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Abstract—Plant diseases and poisonous insects are major threats to agriculture. As a result, detecting and 
diagnosing these illnesses as soon as feasible is critical. The continuous advancement of significant deep learning 
techniques has greatly benefited the identification of plant leaf diseases, giving a powerful tool with exceptionally 
precise findings. The accuracy of deep learning approaches, on the other hand, is reliant on the quality and 
quantity of labelled data utilized for training. This paper proposes a lightweight parallel deep convolutional 
neural network (LPDCNN) for plant leaf disease detection (PLDD). Furthermore, a generative adversarial neural 
network (GAN) is proposed for synthetic data creation in order to address the data scarcity problem caused by 
unequal dataset size. The suggested model’s effectiveness is evaluated using several performance metrics such as 
accuracy, recall, precision and F1-score and compared to established state-of-the-art methods used for tomato 
PLDD. The obtained experimental findings - for 2-class, 6-class, and 10-class disease detection of tomato plant 
samples obtained from the Plant Village dataset – show that the proposed system provides better accuracy 
(99.14%, 99.05%, 98.11% accuracy for the 2-class, 6-class and 10-class, respectively) for tomato leaf disease 
detection compared with traditional existing approaches.  
 
Keywords— Deep learning; Convolutional neural network; Plant leaf disease detection; Data augmentation. 
   

1. INTRODUCTION 

Agricultural land is more than just a food source in today’s world. Plants and fruits are 

chief sources of energy to both humans and animals. Plant leaves serve an important part in 

photosynthesis, which is essential for plant growth. Humans benefit from plant leaves 

because of their medicinal properties. Agriculture provides food, shelter, medicine, and 

work to more than half of the people in Asian and African countries. Diseases devastate a 

wide range of agricultural crops, reducing both the amount and quality of production. Plant 

diseases are classified as parasitic or non-parasitic [1, 2]. Pathogens such as bacteria, viruses, 

fugus, and cromista can cause parasitic infections, as can pests such as milet, animals, slugs, 

and rats, and weeds such as monocots and dicots. Non-parasitic plant diseases, on the other 

hand, might emerge because of an excess or a scarcity of water, temperature, irradiation, 

minerals, and nutrients. The Indian financial system is profoundly dependent on agricultural 

productivity. Therefore, Plant Leaf Disease Detection (PLDD) plays chief role in agriculture. 

It is beneficial to use automatic disease detection technology for early PLDD [3, 4].  

 The conventional method for detecting plant diseases is merely expert macroscopic 

inspection through which detection and recognition of plant diseases is carried out. This 

needs large team of professionals and incessant observations of the system, which is very 
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costly for large companies. At the same time, some of the farmers in some countries cannot 

even be a representative that the appropriate facilities and can contact experts. This is 

because it costs high and time for advice professionals. In such a state, proposed techniques 

have been proven advantageous for monitoring large-scale cultural areas. Automatic 

detection of illness is easier and cheaper by looking at only the symptoms of vegetables 

leaves. This also assists machine visions for providing image processing based automatic 

inspection, process control, and robotic guidance [5, 6].  

The tomato plant is nutritious and often consumed worldwide. About 160 million tons 

of tomatoes are consumed annually worldwide [7]. In addition to being rich in nutrients, 

tomatoes also have medicinal characteristics that can be used to treat hypertension, 

gingivitis, and hepatitis [8]. It is mostly grown by small farmers and has a significant 

influence on the agriculture industry. The tomato crop is particularly vulnerable to diseases 

and pests, which can reduce production by 30 to 50 % [9]. 

The manual leaf disease diagnosis method requires specialized expertise and is 

laborious and time-consuming. Due to stress, exhaustion, and a lack of illness interpretation, 

manual leaf disease detection is often less accurate and ineffective. Therefore, deep learning 

and autonomous machine learning techniques based on image processing are often used to 

identify leaf disease [10-12]. 

Deep neural networks are improvements on the neural network that have lately been 

effectively used for numerous applications based on computer vision. The layers of nodes 

used to build deep neural networks are stacked one on top of the other. By adjusting the 

deep learning layer settings, the performance of the deep learning algorithms may be 

increased. The size of the database affects the effectiveness of deep learning models [13, 14]. 

Traditional colour, texture, and form attributes have poor feature representation, which 

causes illnesses to be misclassified due to a lack of differentiating traits. Previous approaches 

for defect identification are less universally applicable for illness detection of any sort. Due to 

their greater hyper parameters, much deep learning architecture provide less flexibility when 

using real-time data on isolated systems with constrained computing resources. The class 

imbalance issue is brought about by unequal training samples, which gives the illness class 

with more training samples greater accuracy than the disease class with fewer training 

samples [15]. 

This research paper presents PLDD based on a lightweight parallel convolutional 

neural network (LPDCNN) to provide the better connectivity of the plant leaf images. The 

effectiveness of the proposed PLDD scheme is validated for the Tomato plant from the 

public Plant Village dataset. The major offerings of the research paper are summarized as 

follow: 

 Implementation of tomato PLDD based on LPDCNN for better discriminative feature 

representation of tomato leaf for leaf disease classification.  

 Minimization of computational complexity of deep learning architecture. 

The proposed algorithm’s performance is evaluated for the synthetic data generated by 

Generative Adversarial Neural Network (GAN) to diminish the data scarcity problem 

occurred due to uneven dataset size. The performance of proposed scheme is evaluated for 

2-class, 6-class, and 10-class leaf disease detection based on accuracy, precision, recall and F1-

score. 
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The rest of the article is prepared as follows: section 2 provides the associated literature 

about Plant Leaf Disease Detection. Section 3 gives brief information regarding material and 

methods required for the implementation of the proposed LPDCNN based PLDD system. 

Section 4 focuses on the investigational consequences and discussions. Lastly, section 5 

elaborates the conclusion and opens the area for the future improvement.  

2. RELATED WORK 

In agriculture field, disease detection is very important. In recent years, varieties of 

techniques have been presented for the tomato Plant Leaf Disease Detection (PLDD) using 

deep learning based techniques. The deep learning based PLDD has attracted the wide 

attention of researcher’s because of its high feature discrimination, more generalization, and 

larger dataset handling capacity.  

Adhikari et al. [16] used YOLO framework for classification of tomato leaf disease 

detection for three classes that resulted an accuracy of 76.00 %. Karthik et al. [17] presented 

two CNN architectures based on residual learning and attention mechanism [17]. It is noted 

that CNN with attention mechanism provides better results (98% accuracy) than residual 

learning. Durmus et al. [18] investigated SqueezeNet and Alexnet for classification of 10-class 

tomato disease detection. The SqueezeNet and AlexNet provide an accuracy of 93% and 

95.65%, respectively. Elhassouny and Smarandache [19] created mobile application based on 

Mobile Net for tomato leaf disease detection (9-classes). The mobile application is trained 

using 7176 images of tomato plant from Plant Village dataset, which has given 90.30% 

accuracy. Widiyanto et al. [20] utilized a CNN model for tomato PLDD such as Septoria leaf 

spot, Yellowleaf curl virus, Late blight, mosaic virus and healthy leaves. It has given 96.60% 

accuracy for model trained on 1000 samples per class. Agrawal et al. [21] presented CNN 

based deep learning framework (ToLeD) for tomato plant leaf disease detection. They 

achieved 91.20% accuracy for 10 class classifications, which have shown superiority over 

traditional MobileNet (63.75%), VGGNet (77.20%), and Inception V3 (63.40%). The 

lightweight sequential architecture that includes three convolutional and three maximum 

pooling layers helps to minimize the total trainable parameters and hence the storage space. 

It has shown variable accuracy for different diseases because of class imbalance problems. 

Zhang et al. [22] investigated various pre-trained networks such as AlexNet, ResNet, 

GoogleNet for the tomato plant leaf disease detection. The ResNet along with SGD 

optimization provided better results compared with AlexNet and GoogleNet. It is observed 

that proper hyper-parameter tunning helps to improve classification accuracy. Abbas et al. 

[23] explored Conditional GAN (C-GAN) for the generation of synthetic images to minimize 

the data scarcity problem and overfitting problem. Additionally, the 5-class, 7-class, and 10-

class disease classifications are supported by DenseNet121-based plant leaf disease detection, 

with respective percentages of 99.51%, 98.65%, and 97.11%. Fuentes et al. [24] employed 

quicker R-CNN for detecting leaf disease and localization, which has given 85.00% accuracy 

for the 9-class classification. It uses R-CNN with featured acquired using ResNet50 and 

VGG-16. 

CNN-based deep learning architectures are widely used in a variety of applications 

utilizing computer vision. In recent years, a number of deep and transfer learning-based 

PLDD systems have been introduced. Mohanty et al. [25] examined GoogleNet and AlexNet 



Jordan Journal of Electrical Engineering. Volume 9 | Number 4 | December 2023                                                 540 

 

for illness diagnosis across 28 classes, achieving 99.34% and 99.27% accuracy, respectively. 

Sladojevic et al. [26] investigated anoptimised CNN framework for 13 PLDD distinct plants, 

yielding 96.30% accuracy. Ramcharan et al. [27] presented transfer learning for identifying 

illness and damage to cassava plants’ paste using GoogleNet (InceptionV3). Prajwala at al. 

[28] proposed Deep Convolutional Neural Network (DCNN) for the tomato PLDD that has 

given 94.85% accuracy for the 10-class disease detection. It used the low-resolution images of 

60×60 pixels for lighter DCNN architecture. However, the low-resolution images and less 

deeper architecture may limit the performance of method for the larger real time and high-

resolution images. Nazki et al. [29] explored AR-GAN network for the data augmentation 

and CNN framework for tomato PLDD. It has shown 86.10% accuracy for the 9 classes for 

Cityscapes dataset. Further, they used CycleGAN [30] with U-net for data augmentation to 

minimize the data scarcity problem. The complexity of CycleGAN with UNet is higher 

which may limit the implementation of the system on the standalone system.  

Various deep learning frameworks have shown noteworthy improvement in PLDD 

performance comparatively speaking to conventional machine learning-based algorithms. 

However, the outcomes of the PLDD based on deep learning frameworks is still challenging 

because of various factors such as network complexity, larger number of trainable 

parameters, higher training and recognition time, over-fitting for low disease classes, etc.  

[31-33]. The generalization capability for PLDD is difficult to achieve which can be used for 

the all types of PLDD due to differences in the leaf structure, pigmentation level, leaf size, 

variety in diseases, illumination changes, scale variance and rotation variance of the images. 

This research uses LPDCNN, which consists of multiple parallel layers of the DCNN that 

helps to minimize the hyper-parameter tuning problem and improve the feature 

distinctiveness. This approach provides lightweight solution for the deep learning based 

PLDD with lower trainable parameters and improves the implementation flexibility on the 

standalone and portable devices. In this paper, K-means cluster technique is used to get 

threshold values that are used in classification using Sobel edge detector [34]. 

3. MATERIALS AND METHODS 

3.1. Materials 

In this study, Tomato plant samples from the dataset for Plant Village were used. The 

dataset consists of 10 classes such as one normal and 9 disease classes such as early blight, 

bacterial spot, late bright mold, leaf mold, target spot, mosaic virus, septoria leaf spot, spider 

mite, and yellow leaf curl virus. The disease classes are generally grouped into five types 

such as mold, bacteria, viruses, fungi, and mites diseases [35]. The samples images of the 

tomato plant are given in Fig. 1.  

Table 1 provides the detailed information about disease type, and total samples in 

dataset. The curl virus disease has maximum samples 3209 whereas mosaic virus includes 

373 samples only. Out of the total dataset, samples are chosen for training and testing in 

proportions of 70% and 30%, respectively. 
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Fig. 1. Samples of the tomato plants from Plant Village dataset: a) healthy; b) early blight; c) leaf mold; d) target 
spot; e) septoria leaf spot; f) bacterial spot; g) late bright mold; h) spider mite; i) mosaic virus; j) curl virus. 

 
Table 1. Database information (Tomato Plant-Plant Village dataset). 

Disease 

Group 

Type of 

Defect 

Original Dataset Augmented Dataset 

Total 

Samples 

Study 

Samples 

(70%) 

Examining 

Samples 

(30%) 

Total 

Samples 

Study 

Samples 

(70%) 

Examining 

Samples 

(30%) 

Healthy Healthy 1591 1114 477 3500 2450 1050 

Viral 

Curl 

Virus 
3209 2246 963 3500 2450 1050 

Mosaic 

Virus 
373 261 112 3500 2450 1050 

Fungal 

Early 

Blight 
1000 700 300 3500 2450 1050 

Septoria 

Leaf 

Spot 

1771 1240 531 3500 2450 1050 

Target 

Spot 
1404 983 421 3500 2450 1050 

Leaf 

Mold 
952 666 286 3500 2450 1050 

Bacterial 
Bacterial 

Spot 
2127 1489 638 3500 2450 1050 

Mold 

Late 

Brightg 

mold 

1909 1336 573 3500 2450 1050 

Mite 
Spider 

Mite 
1676 1173 503 3500 2450 1050 

Total  16012 11208 4804 35000 24500 10500 
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3.2. Data Pre-Processing and Data Augmentation 

The images of the Plant Village dataset are having variable dimensions; however, for 

the simplicity, the images are resized to the 256×256×3. The Conditional-Generative 

Adversarial Network is used for the data augmentation to minimize the over-fitting problem 

caused due to data imbalance problem. The C-GAN encompasses the generator model and 

discriminator model. The aim of generator model is to generate the synthetic samples and 

the aim of discriminator network is to identify synthetic and real samples. The C-GAN takes 

the advantages of the known labels for the synthetic image generation during training 

process. The schematic of the C-GAN is illustrated in Fig. 2. 
 

 

 

 

 

  
Fig. 2. Structure of C-GAN. 

 

The C-GAN generator encompasses input layer, dense layer, embedding layer, leaky 

ReLU layer, reshape layer, concatenate layer, four convolution layer where every layer 

followed by leaky ReLU layer. Model E of the C-GAN discriminator encompasses input 

layer, layer of embedding, layer of dense, reshape layer, concatenate layer, four-convolution 

layer followed by leaky ReLU layers, flattening layer and dropout layer. The generator 

model (G) creates the synthetic images using random noise and latent points whereas 

discriminator model (D) detects the real and fake samples produced by the G model [36, 37].  

The input noise and latent point distribution fed to G is given by 𝑛𝑧(𝑧). The image 

samples 𝑖𝑚 and class labels y are provided to discriminator model. The D model attempts to 

boost the probability allocating class labels to original data and synthetic images are given by 

𝑙𝑜𝑔𝐷(𝑖𝑚|𝑦). The G model assists to reducethe loss of the generator and it is given by log(1 −

D(G(z|y)). The C-minmax GAN’s goal function is given in Eq. (1).  

min
𝐺

max
𝐷

(𝐺, 𝐷) = 𝐸𝑖𝑚~𝑝𝑑𝑎𝑡𝑎(𝑖𝑚)[𝑙𝑜𝑔𝐷(𝑖𝑚|𝑦)] +𝐸𝑧~𝑝𝑧(𝑧)[log(1 − D(G(z|y))]           (1) 

3.3. Network Model 

The proposed LPDCNN consists of four parallel DCNN structures where each parallel 

arm consist of different filter dimensions such as 3×3, 5×5, 7×7, and 9×9 as given in Fig. 3. 

The used of different filter size helps to acquire the fine and course textural information of 

the leaf image. Each arm DCNN includes three levels of convolution (𝐶𝑜𝑛𝑣 − 2𝐷), three 

layers of Rectified Linear Units (𝑅𝑒𝐿𝑈) with a maximum of three pooling layers(𝑀𝑎𝑥𝑃𝑜𝑜𝑙). 

The convolution layer provides the correlation and connectivity between specific local 

sections of the plant leaf surface. It can characterize distinguishing characteristics of plant 

leaf texture, edges, surface, and form. The input leaf picture is convolved using several 

convolutional filters in this layer. The feature maps produced by each filter may reflect 

various leaf properties. The convolution operation is given by Eq. (2) where 𝑖𝑚 is original 

leaf image, 𝑤 is convolution filter, 𝑟𝑜𝑤 and 𝑐𝑜𝑙 are total rows and columns of image matrix.  

    𝐶(𝑥, 𝑦) = ∑ ∑ 𝑖𝑚(𝑖, 𝑗) ∗ 𝑤(𝑥 − 𝑖, 𝑦 − 𝑖)𝑐𝑜𝑙
𝑗=1

𝑟𝑜𝑤
𝑖=1  (2) 

Label y(z) 

Noise (z) 
Generator (G) G(z) 

Real Data (x) 

Discriminator (D) Real/Fake 
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Fig. 3. Network architecture of the proposed system. 

 

In the ReLU layer, all negative values from the output of the convolutional layer are 

rounded to zero while non-negative values are left alone. The issue of disappearing 

gradients is mitigated by the ReLU activation function, allowing CNN features to be trained 

quicker and more efficiently. It introduces non-linearity into the data, making it easy to 

optimize. Eq. (3) gives the ReLU operation. 

𝑅(𝑥, 𝑦) = {
0𝑖𝑓𝐶(𝑥, 𝑦) < 0

𝐶(𝑥, 𝑦)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

MaxPool (64×64×16) 
 

MaxPool (64×64×16) 
 

MaxPool (64×64×16) 
 

MaxPool (64×64×16) 
 

Conv-2D(3×3) +ReLU 
(64×64×32) 

 

Conv-2D (5×5) +ReLU 
(64×64×32) 

 

Conv-2D (7×7)+ReLU 
(64×64×32) 

 

Conv-2D(9×9) +ReLU 
(64×64×32) 

 

MaxPool (32×32×32) MaxPool (32×32×32) 
 

MaxPool (32×32×32) 
 

MaxPool (32×32×32) 
 

Leaf Image 
(256×256) 

Conv-2D(3×3) 
+ReLU(56×256×8) 

Conv-2D(5×5)+ReLU 
(256×256×8) 

Conv-2D(7×7) +ReLU 
(256×256×8) 

Conv-2D(9×9)+ReLU 
(256×256×8) 

MaxPool (128×128×8) 
 

MaxPool (128×128×8) MaxPool (128×128×8) 
 

MaxPool (128×128×8) 
 

Conv-2D (3×3) +ReLU 
(128×128×16) 

 

Conv-2D(5×5)  
 +ReLU(128×128×16) 

 

Conv-2D(7×7) 
+ReLU(128×128×16) 

 

Conv-2D(9×9) +ReLU 
(128×128×16) 

 

Flatten (32768×1) Flatten (32768×1) Flatten (32768×1) 
 

Flatten(32768×1) 
 

Concatenation  
(131072×1) 

FC Layer 
(131072×2) 

Softmax (10×1) 
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The maximum pooling layer chooses the largest pooling window to lower the feature 

maps and capture the key information from the crop leaf [38–41]. Eq. (4) provides the 

maximum pooling operation for 2×2 window with stride of two pixels considering non-

overlapping window. 

𝑀(𝑖, 𝑗) = max
i=1:2:row
j=1:2:col

(𝑅(𝑖: 𝑖 + 1, 𝑗: 𝑗 + 1) (4) 

After third 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 layer, the feature maps are flattened to convert multi-dimensional 

feature map to one dimensional vector to analyze the effect of different filter size on the 

PLDD. All four arms flattened features are concatenated together which are further given to 

fully connected layer. In the last layer, the probability based Softmax classifier is used for 

classification. The LPDCNN model is trained using ADAM optimization algorithm for the 

learning rate of 0.001, batch size of 64, and 300 epochs. 

4. EXPERIMENTAL FINDINGS AND DISCUSSIONS 

The proposed system is built on the Nvidia GPU with 512 tensor-core and 16 GB RAM. 

Figs. 4 to 7 summarize the suggested LPDCNN model’s performance for 10-class 

categorization of tomato PLDD based on accuracy, recall, precision and F1-score, 

respectively. When the proposed model is trained for original data, it gives higher accuracy 

for the curl virus (99.58%), healthy (98.74%) and late bright mold (98.60%). However, it 

provides the lower disease detection accuracy for the mosaic virus (88.39%) and leaf mold 

(91.96%) diseases because of lower training samples that creates class imbalance problem. 

When the suggested model for the enhanced dataset is trained (2450 samples per class), it 

results in higher accuracy for the curl virus (99.58%), late bright mold (99.13%), bacterial spot 

(98.90%) and healthy samples (98.74%). The data augmentation using C-GAN helps to 

minimize the class imbalance problem and provides improved accuracy for mosaic virus 

(96.43%) and leaf mold (96.50%) diseases. The proposed LPDCNN-CGAN shows 2.15% 

improvement over the disease detection accuracy over the LPDCNN without data 

augmentation for 10-class disease detection. The F1-score provides the balance in the 

performance of the 10-class disease detection.   

 

 
Fig. 4. Accuracy for the proposed LPDCNN with and without data augmentation for 10-class tomato leaf disease. 
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Fig. 5. Recall for the proposed LPDCNN with and without data augmentation for 10-class tomato leaf disease. 

 

 
Fig. 6. Precision for the proposed LPDCNN with and without data augmentation for 10-class tomato leaf disease. 

 

 
Fig. 7. F1-score for the proposed LPDCNN with and without data augmentation for 10-class tomato leaf disease. 
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Fig. 8 provides the results of the proposed LPDCNN for the 6-class disease detection 

that includes healthy, viral, fungal, bacterial, mold and mite classes. The proposed LPDCNN 

provides 99.05% and 97.96% accuracy when the proposed model is trained for dataset 

without and with data augmented samples respectively.  
 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Performance of the proposed LPDCNN without and with data augmentation for 6-class tomato leaf 
disease:   a) accuracy; b) recall; c) precision; d) F1-score. 

 
The proposed LPDCNN’s performance is also verified for two-class illness detection, 

which covers healthy and sick classes. The suggested method achieves 99.14% LPDCNN-

CGAN accuracy and 97.87% LPDCNN accuracy without data augmentation. Fig. 9 shows the 

various performance measures for detecting leaf disease. 

The outcomes of the LPDCNN are evaluated for the one, two and three parallel DCNN 

layers on the architecture. It is observed that three parallel-layered architecture helps to 

capture the distinctive features with different filter size in each layer. The average results of 

LPDCNN for different number of parallel arm are shown in Fig. 10. Increasing more parallel 

layers leads to increase in total trainable parameters, thus the number of parallel layers are 

limited to 4 layers.  

Table 2 compares the efficacy of the proposed LPDCNN-based PLDD to the traditional 

state-of-the-art plant leaf disease identification. The LPDCNN provides 99.14% and 97.87% 

accuracy for 2-class disease detection with and without data augmentation respectively, 

which is superior compare with ResNet (97.28%) for tomato class [22]. It resulted in 98.11% 
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and 96.04% accuracy for 10-class disease detection with and without data augmentation. It 

resulted in 99.05% and 97.96% accuracy for the 6-class PLDD. The proposed LPDCNN 

provides 7.57% and 1.02% improvement over ToLeD [21] and DenseNet121 [23] respectively 

for 10-class classification tomato PLDD. The parallel architecture helps to achieve the better 

connectivity in local and global features of the plant leaf image that improves the 

discriminative capability of the defected area on leaf surface.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 9 Performance of the proposed LPDCNN with and without data augmentation for 2-class tomato leaf disease:    
a) accuracy; b) recall; c) precision; d) F1-score. 

 

 
Fig. 10. Accuracy of the proposed model for different parallel arms in LPDCNN (2, 6 and 10s-class classification). 
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Table 2. Performance of the proposed versus the conventional methods (Tomato Plant Village dataset). 

Ref. Method 
Number of 

Classes 

Performance 

Accuracy Recall Precision F1-score 

[21] ToLeD 10 91.20% 0.92 0.90 0.91 

[22] 
ResNet with SGD 

optimization 
2 97.28% - - - 

[23] C-GAN + DenseNet121 

5 99.51% 0.99 0.99 0.99 

7 98.65% 0.99 0.98 0.98 

10 97.11% 0.97 0.97 0.97 

Proposed 

Method 

LPDCNN (Without data 

augmentation) 

2 97.87 0.98 0.97 0.98 

6 97.96 0.98 0.98 0.98 

10 96.04 0.96 0.97 0.95 

C-GAN-LPDCNN-

CGAN (With data 

augmentation) 

2 99.14 0.99 0.99 0.99 

6 99.05 0.99 0.99 0.99 

10 98.11 0.98 0.98 0.98 

 

The proposed lightweight LPDCNN provides 122882, 155654, 188426 trainable 

parameters for two-class, six-class, and ten-class tomato PLDD. It shows significant 

reduction in trainable parameters compared with ToLeD (208802) [15], ResNet (31.7M), and 

DenseNet-121 (10.4M) [17] that helps to minimize the computational complexity of the 

network. It needs lower quantity of trainable parameters to increase the feasibility of the 

implementation of the proposed system on standalone portable devices in future. 

5. CONCLUSIONS AND FUTURE WORK 

This paper presented a lightweight parallel DCNN in order to identify tomato plant 

leaf disease that increases the feature distinctiveness and minimizes problem of filter size 

selection. Further, cyclic generative adversarial network (CGAN) was effectively 

implemented for the synthetic image creation that helps to diminish the class imbalance 

problem occurred due to uneven samples in the training dataset. The proposed LPDCNN 

helped to improve the feature representation of leaf images and assisted to boost the PLDD 

accuracy for multiple diseases. The proposed LPDCNN provided 99.14%, 99.05%, 98.11% 

accuracy for the 2-class, 6-class and 10-class disease detection for tomato PLDD from Plant 

Village dataset. The proposed LPDCNN-CGAN showed 2.15% improvement over the 

disease detection accuracy over the LPDCNN without data augmentation for 10-class disease 
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detection. The proposed algorithm provided less trainable parameters (188426) for the 9 class 

PLDD which is superior over the traditional state-of-arts and helped to increase the possible 

implementation flexibility on the standalone devices. The proposed model provided better 

results in comparison to established state-of-the-art methods for detecting tomato plant leaf 

disease. In future, the proposed network can be made deeper and utilized for multiple plants 

leaf disease detection. Additionally, the performance of the proposed scheme can be 

evaluated for the real time PLDD for multiple disease detection for multiple crops. Further, 

the learning of the LPDCNN can be optimized using optimization algorithm to improve the 

networks performance. 
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