [5]. Generally, the 

work starts with preprocessing and cleaning the datasets into an appropriate format of 

consistencies to gain a valid result. This step usually requires the maximum amount of time 

in the data science process. As seen in the research framework as illustrated in Fig. 2, there 

are different pipelines for the data discussed above. Next, the ensemble model of the cost-

sensitive XGBoost algorithm is developed based on the data and the selected model is tested. 

Finally, the performance of the proposed model is optimized and evaluated. The 

experiments conducted in this project were run on an Intel® Core™ i7 CPU 2.60 GHz with 

8.00 GB of RAM under a 64-bit Windows 10 Enterprise operating system. 
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Fig. 2. The proposed method for optimizing the cost-sensitive XGBoost model. 

3.1. Data Preprocessing and Cleaning 

The SECOM is a public dataset available on the UCI machine learning repository and 

Kaggle which donated to the repository in 2008 that containing sensor data collected during 

the manufacturing process in the semiconductor industry. The specifics of the data are 

detailed in Table 1. As can observe that the number of features is significantly high which 

translates to higher data complexity when designing a modelling task. Many of these features 

will be redundant on the target variable so data preprocessing and cleaning is vital to 

achieving reliable results. The target label in this dataset is a categorical variable which 

records whether a die is defective or not. The number of defective dies is only 104 as opposed 

to the good dies which is 1463. Herein lies the class imbalance of the data. In this paper, the 

degree of imbalance of data will be determined by the imbalance ratio or IR, which is defined 

as the ratio of instances in majority class to those in the minority class. Data for which the IR 

value is 9 is considered as highly imbalanced and should be subjected to appropriate methods 

rather than the traditional algorithms which are designed to treat all classes as equal [25]. 

 
Table 1. Configurations of the SECOM dataset. 

Data Characteristics Number 

Observations 1567 

Features 591 

Imbalance Ratio 14 

 

In the case of the benchmark dataset, the number of features is 591, and the data has 

many missing values. If the rows with missing values are dropped, the output is a blank 

vector, which implies that all the rows of the data have at least one missing observation. So, 

the only option available was to replace the missing values with an appropriate measure. 
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There are options like replacing with mean, median, or simply 0. By closely observing the 

data, the decision was made to replace all missing with the mean of the respective column. 

Since there were a significant number of missing values, replacing them with zero would 

have compromised the integrity and distribution of the data. Additionally, the data does not 

have any extreme outliers, otherwise, the median would have been a better option. 

The unary columns were dealt after treating the missing values. A column that records 

the same value in all the rows is known as a unary column and does not contribute to the 

outcome of the class label since it remains constant throughout the process. These columns 

were identified and completely dropped from the data as they are not contributing in any 

way. The timestamp was also dropped as it was not relevant to the target label. Feature 

selection was skipped for this data since the features to be used in the real-semiconductor 

data are predetermined by the engineering department of the company so, to retain the 

maximum information, the remaining columns were maintained for the modeling phase. 

3.2. Cost-Sensitive XGBoost Model 

In the modelling phase, the algorithms were divided into single and ensemble models. 

The inclination was maintained to switch to the ensemble model if and only if it gives a better 

score than the simple model. Since opting for a more complicated model is not justified if the 

results are not improved. The computational cost needs to be justified while proposing an 

ensemble model. 

3.2.1. Cost-Sensitive Learning 

In cost-sensitive learning, the cost of false positive (actual negative but predicted as 

positive; denoted as FP), false negative (FN), true positive (TP) and true negative (TN) can be 

given in a cost matrix, as shown in Table 2. The notation C (i, j) is being used to represent the 

misclassification cost of classifying an instance from its actual class j into the predicted class i. 

In cost-sensitive learning, it is usually assumed that such a cost matrix is given and known. 

 
Table 2. An example of cost matrix for binary classification 

 Actual Negative Actual Positive 

Predict Negative C (0,0) or TN C (0,1) or FN 

Predict Positive C (1,0) or FP C (1,1) or TP 

 

When dealing with the real-semiconductor data, the challenge was to determine the cost 

measure that would reflect the data characteristics. Since no monetary value could be 

retrieved to make a cost matrix, the task came down to tuning the hyperparameter. The 

default value of this parameter is 1: all classes are assumed to have equal importance. The 

value of this parameter can be set to any number, but it cannot be any random number. It 

must depict the qualities of the data used for training. When observing the training data, the 

class imbalance was quite significant as it is evident from the IR value of 13.  

3.2.2. XGBoost Algorithm 

The XGBoost algorithm is employed in this study because of its high performance in 

problem-solving and minimal need for feature engineering. This quality of XGBoost makes it 
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a viable candidate for the case because, besides feature selection, no further modifications 

have been made to the original data. The XGBoost relies on the sequential decision trees 

where a weight is assigned to every data point and the next round is evaluated by keeping the 

weights in the previous step in consideration. The overall process of the ensemble model is 

shown in Fig. 3.  

 

 
Fig. 3. The XGBoost algorithm used in the ensemble model. 

 
Mathematically, if m is number of features and n number of examples as in Eq. (1), 

                                               (1) 

where D is an ensemble model of a tree that uses K additive functions to predict the output, as 

shown in Eq. (2), given that F is the feature space, 

                                                            (2) 

where  𝐹 = {𝑓(𝑥) =  𝑤𝑞(𝑥)}(𝑞 ∶  𝑅𝑚  → 𝑇, 𝑤 ∈  𝑅𝑇) is the space of regression trees (also known 

as CART). Here q represents the structure of each tree that maps an example to the 

corresponding leaf index. T is the number of leaves in the tree. Each 𝑓𝑘 corresponds to an 

independent tree structure q and leaf weights w [18].  

The XGBoost algorithm has numerous hyperparameters that need to be tuned so that 

the algorithm can be employed to its full potential. Specifically, for imbalanced datasets the 

hyperparameter “scale pos weight” allows the user to custom-define the weights for the 

classes in the dataset. Here, the minority class can be given higher importance as opposed to 

the majority class so that the algorithm penalizes the misclassification errors accordingly. This 

hyperparameter is employed in the deployment of the final model to penalize the errors and 

increase the overall pass accuracy.  

In this paper, the parameter value for scale pos weight is taken from the value of the 

imbalance ratio a shown in Eq. (3), which defined N+ and N– as majority and minority class 

sample size, respectively.  

                                                              (3) 

The minority class can be given higher importance as opposed to the majority class so 

that the algorithm penalizes the misclassification errors accordingly. This hyperparameter is 

employed in the deployment of the final model to penalize the errors and increase the overall 

pass accuracy. 

3.3. Performance Evaluation  

Evaluating algorithms for classification tasks, the traditional metrics are generated 

from the confusion matrix. These metrics include accuracy, precision, recall, and F1- Score. 

The confusion matrix summarizes the actual and the predicted outcomes in a tabular format 
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in terms of FP, FN, TP, and TN. Ideally, the off diagonals i.e., the FP and FN results should 

be zero [12]. The traditional measures are precision and recall which are defined as, fraction 

of the predicted positive values that are indeed positive and fraction of positives that were 

correctly predicted by the classifier, respectively. The threshold or the F1- Score (Eq. (4)) is 

the measure used to define a balance between precision (Eq. (5)) and recall (Eq. (6)) [18]. To 

check the individual performance of the model against the class label, pass accuracy and fail 

accuracy were used in this paper. The individual accuracy is checked to understand the 

behavior of the model towards the individual class. The pass accuracy is also equivalent to 

the recall formula. 

                                                           (4) 

                                                            (5) 

                                                (6) 

     𝐹𝑎𝑖𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                                                                               (7) 

The traditional methods may be effective but only to a limited extent when it comes to 

highly imbalanced data. The overall accuracy cannot be relied on to be an appropriate 

evaluation metric, and neither can the error rate. In imbalanced data, precision and recall can 

be observed together with the F1-Score to make a sound final decision on the model 

performance. Rather, the additional measure that is used to judge a model is the pass 

accuracy (Eq. (6)) and fail accuracy (Eq. (7)) which is defined as the ratio of correctly 

classified good dies with the total good dies and vice versa. Since, in such highly imbalanced 

data, every measure cannot be optimized so the strategy is to prioritize the measure with the 

most impact in the final manufacturing process. 

4. RESULTS AND DISCUSSION 

4.1. Comparison Results of Simple and Ensemble Models 

The simple model of Decision Tree (DT) was compared with ensemble models of 

XGBoost on benchmark dataset. The comparison results are showing in Table 3. As we can 

see that the evaluation metric of interest, which is the pass accuracy has improved when 

using an ensemble model. Even though DT is able to classify better the fail class, but in terms 

of the equality in performance, XGBoost baseline model is able to perform better. As can be 

observed in Table 3, the overall performance of precision, F1-Score and Recall shows a 

positive increment compared to DT which indicates XGBoost have the potential to classify 

better even at the presence of imbalanced class problem. 
 

Table 3. Comparison results of simple and ensemble models on SECOM dataset. 

Model True 
Predicted Accuracy  

[%] 

Precision  

[%] 

F1-Score  

[%] 

Recall  

[%] 0 1 

Decision Tree 
0 3 23 Fail 11.54 0.06 0.03 0.03 

1 47 398 Pass 89.44 0.95 0.92 0.94 

XGBoost 
0 1 25 Fail 3.85 0.33 0.07 0.04 

1 2 443 Pass 99.55 0.95 0.97 1.00 
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4.2. Comparison Results of Default XGBoost, Cost XGBoost, and Bayesian Optimization 
Cost-Sensitive XGBoost on SECOM Dataset 

The results for the default XGBoost and the cost-sensitive XGBoost are shown in Table 

4. The failure class is represented by 0 and the passed class by 1. The benchmark data size is 

significantly smaller than the real-semiconductor data, so any small improvement is 

considered as a big leap forward because it translates well when applied to the larger dataset.  

From Table 4, adding cost value improved the performance of the model in classifying 

both Pass and Fail classes. However, due to limitation in deciding the parameter of the cost, 

integration with Bayesian optimization model is needed to enhance the model. Bayesian 

optimization is used to improve the parameter configuration of the cost XGBoost model. It 

shows significant improvement in not only the pass accuracy, but at the same time the fail 

accuracy, precision, F1-score and recall. Despite the pass accuracy shows a small drop, but it 

is still reliable since the performance of the Bayesian Cost XGBoost is still high.  

 
Table 4. Comparison results of default XGBoost, Cost-Sensitive XGBoost and Bayesian Optimization Cost-

Sensitive XGBoost models on SECOM dataset. 

Model True 
Predicted Accuracy 

[%] 

Precision 

[%] 

F1-Score 

[%] 

Recall 

[%] 0 1 

XGBoost 
0 1 25 Fail 3.85 0.33 0.07 0.04 

1 2 443 Pass 99.55 0.95 0.97 1.00 

Cost XGBoost 
0 2 24 Fail 7.69 0.25 0.12 0.08 

1 6 439 Pass 98.65 0.95 0.97 0.99 

Bayesian Optimization 

Cost-Sensitive XGBoost 

0 6 20 Fail 23.08 0.14 0.17 0.23 

1 38 407 Pass 91.46 0.95 0.93 0.91 

 

When this model is deployed in the manufacturing process at industry, it will benefit 

the company in terms of the confidence it entails in the decision about the good dies. 

Technically, the company can test a new wafer and when a die is classified as “good”, there 

will be highly confidence of 91.46% in the decision. The proposed XGBoost model with added 

bayesian cost parameter is significant for implementation in the recent industrial application. 

As a summary, the state-of-the-art for proposed model compared to other methods is 

presented in Table 5. 

  
Table 5. Comparisons of the traditional algorithm (literature) with default XGBoost, Cost XGBoost, and  

proposed Bayesian Optimization Cost-Sensitive XGBoost on SECOM dataset.  

Method 
Pass Accuracy  

[%] 

Fail Accuracy  

[%] 

Naïve Bayes [2, 25] 74.60 64.79 

XGBoost 99.55 3.85 

Cost XGBoost 98.65 7.69 

Bayesian Optimization Cost-Sensitive XGBoost (Proposed) 91.46 23.08 

5. CONCLUSIONS AND RECOMMENDATION 

Many semiconductor manufacturing companies are striving to improve the 

performance of their classification algorithms when classifying the goods and the defective 
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dies for the manufacturing process. The good die significantly outweighs the defective ones 

in most cases.  

To solve this problem, a Bayesian optimization cost-sensitive extreme gradient 

boosting approach is proposed in this paper. The classes are balanced by using the Bayesian 

optimization of the training data as a cost hyperparameter within the XGBoost model. 

Keeping the highly imbalanced nature of the data, for practical reasons, all evaluation 

metrics are focused on each class’s accuracy, precision, recall, and F1-score. By using cost-

sensitive learning, these values have been maximized.  

Some limitations in this study included the high number of features and high 

complexity of the data which cause difficulties when tuning the model to find the best 

model. Though it shows an improvement, potentially in the future, more tuning can be done 

and at the same time, integrating XGBoost with other models will be helpful in improving 

further the overall performance. 

In continuation of the research carried out in this study, future works can involve 

experimentation with an actual cost matrix provided by a domain expert that accurately 

portrays the losses associated with the misclassification. The results of such works can be 

evaluated in terms of monetary value, for example, the cost is reduced by a specified amount 

by using cost-sensitive learning. In contrast, the cost matrix can be defined in terms of gain; 

how much a company can gain if the element is classified correctly. 
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