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Abstract—Rapid prototyping tools have become essential in the race to market. In this work, we have explored 
employing rapid prototyping approach to develop an intellectual property core for real-time contrast 
enhancement which is a commonly employed image processing task. Specifically, the task involves real-time 
contrast enhancement of video frames, which is used to repair washed out (overexposed) or darkened 
(underexposed) appearance. Such scenario is frequently encountered in video footage captured underwater. Since 
the imaging conditions are not known a priori, the lower and upper limits of the dynamic range of acquired 
luminance values need to be adaptively determined and mapped to the full range permitted by the allocated 
bitwidth so that the processed image has a high-contrast appearance. This paper describes a hardware 
implementation of this operation using contrast stretching algorithm with the help of Simulink high-level 
synthesis tool using rapid prototyping paradigm. The developed model can be directly used as a drop-in module 
in larger computer vision systems to enhance Simulink computer vision toolbox capabilities, which does not 
support this operation for direct FPGA implementation yet. The synthesized core consumes less than 1% of total 
FPGA slice logic resources while dissipating only 7 mW dynamic power. To this end, look-up table has been 
employed to implement the division operator which otherwise requires exorbitantly large number of logic 
resources. Moreover, an online algorithm has been proposed which avoids multiple memory accesses. The 
hardware module has been tested in a real-time video processing scenario at 100 MHz clock rate and depicts 
functional accuracy at par with the software while consuming lower logic resources than competitive designs. 
These results demonstrate that the appropriate use of modern rapid prototyping tools can be highly effective in 
reducing the development time without compromising the functional accuracy and resource utilization. 
 
Keywords—Rapid prototyping; High-level synthesis; Adaptive algorithm; FPGA; Hardware accelerator; 
Hardware-software co-design.   
     

1. INTRODUCTION  

Contrast adjustment is a vital pre-processing in a vast majority of widely used computer 

vision algorithms. The use and spread of image and video content have become ubiquitous 

with different operators capturing this data under vastly different lighting conditions. This 

make it necessary for the captured data to be processed to make it consistent in terms of 

dynamic range of the pixel luminance values in order for various image processing tasks to 

function correctly [1]. These include such common tasks as object detection [2], compression, 

scene segmentation [3], object character recognition, barcode decoding, and medical image 

enhancement [4-9] etc. The poor lighting conditions lead to an artifact known as ‘contrast 

limitation’. This means that the luminance values of the pixels do not span their full dynamic 
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range, rendering them unfit for the above-mentioned tasks. For 8-bit images, this translates to 

the range, [0 255], with ‘0’ and ‘255’ denoting absolute dark and absolute bright, respectively. 

For contrast limited images, the pixels are either clustered towards 255 (washed out), zero 

(darkened), or the middle (flat). These cases have been depicted through an example in Figs. 

1(a) to (f) with the help of histograms of luminance values plotted alongside each case. It can 

be noticed that only the last image Figs. 1(g) and (h) is visually pleasing because its pixels 

occupy the full dynamic range i.e. [0 255].  
 

 
          (a)                                (b) 

 
                                          (c)                                  (d) 

  
                                     (e)        (f) 

  
                                         (g)                                    (h) 

Fig. 1. Contrast stretching example: a) washed out image; b) histogram concentrated towards higher values;         
c) darkened image; d) histogram concentrated towards lower values; e) flat image; f) histogram concentrated in 

the middle; g) contrast-enhanced image; h) histogram with full dynamic range. 
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One of the methods reported in the literature to achieve this result programmatically is 

knows as ‘Contrast Stretching’ and can be mathematically represented as [1], 

�̂� = (𝑝 − ℎ𝑙𝑜𝑤) (
255

ℎℎ𝑖𝑔ℎ−ℎ𝑙𝑜𝑤
)             (1) 

 where �̂� is the output luminance value, while 𝑝 is the input. ℎ𝑙𝑜𝑤 and ℎℎ𝑖𝑔ℎ are the lower and 

upper limits of the image histogram. Thus, for a contrast-limited 8-bit image, the difference 

ℎℎ𝑖𝑔ℎ − ℎ𝑙𝑜𝑤 is less than 255 (Fig. 1), and after contrast stretching it is exactly 255. Moreover, 

it can be noticed from the three different cases of contrast limitation that the limits, ℎ𝑙𝑜𝑤 and 

ℎℎ𝑖𝑔ℎ, can take on very different values. In the case of video streams, these values can change 

from one frame to another as well. Thus, a practical contrast stretching algorithm has to 

necessarily determine these two values before applying Eq. (1). 

Various contrast enhancement methods have been reported in the literature. Contrast 

stretching and histogram equalization are the two most widely employed techniques among 

these. Lie et al. have described a method for image enhancement using histogram projection 

on non-overlapping blocks [10]. Histogram projection has been argued to be better than 

histogram equalization for block-based processing since it requires fewer memory resources. 

Arici et al. have improved upon the conventional histogram equalization technique to give 

more natural appearance to the processed images [11]. Recently, Kim and Kim have 

incorporated 1-D and 2-D histograms simultaneously to preserve the shape of the original 

luminance histogram while enhancing the dynamic range [12]. Abdoli et al. have provided 

another improvement over the classic histogram equalization method using Gaussian 

modeling of the homogenous regions in the input image [13]. Thus, a vast variety of image 

enhancement techniques rely on histogram-based approaches. Although functionally 

resulting in more visually pleasing results, these techniques inevitably require excessive 

memory accesses and are, hence, unsuitable for direct incorporation in low-power image 

processing pipeline hardware. Alareqi et al. have described an FPGA-based implementation 

of various image enhancement techniques, including contrast stretching, for biomedical 

applications [14]. They have utilized the high-level synthesis framework provided by 

Simulink toolboxes [15]. However, they have not provided details of their implemented 

circuit. Moreover, their framework only supports hardware co-simulation with desktop PC. 

Akkala et al. have considered the inverse problem of compressing the dynamic range of 

ultrasound images on FPGA [16]. Their supplied detail is also insufficient to reproduce their 

implementation or results. Li and Lilja have used stochastic arithmetic units for contrast 

stretching hardware [17]. However, this approach is only valid in the presence of strong 

noise. A general-purpose application has not been identified. Hanumantharaju et al. [18] 

have described a geometric mean-based hardware for image enhancement based on an 

earlier algorithm by Song and Qiao [19]. This design requires hardware square root and 

divider modules which consume too many logic resources. The paper does not shed light on 

how these requirements were met on a Xilinx Virtex-II FPGA with limited on-board 

resources. Khan et al. have described hardware implementation details of an Anisotropic 

Gaussian filter-based image enhancement algorithm [20]. This architecture uses local 

neighborhood processing to stretch the dynamic range of input pixels and requires several 

complicated arithmetic processing units and memory controllers for operation. The 

hardware architecture developed by Ho et al. in [21] uses local mean and variance values to 
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adaptively adjust the contrast. However, the values calculated for local neighborhoods may 

not be globally valid and lead to artifacts. Furthermore, they have not described the 

implementation details of the contrast stretching equation especially the division operation 

which is a significant overhead. Luo et al. have described an algorithm for contrast 

enhancement of underwater images based on histogram stretching [22]. However, this 

algorithm is not conducive to hardware implementation due to the requirement of explicitly 

calculating the luminance histogram. Similarly, Kumar and Bhandari have proposed a fuzzy 

clustering-based algorithm for contrast enhancement which also requires explicit histogram 

estimation [23]. Lu et al. have suggested an adaptive algorithm for histogram equalization to 

address the problem of low contrast in infra-red images [24]. However, this algorithm also 

requires complex multi-scale convolution operations which requires multiple memory 

accesses per frame and is hence not suitable for deployment on real-time resource-constraint 

processing systems.  

In conclusion, although a variety of different algorithms and corresponding software 

implementations have been put forward by various researchers, a detailed hardware 

implementation of the contrast enhancement operation with reproducible results is currently 

lacking in the contemporary literature. Furthermore, the reported works are mostly based on 

histogram-based techniques which utilize extensive memory resources for their operation 

and hence increase the power consumption as well as complexity of the circuit. To this end, 

we have developed a hardware accelerator for contrast stretching, which does not consume 

memory units and yet achieves performance at par with the software-based implementations 

such as those found in popular image processing toolboxes [25] and libraries [26]. The 

developed hardware IP core has been tested in practical scenario by incorporation into a 

video processing system implemented as a Hardware-Software (HW-SW) Co-design. To 

demonstrate its utility in a real-world application, it has been deployed to enhance 

underwater video footage captured on a surface vehicle developed for research purposes. 

Furthermore, the whole design framework is available for download as open-source 

software to facilitate practitioners and researchers in reproducing our work as well as 

extending the same [27]. 

2. THE PROPOSED HARDWARE DESIGN 

The proposed hardware architecture for contrast stretching with adaptive lower and 

upper limits has been designed in Matlab/Simulink environment. This setup ensures flexible 

design platform as well as the facility to test the functionality using built-in software 

benchmark implementation of various image processing and computer vision algorithms. 

Moreover, Hardware Description Language (HDL) Coder toolbox allows rapid conversion of 

the developed model into synthesizable code for deployment on FPGA platforms as IP cores. 

Thus, the proposed solution has been developed as a drop-in module, which can be 

integrated within larger computer vision systems designed in Simulink for functionality 

testing as well as an IP core with standard interfaces for use in FPGA-based image 

processing pipelines. 

Fig. 2 shows the top-level Simulink model of the proposed hardware design. The 

‘ContrastStretch_HW’ block contains all the functionality to serially process an incoming 

pixel stream and adaptively adjust the contrast. The pixels enter this module through the 
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‘pixelIn’ signal in a raster scan order. The control signal bus, ‘ctrlIn’, contains the horizontal 

and vertical synchronization signals. These two ports combined form the same standard 

signals, which are commonly adopted by all commercial video cameras. In Xilinx Vivado 

development environment, AXI4-streaming bus protocol also uses the same signals. Thus, 

the hardware developed in Simulink HDL coder environment is directly compatible with 

Xilinx Vivado-based designs. 

The ‘ContrastStretch_SW’ block is a Simulink intrinsic block which serves as the 

software benchmark for the developed hardware [15]. This block is a part of Simulink 

Computer Vision toolbox and is widely used by researchers in the field. In order to test the 

functionality, same video sequence is input to both software and hardware processing blocks 

and the results are monitored for any differences. Since testing is done offline, the ‘Video 

Source’ module reads a locally stored video sequence for processing. The hardware module, 

however, requires this video data to be fed serially to mimic the raster scan order used by 

actual video cameras. Thus, the software version has access to the whole frame data but the 

hardware version can only access the data pixel by pixel and all the required storage has to 

be done inside the hardware circuit. This is the reason that pixel-based processing is more 

hardware efficient than block or window-based processing since the latter requires memory 

units to be allocated for pixel storage. ‘Frame To Pixels’ block provides this necessary 

conversion to raster scan format so that the hardware can be tested in software environment.   

‘Vector2RGB’ is another block necessary for the simulation of the hardware block in 

Simulink environment [15]. By default, Xilinx AXI4 streaming protocol has 4 channels per 

pixel i.e. one each for the three color channels and one for transparency. Normally 

transparency is not used in many applications such as the contrast stretching. Thus, the 

‘Vector2RGB’ simply adds the forth transparency channel with a dummy ‘255’ value to 

signify no transparency. These two conversions are reversed at the output side by ‘Pixels To 

Frame’ and ‘RGB2Vector’ blocks respectively before displaying the results. Furthermore, 

contrast stretching is usually done for only the luminance aspect of the image. Thus, in this 

work, we have only considered contrast stretching of this single channel. The Simulink 

intrinsic ‘RBG to intensity’ block performs this color to luminance (intensity) conversion for 

the software module. The hardware module has its own conversion block as an internal 

component as shown in Fig. 3. After Color Space Conversion (CSC) from RGB to intensity 

(luminance), the pixel data is processed by a user-defined function block which implements 

the main contrast stretching algorithm as dictated by Eq. (1) and has been described next. 
 

 
Fig. 2. Top-level Simulink model for development and testing of the proposed hardware for contrast stretching 

algorithm with adaptive limits. 



327                                             Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 

 

 

 
Fig. 3. Internal circuitry of ‘ContrastStretch_HW’ module. 

2.1. Internal Circuit Design of Contrast Stretching Module with Adaptive Limits 

As mentioned earlier, the main problem in adaptively adjusting the contrast of an 

input video stream is the determination of the limits, ℎ𝑙𝑜𝑤 and ℎℎ𝑖𝑔ℎ, which can differ with 

respect to time. The corresponding software benchmark block determines these limits by 

analyzing the histogram (Fig. 1) of the whole input image/frame. For hardware 

implementation, however, each pixel is processed only once and not stored for later retrieval. 

This is important to keep the image processing pipeline simple. Inclusion of memory access 

units not only consumes more resources, it also slows down the operation and consumes 

more power. To tackle this problem, in this work, we have exploited the temporal 

redundancy in the frame data to advantage. Specifically, video frames are captured at a rate 

of no less than 10 frames per second (fps) in most commercial cameras. Although some 

higher end systems use up to 120 fps, 10 ~ 30 fps is the common range. While higher 

numbers are useful to capture the motion of fast objects, the relative motion between 

adjacent frames is limited to only a few pixels. This means that the pixels take on very 

similar values and have very low entropy. This fact is used in video compression systems as 

well where small arithmetic difference between pixel values from adjacent frames is 

exploited to yield low bit rate for transmission and storage. The same phenomenon can be 

used for contrast stretching by determining the lower and upper limits for one frame and 

using it to process the next frame. Since the pixel values do not change drastically between 

temporally close frames, their histograms also depict the same behavior. Thus, an ‘online’ 

algorithm for contrast stretching has been developed where a pixel in the current frame is 

processed only once; to calculate the lower and upper limits for the next frame and contrast 

adjustment using the limits that were calculated for the previous frame. This scheme, shown 

visually in Fig. 4, ensures that no memory units are employed while functional correctness is 

preserved thanks to the low entropy of visually similar adjacent frames. Thus, the limits 

calculated for ‘Frame 0’ are used for ‘Frame 1’. Similarly, ‘Frame 1’ uses the values calculated 

for ‘Frame 0’ to adjust its own contrast while calculating the new limits for ‘Frame 2’ and so 

on. The corresponding online algorithm to dynamically adjust the contrast by calculating the 

limits has been described in Algorithm 1.  
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Algorithm 1. Online adaptive contrast adjustment of video frames 

Input: Video frames : V1, V2, V3, …. Vn 

Initialize: ℎ𝑙𝑜𝑤  = 0, ℎℎ𝑖𝑔ℎ  =255 

for i=1 to n do 

 if((#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 < ℎ𝑙𝑜𝑤) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡) 

  ℎ𝑙𝑜𝑤  = ℎ𝑙𝑜𝑤  + 1 

 if((#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 > ℎℎ𝑖𝑔ℎ) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡    

  ℎℎ𝑖𝑔ℎ  = ℎℎ𝑖𝑔ℎ  -1 

 for each pixel p in the frame do 

  �̂� = (𝑝 − ℎ𝑙𝑜𝑤) (
255

ℎℎ𝑖𝑔ℎ−ℎ𝑙𝑜𝑤
)    

end 

 
In order to calculate the limits for contrast stretching, the span of the image histogram 

is analyzed (Fig. 1). In practice, a few pixels always take on extremely low and extremely 

high values while the bulk forms the main histogram, which may or may not span the full 

dynamic range. Thus, theoretically, the histogram spans the full dynamic range due to these 

‘outlier’ pixels. To counter this problem, researchers in [1] have suggested to discard these 

pixels at both extremes by a determined percentage. Simulink software block adopts the 

same strategy. Thus, the lower limit, ℎ𝑙𝑜𝑤, is determined as follows, 

ℎ𝑙𝑜𝑤 = 𝑥 ∋ 𝑝(𝑋 < 𝑥) = 𝑝1            (2) 

where ‘X’ is the set of all pixel luminance values in the input frame, and ‘𝑝1’ is a pre-

determined constant. The probabilities are estimated from the histogram of the luminance 

values. Thus, for 𝑝1 = 0.01, the lower limit is set to discard 1% of pixels from the lower end of 

the histogram (outliers). Similarly, ℎℎ𝑖𝑔ℎ, is determined as follows, 

ℎℎ𝑖𝑔ℎ = 𝑥 ∋ 𝑝(𝑋 > 𝑥) = 𝑝2           (3) 

Thus, for 𝑝2 = 0.01, the upper limit discards 1% of outlier pixels from the upper end of the 

histogram. The values of 𝑝1 and 𝑝2 are generally fixed a priori. We have set these values to 

be 0.01 for both. The corresponding software block is set to use the same values for 

functionality comparisons. As mentioned earlier, in order to save precious memory 

resources, the proposed hardware model does not populate a full histogram for the frames 

being processed. Instead, the lower and upper limits are determined using the following 

simplified formulation, 

𝑝(𝑋 < 𝑥) = 𝑝1 = 0.01            (4) 
#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡<ℎ𝑙𝑜𝑤

#𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡
= 0.01            (5) 

 
Fig. 4. Online algorithm for adaptive determination of lower and upper limits for contrast stretching by 

exploiting visual similarity (low entropy) of temporally close frames. 

Frame 0

low1, high1

Frame 1

low2, high2

Frame n

low n+1, high n+1
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(#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 < ℎ𝑙𝑜𝑤) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡        (6) 

The value of ℎ𝑙𝑜𝑤 is initialized to be 0 at the start. Since the frame size is fixed as well as 

the value of 𝑝1, the hardware only needs to count the number of pixels with luminance 

values less than the current value of ℎ𝑙𝑜𝑤 to determine whether Eq. (6) holds true or not. This 

can be achieved through a counter and a comparator. If at the end of the frame, this equation 

holds, then no change to the limit is made. If, on the other hand, the number of pixels on the 

left-hand side (LHS) of Eq. (6) is less than the right-hand-side (RHS) constant, the limit is 

increased by a step, usually one. In the case of LHS being more than RHS, the limit is 

decreased by the same step. Thus, ℎ𝑙𝑜𝑤, is adaptively adjusted every frame to ensure that it 

closely follows the actual lower limit of the true histogram of the image by only allowing a 

few outliers (e.g. 1%) below this limit. A similar formulation for the upper limit can be 

expressed as follows,  

(#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 > ℎℎ𝑖𝑔ℎ) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡          (7) 

ℎℎ𝑖𝑔ℎ is initialized to be 255 at the start. 

Thus, the hardware needs to store only the upper and lower limits in the register along 

with two separate counters. These four registers have been shown in Fig. 3. The comparison 

and update mechanism has been coded in the user-defined function, ‘calc_limits’. This 

function uses ‘vstart’ and ‘valid’ signals to count the pixels according to the conditions in 

Eqs. (6) and (7). The first of these signals signifies the start of the frame while the second 

asserts when valid pixel values are present. Since, ℎℎ𝑖𝑔ℎ and ℎ𝑙𝑜𝑤 always lie within the range 

[0 255], 8-bit registers have been allocated to each of these. For the counter, 20-bit registers 

have been allocated. This allows counting to ‘1048576’ which allows processing VGA 

resolution frames (640 × 480). For larger frames, more bit-widths are needed to be allocated 

accordingly. 

The actual contrast stretching operation, Eq. (1), has also been implemented in the 

same user-defined function i.e. ‘calc_limits’. As discussed in the previous section, this 

operation involves a division operator which demands a lot of logic resources if 

implemented directly in the hardware. To circumvent this problem, we have implemented 

the division operation as a Look-Up Table (LUT). In Eq. (1), the value ‘ℎℎ𝑖𝑔ℎ−ℎ𝑙𝑜𝑤’ is in the 

numerator. This signal has the dynamic range [0 255]. Thus, an LUT has been incorporated, 

which stores the pre-computed reciprocal values for this range. In Fig. 3, the signal ‘out2’ is 

input to the LUT to implement the division operation of Eq. (1). Signal ‘out1’ is the 

remaining part of Eq. (1). The two signals are then multiplied to give the final result after 

conversion to an 8-bit integer. The interim signals use fixed-point format to preserve the 

fidelity. Thus, the LUT values are stored as 16-bit operands with 15 bits allocated for the 

fractional part. 

2.2. IP Core Generation and Incorporation in HW-SW Co-Design 

The ‘ContrastStretch’ module in the top module is selected for HDL generation using 

HDL coder after testing for functionality and comparison with the software module. This 

tool provides the necessary options to select the Xilinx specific interfaces such as the AXI4 

streaming protocol. It is worth mentioning here that if the LUT-based division operation is 

not implemented, then the Xilinx synthesis tools have to be instructed to use DSP blocks for 

this purpose as discussed in the next section. 
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The generated IP core is tested for use in the practical environment by insertion into a 

HW-SW co-design. In this work, Xilinx Vivado tool has been used for design entry, synthesis 

and ultimately programming the FPGA platform. We have employed Xilinx Zedboard for 

this purpose. It has Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 FPGA with a clock speed of 

100 MHz. The on-chip ARM microprocessor provides the necessary software support 

through Ubuntu with OpenCV computer vision library. This HW-SW co-design has all the 

necessary peripherals to implement a video processing system as shown in Fig. 5. The 

contrast stretching IP core can use either direct video stream from HDMI input or frames 

stored on main RAM accessible via video DMA through AXI4 streaming protocol. 

Alternatively, a webcam can also be used as the source of video stream. The dataflow 

through the Vivado project has been shown in Fig. 6. The contrast stretching IP core can be 

optionally accessed through AXI-lite interface to change user settings as well. Our design, 

however, adaptively sets the limits based on the frame characteristics. Thus, there are no 

user-settable options. 

 

 
(a) 

 
(b) 

Fig. 5. HW-SW co-design: a) block diagram; b) implementation on Zedboard to test the developed contrast 
stretching IP core. 
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Fig. 6. HW-SW co-design components’ integration in the Vivado project. 

3. RESULTS AND DISCUSSION 

The summary results of synthesizing the complete HW-SW co-design (Fig. 6) on 

Zedboard using Vivado are illustrated in Fig. 7. It can be noticed that full system consumes 

only 16% of the available slice LUT resources while only minimal registers, on-chip memory 

(BRAM) and specialized arithmetic units (DSP) have been used. Thus, there are enough logic 

resources remaining to implement a larger computer vision system. This is also evident from 

the FPGA layout reported by Vivado ‘place and route’ tool and shown in Fig. 8. It can be 

seen that most of the silicon real-estate on FPGA device is vacant.  

Table 1 contains the detailed FPGA synthesis report of the developed hardware IP core 

for contrast stretching along with the complete system as described in the previous section. It 

can be noticed that the proposed design consumes around 4% of the total Slice LUT used by 

the full system which is less than 1% of the whole FPGA. Moreover, the CSC part of the IP 

consumes the bulk of these resources. Thus, 3 DSP blocks are consumed by this module, and 

only one by the circuit implemented for Eq. (1). Same is true for the registers. The CSC 

module uses 75% of all the registers consumed by the whole IP. It may be reiterated that CSC 

is an intrinsic Simulink block and does not allow any changes to be made inside. The bulk of 

the logic resources, registers and memory units (BRAM) are utilized by the Processing Side 

(PS) and its interfaces. It also consumes the most dynamic power as estimated by the Vivado 

tool i.e. 1.77 W. In contrast, the developed IP core only dissipates 7 mW while operating at 

100 MHz. At this clock rate, it is able to process Full HD video frames (1920 × 1080) at 48 fps. 

The extremely low resource utilization and associated low power dissipation has been made 

possible mainly due to the LUT-based implementation of the divider module and adoption 

of online algorithm for adaptive adjustment of limits. A divider is generally synthesized 

using multiple DSP blocks and consumes considerable dynamic power as well. Moreover, 

the online algorithm (Fig. 4) eliminates the need for irregular memory accesses and processes 



Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023                                                 332 

 

 

each pixel only once. This is made possible by realizing and exploiting the temporal 

redundancy of the adjacent frames. In comparison, the adaptive contrast enhancement 

technique proposed by [28] consumes multiple times more logic resources as well as BRAM 

and DSP units. Moreover, their design implemented through Xilinx System Generator is only 

capable of running at 60 MHz. In [29], the authors have reported the FPGA implementation 

of various image enhancement techniques for automatic vehicle plate detection. Their 

corresponding implementation of contrast stretching hardware also consumes almost double 

the LUT resources than our proposed design. Moreover, this design consumes a lot of on-

chip memory resources, as well. The reported dynamic power consumption is also not 

suitable for insertion into real-time image processing pipelines. In [30], the authors have 

proposed FPGA implementation of an advanced adaptive contrast enhancement algorithm. 

While this design achieves operating speed up to 350 frames per seconds, it consumes 

exorbitantly large number of resources as seen from Table 1. These implementation results 

demonstrate that implementation of complicated contrast enhancement algorithms 

inevitably require excessively large number of on-chip resources which prohibits inclusion of 

such circuits in real-time image processing pipeline of low-complexity vision systems. The 

proposed solution, on the other hand, provides a drop-in module for inclusion in computer 

vision systems developed using Simulink high-level synthesis tools and requires fewer logic 

resources. 

 

 
Fig. 7. Design utilization as a percentage of total available resources on FPGA platform. 

 

 
Fig. 8. FPGA layout after ‘place and route’ phase of implementation. 
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Table 1. FPGA synthesis results for the proposed contrast stretching IP core. 

 

Moreover, despite using approximate arithmetic circuit for division operation, the 

functional accuracy is also very close to its software counterpart, as can be noticed from    

Fig. 9. The results of the hardware model, despite using fixed-point and approximate 

arithmetic processing elements, are perceptually identical to those of the full precision 

software model. Even in the worst-case scenario with extremely low contrast ration in the 

input image, the maximum deviation from the software model is 10 per pixel, with average 

error being only 3. Fig. 10 shows the result of applying the proposed online contrast 

stretching algorithm to a video frame captured via an underwater observation camera. 
  

   
                          (a)                   (b)       (c) 

   
                            (d)     (e)      (f) 

   
                            (g)    (h)      (i) 

Fig. 9. Comparison of hardware and software models output on test images: a, d, g) input images; b, e, h) 
processed through Software; c, f, i) processed through hardware leading to average(max.) error per pixel values 

of 1.075(4), 1.4(4) and 3.1(10), respectively on the tested images.  
 

Component FPGA 
Slice  

LUT 

Slice  

registers 
BRAM DSP 

Dynamic  

Power [W] 

Proposed Design Full System Xilinx  XC7Z020 8355 9118 6 4 1.768 

AXI Interconnect - 1182 1399 1.5 0 0.006  

AXI VDMA - 2231 2732 0 0 0.01 

Contrast Stretching IP Core - 336 304 0 4 0.007  

CSC converter - 210 228 0 3 - 

Adaptive Limits - 34 76 0 0 - 

Eq. (1) - 92 0 0 1 - 

Ref. [28] Xilinx Spartan III 3342 - 4 17  

Ref. [29] Xilinx Virtex V 756 - 800 - 0.101 

Ref. [30] Xilinx Virtex IV 4766 440 16 - - 
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 
 

(f) 

 

(g) 
 

(h) 

 
(i) 

Fig. 10. Visual results of contrast enhancement of underwater video frames using the proposed online algorithm: 
a) input frame 1; b) input frame 1 histogram; c) processed frame 1; d) processed frame 1 histogram; e) input  

frame 2; f) input frame 2 histogram; g) processed frame 2; h) processed frame 2 histogram; i) underwater video 
capturing system on-board explorer boat. 
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The research platform boat shown in Fig. 10(i) has been especially developed to 

explore the underwater coral structures near the coast of Jeddah, Saudi Arabia in Red Sea 

using downward looking submerged camera. As seen in Figs. 10(a) and (c), the sample video 

frames suffer from contrast limited exposure. This can be observed as narrow histograms of 

the corresponding illumination values shown in Figs. 10(e) and (g) respectively for each 

sample. Figs. 10(b) and (d) show the result of processing the contrast limited frames using 

the proposed algorithm. As depicted by their corresponding visual appearances as well as 

the spread-out histograms (Figs. 10(f) and (h)), the contrast has been adequately enhanced.  

4. CONCLUSIONS 

This paper has described an adaptive contrast enhancement algorithm and its 

corresponding hardware implementation on FPGA. The proposed hardware is not only very 

suitable for inclusion in an image processing pipeline for real-time applications due to its 

low power dissipation and processing speed, but it also consumes very few logic resources. 

Furthermore, the contrast enhancement module has been developed as a Simulink block 

which makes it a valuable resource for inclusion in larger computer vision system since 

Vision HDL toolbox does not provide this functionality as a drop-in synthesizable module at 

the moment. This work has demonstrated the real-time contrast stretching operation with 

minimal resources on a Xilinx Zynq FPGA which may not be suitable for energy-constraint 

systems due to its higher static power consumption. Thus, for the future work, it has been 

planned to port the design onto commercially available low-power devices.  
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