
JJEE

 Volume 9 | Number 3 | September 2023 | Pages 322-337

* Corresponding author Article’s DOI: 10.5455/jjee.204-1673105856

Jordan Journal of Electrical Engineering

ISSN (print): 2409-9600, ISSN (online): 2409-9619

Homepage: jjee.ttu.edu.jo

Rapid Prototyping of Image Contrast Enhancement Hardware

Accelerator on FPGAs Using High-Level Synthesis Tools

Muhammad Bilal1* , Wail Ismael Harasani2 , Liang Yang3

1 Department of Electrical and Computer Engineering, King Abdulaziz University, Saudi Arabia
E-mail: meftekar@kau.edu.sa

2 Department of Aerospace Engineering, King Abdulaziz University, Saudi Arabia
3 Division of Energy and Sustainability, Cranfield University, Bedford, United Kingdom

 Received: January 07, 2023 Revised: February 25, 2023 Accepted: March 02, 2023

Abstract—Rapid prototyping tools have become essential in the race to market. In this work, we have explored
employing rapid prototyping approach to develop an intellectual property core for real-time contrast
enhancement which is a commonly employed image processing task. Specifically, the task involves real-time
contrast enhancement of video frames, which is used to repair washed out (overexposed) or darkened
(underexposed) appearance. Such scenario is frequently encountered in video footage captured underwater. Since
the imaging conditions are not known a priori, the lower and upper limits of the dynamic range of acquired
luminance values need to be adaptively determined and mapped to the full range permitted by the allocated
bitwidth so that the processed image has a high-contrast appearance. This paper describes a hardware
implementation of this operation using contrast stretching algorithm with the help of Simulink high-level
synthesis tool using rapid prototyping paradigm. The developed model can be directly used as a drop-in module
in larger computer vision systems to enhance Simulink computer vision toolbox capabilities, which does not
support this operation for direct FPGA implementation yet. The synthesized core consumes less than 1% of total
FPGA slice logic resources while dissipating only 7 mW dynamic power. To this end, look-up table has been
employed to implement the division operator which otherwise requires exorbitantly large number of logic
resources. Moreover, an online algorithm has been proposed which avoids multiple memory accesses. The
hardware module has been tested in a real-time video processing scenario at 100 MHz clock rate and depicts
functional accuracy at par with the software while consuming lower logic resources than competitive designs.
These results demonstrate that the appropriate use of modern rapid prototyping tools can be highly effective in
reducing the development time without compromising the functional accuracy and resource utilization.

Keywords—Rapid prototyping; High-level synthesis; Adaptive algorithm; FPGA; Hardware accelerator;
Hardware-software co-design.

1. INTRODUCTION

Contrast adjustment is a vital pre-processing in a vast majority of widely used computer

vision algorithms. The use and spread of image and video content have become ubiquitous

with different operators capturing this data under vastly different lighting conditions. This

make it necessary for the captured data to be processed to make it consistent in terms of

dynamic range of the pixel luminance values in order for various image processing tasks to

function correctly [1]. These include such common tasks as object detection [2], compression,

scene segmentation [3], object character recognition, barcode decoding, and medical image

enhancement [4-9] etc. The poor lighting conditions lead to an artifact known as ‘contrast

limitation’. This means that the luminance values of the pixels do not span their full dynamic

https://orcid.org/0000-0002-6446-8687
https://orcid.org/0000-0003-3910-6294
https://orcid.org/0000-0003-0901-0929

323 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

range, rendering them unfit for the above-mentioned tasks. For 8-bit images, this translates to

the range, [0 255], with ‘0’ and ‘255’ denoting absolute dark and absolute bright, respectively.

For contrast limited images, the pixels are either clustered towards 255 (washed out), zero

(darkened), or the middle (flat). These cases have been depicted through an example in Figs.

1(a) to (f) with the help of histograms of luminance values plotted alongside each case. It can

be noticed that only the last image Figs. 1(g) and (h) is visually pleasing because its pixels

occupy the full dynamic range i.e. [0 255].

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 1. Contrast stretching example: a) washed out image; b) histogram concentrated towards higher values;
c) darkened image; d) histogram concentrated towards lower values; e) flat image; f) histogram concentrated in

the middle; g) contrast-enhanced image; h) histogram with full dynamic range.

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 324

One of the methods reported in the literature to achieve this result programmatically is

knows as ‘Contrast Stretching’ and can be mathematically represented as [1],

�̂� = (𝑝 − ℎ𝑙𝑜𝑤) (
255

ℎℎ𝑖𝑔ℎ−ℎ𝑙𝑜𝑤
) (1)

 where �̂� is the output luminance value, while 𝑝 is the input. ℎ𝑙𝑜𝑤 and ℎℎ𝑖𝑔ℎ are the lower and

upper limits of the image histogram. Thus, for a contrast-limited 8-bit image, the difference

ℎℎ𝑖𝑔ℎ − ℎ𝑙𝑜𝑤 is less than 255 (Fig. 1), and after contrast stretching it is exactly 255. Moreover,

it can be noticed from the three different cases of contrast limitation that the limits, ℎ𝑙𝑜𝑤 and

ℎℎ𝑖𝑔ℎ, can take on very different values. In the case of video streams, these values can change

from one frame to another as well. Thus, a practical contrast stretching algorithm has to

necessarily determine these two values before applying Eq. (1).

Various contrast enhancement methods have been reported in the literature. Contrast

stretching and histogram equalization are the two most widely employed techniques among

these. Lie et al. have described a method for image enhancement using histogram projection

on non-overlapping blocks [10]. Histogram projection has been argued to be better than

histogram equalization for block-based processing since it requires fewer memory resources.

Arici et al. have improved upon the conventional histogram equalization technique to give

more natural appearance to the processed images [11]. Recently, Kim and Kim have

incorporated 1-D and 2-D histograms simultaneously to preserve the shape of the original

luminance histogram while enhancing the dynamic range [12]. Abdoli et al. have provided

another improvement over the classic histogram equalization method using Gaussian

modeling of the homogenous regions in the input image [13]. Thus, a vast variety of image

enhancement techniques rely on histogram-based approaches. Although functionally

resulting in more visually pleasing results, these techniques inevitably require excessive

memory accesses and are, hence, unsuitable for direct incorporation in low-power image

processing pipeline hardware. Alareqi et al. have described an FPGA-based implementation

of various image enhancement techniques, including contrast stretching, for biomedical

applications [14]. They have utilized the high-level synthesis framework provided by

Simulink toolboxes [15]. However, they have not provided details of their implemented

circuit. Moreover, their framework only supports hardware co-simulation with desktop PC.

Akkala et al. have considered the inverse problem of compressing the dynamic range of

ultrasound images on FPGA [16]. Their supplied detail is also insufficient to reproduce their

implementation or results. Li and Lilja have used stochastic arithmetic units for contrast

stretching hardware [17]. However, this approach is only valid in the presence of strong

noise. A general-purpose application has not been identified. Hanumantharaju et al. [18]

have described a geometric mean-based hardware for image enhancement based on an

earlier algorithm by Song and Qiao [19]. This design requires hardware square root and

divider modules which consume too many logic resources. The paper does not shed light on

how these requirements were met on a Xilinx Virtex-II FPGA with limited on-board

resources. Khan et al. have described hardware implementation details of an Anisotropic

Gaussian filter-based image enhancement algorithm [20]. This architecture uses local

neighborhood processing to stretch the dynamic range of input pixels and requires several

complicated arithmetic processing units and memory controllers for operation. The

hardware architecture developed by Ho et al. in [21] uses local mean and variance values to

325 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

adaptively adjust the contrast. However, the values calculated for local neighborhoods may

not be globally valid and lead to artifacts. Furthermore, they have not described the

implementation details of the contrast stretching equation especially the division operation

which is a significant overhead. Luo et al. have described an algorithm for contrast

enhancement of underwater images based on histogram stretching [22]. However, this

algorithm is not conducive to hardware implementation due to the requirement of explicitly

calculating the luminance histogram. Similarly, Kumar and Bhandari have proposed a fuzzy

clustering-based algorithm for contrast enhancement which also requires explicit histogram

estimation [23]. Lu et al. have suggested an adaptive algorithm for histogram equalization to

address the problem of low contrast in infra-red images [24]. However, this algorithm also

requires complex multi-scale convolution operations which requires multiple memory

accesses per frame and is hence not suitable for deployment on real-time resource-constraint

processing systems.

In conclusion, although a variety of different algorithms and corresponding software

implementations have been put forward by various researchers, a detailed hardware

implementation of the contrast enhancement operation with reproducible results is currently

lacking in the contemporary literature. Furthermore, the reported works are mostly based on

histogram-based techniques which utilize extensive memory resources for their operation

and hence increase the power consumption as well as complexity of the circuit. To this end,

we have developed a hardware accelerator for contrast stretching, which does not consume

memory units and yet achieves performance at par with the software-based implementations

such as those found in popular image processing toolboxes [25] and libraries [26]. The

developed hardware IP core has been tested in practical scenario by incorporation into a

video processing system implemented as a Hardware-Software (HW-SW) Co-design. To

demonstrate its utility in a real-world application, it has been deployed to enhance

underwater video footage captured on a surface vehicle developed for research purposes.

Furthermore, the whole design framework is available for download as open-source

software to facilitate practitioners and researchers in reproducing our work as well as

extending the same [27].

2. THE PROPOSED HARDWARE DESIGN

The proposed hardware architecture for contrast stretching with adaptive lower and

upper limits has been designed in Matlab/Simulink environment. This setup ensures flexible

design platform as well as the facility to test the functionality using built-in software

benchmark implementation of various image processing and computer vision algorithms.

Moreover, Hardware Description Language (HDL) Coder toolbox allows rapid conversion of

the developed model into synthesizable code for deployment on FPGA platforms as IP cores.

Thus, the proposed solution has been developed as a drop-in module, which can be

integrated within larger computer vision systems designed in Simulink for functionality

testing as well as an IP core with standard interfaces for use in FPGA-based image

processing pipelines.

Fig. 2 shows the top-level Simulink model of the proposed hardware design. The

‘ContrastStretch_HW’ block contains all the functionality to serially process an incoming

pixel stream and adaptively adjust the contrast. The pixels enter this module through the

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 326

‘pixelIn’ signal in a raster scan order. The control signal bus, ‘ctrlIn’, contains the horizontal

and vertical synchronization signals. These two ports combined form the same standard

signals, which are commonly adopted by all commercial video cameras. In Xilinx Vivado

development environment, AXI4-streaming bus protocol also uses the same signals. Thus,

the hardware developed in Simulink HDL coder environment is directly compatible with

Xilinx Vivado-based designs.

The ‘ContrastStretch_SW’ block is a Simulink intrinsic block which serves as the

software benchmark for the developed hardware [15]. This block is a part of Simulink

Computer Vision toolbox and is widely used by researchers in the field. In order to test the

functionality, same video sequence is input to both software and hardware processing blocks

and the results are monitored for any differences. Since testing is done offline, the ‘Video

Source’ module reads a locally stored video sequence for processing. The hardware module,

however, requires this video data to be fed serially to mimic the raster scan order used by

actual video cameras. Thus, the software version has access to the whole frame data but the

hardware version can only access the data pixel by pixel and all the required storage has to

be done inside the hardware circuit. This is the reason that pixel-based processing is more

hardware efficient than block or window-based processing since the latter requires memory

units to be allocated for pixel storage. ‘Frame To Pixels’ block provides this necessary

conversion to raster scan format so that the hardware can be tested in software environment.

‘Vector2RGB’ is another block necessary for the simulation of the hardware block in

Simulink environment [15]. By default, Xilinx AXI4 streaming protocol has 4 channels per

pixel i.e. one each for the three color channels and one for transparency. Normally

transparency is not used in many applications such as the contrast stretching. Thus, the

‘Vector2RGB’ simply adds the forth transparency channel with a dummy ‘255’ value to

signify no transparency. These two conversions are reversed at the output side by ‘Pixels To

Frame’ and ‘RGB2Vector’ blocks respectively before displaying the results. Furthermore,

contrast stretching is usually done for only the luminance aspect of the image. Thus, in this

work, we have only considered contrast stretching of this single channel. The Simulink

intrinsic ‘RBG to intensity’ block performs this color to luminance (intensity) conversion for

the software module. The hardware module has its own conversion block as an internal

component as shown in Fig. 3. After Color Space Conversion (CSC) from RGB to intensity

(luminance), the pixel data is processed by a user-defined function block which implements

the main contrast stretching algorithm as dictated by Eq. (1) and has been described next.

Fig. 2. Top-level Simulink model for development and testing of the proposed hardware for contrast stretching

algorithm with adaptive limits.

327 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

Fig. 3. Internal circuitry of ‘ContrastStretch_HW’ module.

2.1. Internal Circuit Design of Contrast Stretching Module with Adaptive Limits

As mentioned earlier, the main problem in adaptively adjusting the contrast of an

input video stream is the determination of the limits, ℎ𝑙𝑜𝑤 and ℎℎ𝑖𝑔ℎ, which can differ with

respect to time. The corresponding software benchmark block determines these limits by

analyzing the histogram (Fig. 1) of the whole input image/frame. For hardware

implementation, however, each pixel is processed only once and not stored for later retrieval.

This is important to keep the image processing pipeline simple. Inclusion of memory access

units not only consumes more resources, it also slows down the operation and consumes

more power. To tackle this problem, in this work, we have exploited the temporal

redundancy in the frame data to advantage. Specifically, video frames are captured at a rate

of no less than 10 frames per second (fps) in most commercial cameras. Although some

higher end systems use up to 120 fps, 10 ~ 30 fps is the common range. While higher

numbers are useful to capture the motion of fast objects, the relative motion between

adjacent frames is limited to only a few pixels. This means that the pixels take on very

similar values and have very low entropy. This fact is used in video compression systems as

well where small arithmetic difference between pixel values from adjacent frames is

exploited to yield low bit rate for transmission and storage. The same phenomenon can be

used for contrast stretching by determining the lower and upper limits for one frame and

using it to process the next frame. Since the pixel values do not change drastically between

temporally close frames, their histograms also depict the same behavior. Thus, an ‘online’

algorithm for contrast stretching has been developed where a pixel in the current frame is

processed only once; to calculate the lower and upper limits for the next frame and contrast

adjustment using the limits that were calculated for the previous frame. This scheme, shown

visually in Fig. 4, ensures that no memory units are employed while functional correctness is

preserved thanks to the low entropy of visually similar adjacent frames. Thus, the limits

calculated for ‘Frame 0’ are used for ‘Frame 1’. Similarly, ‘Frame 1’ uses the values calculated

for ‘Frame 0’ to adjust its own contrast while calculating the new limits for ‘Frame 2’ and so

on. The corresponding online algorithm to dynamically adjust the contrast by calculating the

limits has been described in Algorithm 1.

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 328

Algorithm 1. Online adaptive contrast adjustment of video frames

Input: Video frames : V1, V2, V3, …. Vn

Initialize: ℎ𝑙𝑜𝑤 = 0, ℎℎ𝑖𝑔ℎ =255

for i=1 to n do

 if((#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 < ℎ𝑙𝑜𝑤) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡)

 ℎ𝑙𝑜𝑤 = ℎ𝑙𝑜𝑤 + 1

 if((#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 > ℎℎ𝑖𝑔ℎ) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡

 ℎℎ𝑖𝑔ℎ = ℎℎ𝑖𝑔ℎ -1

 for each pixel p in the frame do

 �̂� = (𝑝 − ℎ𝑙𝑜𝑤) (
255

ℎℎ𝑖𝑔ℎ−ℎ𝑙𝑜𝑤
)

end

In order to calculate the limits for contrast stretching, the span of the image histogram

is analyzed (Fig. 1). In practice, a few pixels always take on extremely low and extremely

high values while the bulk forms the main histogram, which may or may not span the full

dynamic range. Thus, theoretically, the histogram spans the full dynamic range due to these

‘outlier’ pixels. To counter this problem, researchers in [1] have suggested to discard these

pixels at both extremes by a determined percentage. Simulink software block adopts the

same strategy. Thus, the lower limit, ℎ𝑙𝑜𝑤, is determined as follows,

ℎ𝑙𝑜𝑤 = 𝑥 ∋ 𝑝(𝑋 < 𝑥) = 𝑝1 (2)

where ‘X’ is the set of all pixel luminance values in the input frame, and ‘𝑝1’ is a pre-

determined constant. The probabilities are estimated from the histogram of the luminance

values. Thus, for 𝑝1 = 0.01, the lower limit is set to discard 1% of pixels from the lower end of

the histogram (outliers). Similarly, ℎℎ𝑖𝑔ℎ, is determined as follows,

ℎℎ𝑖𝑔ℎ = 𝑥 ∋ 𝑝(𝑋 > 𝑥) = 𝑝2 (3)

Thus, for 𝑝2 = 0.01, the upper limit discards 1% of outlier pixels from the upper end of the

histogram. The values of 𝑝1 and 𝑝2 are generally fixed a priori. We have set these values to

be 0.01 for both. The corresponding software block is set to use the same values for

functionality comparisons. As mentioned earlier, in order to save precious memory

resources, the proposed hardware model does not populate a full histogram for the frames

being processed. Instead, the lower and upper limits are determined using the following

simplified formulation,

𝑝(𝑋 < 𝑥) = 𝑝1 = 0.01 (4)
#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡<ℎ𝑙𝑜𝑤

#𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡
= 0.01 (5)

Fig. 4. Online algorithm for adaptive determination of lower and upper limits for contrast stretching by

exploiting visual similarity (low entropy) of temporally close frames.

Frame 0

low1, high1

Frame 1

low2, high2

Frame n

low n+1, high n+1

329 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

(#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 < ℎ𝑙𝑜𝑤) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 (6)

The value of ℎ𝑙𝑜𝑤 is initialized to be 0 at the start. Since the frame size is fixed as well as

the value of 𝑝1, the hardware only needs to count the number of pixels with luminance

values less than the current value of ℎ𝑙𝑜𝑤 to determine whether Eq. (6) holds true or not. This

can be achieved through a counter and a comparator. If at the end of the frame, this equation

holds, then no change to the limit is made. If, on the other hand, the number of pixels on the

left-hand side (LHS) of Eq. (6) is less than the right-hand-side (RHS) constant, the limit is

increased by a step, usually one. In the case of LHS being more than RHS, the limit is

decreased by the same step. Thus, ℎ𝑙𝑜𝑤, is adaptively adjusted every frame to ensure that it

closely follows the actual lower limit of the true histogram of the image by only allowing a

few outliers (e.g. 1%) below this limit. A similar formulation for the upper limit can be

expressed as follows,

(#𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 > ℎℎ𝑖𝑔ℎ) = 0.01 ∗ #𝑇𝑜𝑡𝑎𝑙𝑃𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡 (7)

ℎℎ𝑖𝑔ℎ is initialized to be 255 at the start.

Thus, the hardware needs to store only the upper and lower limits in the register along

with two separate counters. These four registers have been shown in Fig. 3. The comparison

and update mechanism has been coded in the user-defined function, ‘calc_limits’. This

function uses ‘vstart’ and ‘valid’ signals to count the pixels according to the conditions in

Eqs. (6) and (7). The first of these signals signifies the start of the frame while the second

asserts when valid pixel values are present. Since, ℎℎ𝑖𝑔ℎ and ℎ𝑙𝑜𝑤 always lie within the range

[0 255], 8-bit registers have been allocated to each of these. For the counter, 20-bit registers

have been allocated. This allows counting to ‘1048576’ which allows processing VGA

resolution frames (640 × 480). For larger frames, more bit-widths are needed to be allocated

accordingly.

The actual contrast stretching operation, Eq. (1), has also been implemented in the

same user-defined function i.e. ‘calc_limits’. As discussed in the previous section, this

operation involves a division operator which demands a lot of logic resources if

implemented directly in the hardware. To circumvent this problem, we have implemented

the division operation as a Look-Up Table (LUT). In Eq. (1), the value ‘ℎℎ𝑖𝑔ℎ−ℎ𝑙𝑜𝑤’ is in the

numerator. This signal has the dynamic range [0 255]. Thus, an LUT has been incorporated,

which stores the pre-computed reciprocal values for this range. In Fig. 3, the signal ‘out2’ is

input to the LUT to implement the division operation of Eq. (1). Signal ‘out1’ is the

remaining part of Eq. (1). The two signals are then multiplied to give the final result after

conversion to an 8-bit integer. The interim signals use fixed-point format to preserve the

fidelity. Thus, the LUT values are stored as 16-bit operands with 15 bits allocated for the

fractional part.

2.2. IP Core Generation and Incorporation in HW-SW Co-Design

The ‘ContrastStretch’ module in the top module is selected for HDL generation using

HDL coder after testing for functionality and comparison with the software module. This

tool provides the necessary options to select the Xilinx specific interfaces such as the AXI4

streaming protocol. It is worth mentioning here that if the LUT-based division operation is

not implemented, then the Xilinx synthesis tools have to be instructed to use DSP blocks for

this purpose as discussed in the next section.

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 330

The generated IP core is tested for use in the practical environment by insertion into a

HW-SW co-design. In this work, Xilinx Vivado tool has been used for design entry, synthesis

and ultimately programming the FPGA platform. We have employed Xilinx Zedboard for

this purpose. It has Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 FPGA with a clock speed of

100 MHz. The on-chip ARM microprocessor provides the necessary software support

through Ubuntu with OpenCV computer vision library. This HW-SW co-design has all the

necessary peripherals to implement a video processing system as shown in Fig. 5. The

contrast stretching IP core can use either direct video stream from HDMI input or frames

stored on main RAM accessible via video DMA through AXI4 streaming protocol.

Alternatively, a webcam can also be used as the source of video stream. The dataflow

through the Vivado project has been shown in Fig. 6. The contrast stretching IP core can be

optionally accessed through AXI-lite interface to change user settings as well. Our design,

however, adaptively sets the limits based on the frame characteristics. Thus, there are no

user-settable options.

(a)

(b)

Fig. 5. HW-SW co-design: a) block diagram; b) implementation on Zedboard to test the developed contrast
stretching IP core.

Ethernet

Amba Bus

DRAM

512 MB
ARM CPUUSB OTG

FMC/HDMIAXI Interconnect

VGA
SD Card

32 GB

I2C Audio

Codec

AXI VDMA

Contrast

Stretching

IP Core

AXI Stream

AXI Stream

331 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

AXI Interconnect

Zynq Processing
System

Main Memory

Contrast Stretching IP
Core

Video DMA

Peripherals (VGA,
USB, Ethernet etc.)

Clock Manager

IO Ports

Fig. 6. HW-SW co-design components’ integration in the Vivado project.

3. RESULTS AND DISCUSSION

The summary results of synthesizing the complete HW-SW co-design (Fig. 6) on

Zedboard using Vivado are illustrated in Fig. 7. It can be noticed that full system consumes

only 16% of the available slice LUT resources while only minimal registers, on-chip memory

(BRAM) and specialized arithmetic units (DSP) have been used. Thus, there are enough logic

resources remaining to implement a larger computer vision system. This is also evident from

the FPGA layout reported by Vivado ‘place and route’ tool and shown in Fig. 8. It can be

seen that most of the silicon real-estate on FPGA device is vacant.

Table 1 contains the detailed FPGA synthesis report of the developed hardware IP core

for contrast stretching along with the complete system as described in the previous section. It

can be noticed that the proposed design consumes around 4% of the total Slice LUT used by

the full system which is less than 1% of the whole FPGA. Moreover, the CSC part of the IP

consumes the bulk of these resources. Thus, 3 DSP blocks are consumed by this module, and

only one by the circuit implemented for Eq. (1). Same is true for the registers. The CSC

module uses 75% of all the registers consumed by the whole IP. It may be reiterated that CSC

is an intrinsic Simulink block and does not allow any changes to be made inside. The bulk of

the logic resources, registers and memory units (BRAM) are utilized by the Processing Side

(PS) and its interfaces. It also consumes the most dynamic power as estimated by the Vivado

tool i.e. 1.77 W. In contrast, the developed IP core only dissipates 7 mW while operating at

100 MHz. At this clock rate, it is able to process Full HD video frames (1920 × 1080) at 48 fps.

The extremely low resource utilization and associated low power dissipation has been made

possible mainly due to the LUT-based implementation of the divider module and adoption

of online algorithm for adaptive adjustment of limits. A divider is generally synthesized

using multiple DSP blocks and consumes considerable dynamic power as well. Moreover,

the online algorithm (Fig. 4) eliminates the need for irregular memory accesses and processes

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 332

each pixel only once. This is made possible by realizing and exploiting the temporal

redundancy of the adjacent frames. In comparison, the adaptive contrast enhancement

technique proposed by [28] consumes multiple times more logic resources as well as BRAM

and DSP units. Moreover, their design implemented through Xilinx System Generator is only

capable of running at 60 MHz. In [29], the authors have reported the FPGA implementation

of various image enhancement techniques for automatic vehicle plate detection. Their

corresponding implementation of contrast stretching hardware also consumes almost double

the LUT resources than our proposed design. Moreover, this design consumes a lot of on-

chip memory resources, as well. The reported dynamic power consumption is also not

suitable for insertion into real-time image processing pipelines. In [30], the authors have

proposed FPGA implementation of an advanced adaptive contrast enhancement algorithm.

While this design achieves operating speed up to 350 frames per seconds, it consumes

exorbitantly large number of resources as seen from Table 1. These implementation results

demonstrate that implementation of complicated contrast enhancement algorithms

inevitably require excessively large number of on-chip resources which prohibits inclusion of

such circuits in real-time image processing pipeline of low-complexity vision systems. The

proposed solution, on the other hand, provides a drop-in module for inclusion in computer

vision systems developed using Simulink high-level synthesis tools and requires fewer logic

resources.

Fig. 7. Design utilization as a percentage of total available resources on FPGA platform.

Fig. 8. FPGA layout after ‘place and route’ phase of implementation.

Utilization [%]

A
va

ila
b

le
 R

es
o

u
rc

e
s

333 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

Table 1. FPGA synthesis results for the proposed contrast stretching IP core.

Moreover, despite using approximate arithmetic circuit for division operation, the

functional accuracy is also very close to its software counterpart, as can be noticed from

Fig. 9. The results of the hardware model, despite using fixed-point and approximate

arithmetic processing elements, are perceptually identical to those of the full precision

software model. Even in the worst-case scenario with extremely low contrast ration in the

input image, the maximum deviation from the software model is 10 per pixel, with average

error being only 3. Fig. 10 shows the result of applying the proposed online contrast

stretching algorithm to a video frame captured via an underwater observation camera.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 9. Comparison of hardware and software models output on test images: a, d, g) input images; b, e, h)
processed through Software; c, f, i) processed through hardware leading to average(max.) error per pixel values

of 1.075(4), 1.4(4) and 3.1(10), respectively on the tested images.

Component FPGA
Slice

LUT

Slice

registers
BRAM DSP

Dynamic

Power [W]

Proposed Design Full System Xilinx XC7Z020 8355 9118 6 4 1.768

AXI Interconnect - 1182 1399 1.5 0 0.006

AXI VDMA - 2231 2732 0 0 0.01

Contrast Stretching IP Core - 336 304 0 4 0.007

CSC converter - 210 228 0 3 -

Adaptive Limits - 34 76 0 0 -

Eq. (1) - 92 0 0 1 -

Ref. [28] Xilinx Spartan III 3342 - 4 17

Ref. [29] Xilinx Virtex V 756 - 800 - 0.101

Ref. [30] Xilinx Virtex IV 4766 440 16 - -

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 334

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 10. Visual results of contrast enhancement of underwater video frames using the proposed online algorithm:
a) input frame 1; b) input frame 1 histogram; c) processed frame 1; d) processed frame 1 histogram; e) input

frame 2; f) input frame 2 histogram; g) processed frame 2; h) processed frame 2 histogram; i) underwater video
capturing system on-board explorer boat.

335 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

The research platform boat shown in Fig. 10(i) has been especially developed to

explore the underwater coral structures near the coast of Jeddah, Saudi Arabia in Red Sea

using downward looking submerged camera. As seen in Figs. 10(a) and (c), the sample video

frames suffer from contrast limited exposure. This can be observed as narrow histograms of

the corresponding illumination values shown in Figs. 10(e) and (g) respectively for each

sample. Figs. 10(b) and (d) show the result of processing the contrast limited frames using

the proposed algorithm. As depicted by their corresponding visual appearances as well as

the spread-out histograms (Figs. 10(f) and (h)), the contrast has been adequately enhanced.

4. CONCLUSIONS

This paper has described an adaptive contrast enhancement algorithm and its

corresponding hardware implementation on FPGA. The proposed hardware is not only very

suitable for inclusion in an image processing pipeline for real-time applications due to its

low power dissipation and processing speed, but it also consumes very few logic resources.

Furthermore, the contrast enhancement module has been developed as a Simulink block

which makes it a valuable resource for inclusion in larger computer vision system since

Vision HDL toolbox does not provide this functionality as a drop-in synthesizable module at

the moment. This work has demonstrated the real-time contrast stretching operation with

minimal resources on a Xilinx Zynq FPGA which may not be suitable for energy-constraint

systems due to its higher static power consumption. Thus, for the future work, it has been

planned to port the design onto commercially available low-power devices.

Acknowledgement: The authors acknowledge the fund from the British Council

REFERENCES

[1] R. Gonzalez, R. Woods, Digital Image Processing, Upper Saddle River, N.J.: Prentice Hall, 2008.

[2] H. Al-Zoubi, M. Al-khassaweneh, I. Altawil, “An image processing approach for marble

classification,” Jordan Journal of Electrical Engineering, vol. 1, no. 2, pp. 73-81, 2015.

[3] A. Alqudah, S. Qazan, H. Alquran, I. Qasmieh, A. Alqudah, “COVID-19 detection from X-ray

images using different artificial intelligence hybrid models,” Jordan Journal of Electrical

Engineering, vol. 6, no. 2, pp. 168-178, 2020.

[4] C. Huang, M. Nguyen, “X-ray enhancement based on component attenuation, contrast

adjustment, and image fusion,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 127-141,

2019.

[5] J. Liu, C. Zhou, P. Chen, C. Kang, “An efficient contrast enhancement method for remote sensing

images,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1715-1719, 2017.

[6] B. Xu, Y. Zhuang, H. Tang, L. Zhang, “Object-based multilevel contrast stretching method for

image enhancement,” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1746-1754,

2010.

[7] V. Syrris, S. Ferri, D. Ehrlich, M. Pesaresi, “Image enhancement and feature extraction based on

low-resolution satellite data,” IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 8, no. 5, pp. 1986-1995, 2015.

[8] K. Hee-Chul, K. Byong-Heon, C. Myung-Ryul, “An image interpolator with image improvement

for LCD controller,” IEEE Transactions on Consumer Electronics, vol. 47, no. 2, pp. 263-271, 2001.

Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023 336

[9] M. Suthar, H. Asghari, B. Jalali, “Feature enhancement in visually impaired images,” IEEE Access,

vol. 6, pp. 1407-1415, 2018.

[10] B. Liu, W. Jin, Y. Chen, C. Liu, L. Li, “Contrast enhancement using non-overlapped sub-blocks

and local histogram projection,” IEEE Transactions on Consumer Electronics, vol. 57, no. 2,

pp. 583-588, 2011.

[11] T. Arici, S. Dikbas, Y. Altunbasak, “A histogram modification framework and its application for

image contrast enhancement,” IEEE Transactions on Image Processing, vol. 18, no. 9, pp. 1921-1935,

2009.

[12] D. Kim, C. Kim, “Contrast enhancement using combined 1-D and 2-D histogram-based

techniques,” IEEE Signal Processing Letters, vol. 24, no. 6, pp. 804-808, 2017.

[13] M. Abdoli, H. Sarikhani, M. Ghanbari, P. Brault, “Gaussian mixture model-based contrast

enhancement,” IET Image Processing, vol. 9, no. 7, pp. 569-577, 2015.

[14] M. Alareqi, R. Elgouri, M. Tarhda, K. Mateur, A. Zemmouri, A. Mezouari, L. Hlou, “Design and

FPGA implementation of real-time hardware co-simulation for image enhancement in biomedical

applications,” in 2017 International Conference on Wireless Technologies, Embedded and Intelligent

Systems, pp. 1-6, 2017.

[15] Simulink Vision HDL Toolbox, 2018. <https://www.mathworks.com/products/vision-hdl.html>

[16] V. Akkala, P. Rajalakshmi, P. Kumar, U. Desai, “FPGA based ultrasound backend system with

image enhancement technique,” in 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014):

Biosignals and Robotics for Better and Safer Living, pp. 1-5, 2014.

[17] P. Li, D. Lilja, “Using stochastic computing to implement digital image processing algorithms,” in

2011 IEEE 29th International Conference on Computer Design, pp. 154-161, 2011.

[18] M. Hanumantharaju, M. Ravishankar, D. Rameshbabu, S. Ramachandran, “A novel FPGA

implementation of adaptive color image enhancement based on HSV color space,” in 2011 3rd

International Conference on Electronics Computer Technology, vol. 2, pp. 160-163, 2011.

[19] G. Song, X. Qiao, “Color image enhancement based on luminance and saturation components,”

Proceedings of 1st International Congress on Image and Signal Processing, vol. 3, pp. 307-310, 2008.

[20] T. Khan, D. Bailey, M. Khan, Y. Kong, “Efficient hardware implementation for fingerprint image

enhancement using anisotropic gaussian filter,” IEEE Transactions on Image Processing, vol. 26,

no. 5, pp. 2116-2126, 2017.

[21] J. Yun Ho, K. Jae Seok, H. Bong Soo, K. Moon Gi, “Design of real-time image enhancement

preprocessor for CMOS image sensor,” IEEE Transactions on Consumer Electronics, vol. 46, no. 1,

pp. 68-75, 2000.

[22] W. Luo, S. Duan, J. Zheng, “Underwater image restoration and enhancement based on a fusion

algorithm with color balance, contrast optimization, and histogram stretching,” IEEE Access,

vol. 9, pp. 31792-31804, 2021.

[23] R. Kumar, A. Bhandari, “Fuzzified contrast enhancement for nearly invisible images,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 32, no. 5, pp. 2802-2813, 2022.

[24] H. Lu, Z. Liu, X. Pan, “An adaptive detail equalization for infrared image enhancement based on

multi-scale convolution,” IEEE Access, vol. 8, pp. 156763-156773, 2020.

[25] Matlab Image Processing Toolbox. https://www.mathworks.com/products/image.html?

adobe_mc_ref=https%3A%2F%2Fwww.google.com.sa%2F>

[26] The OpenCV Reference Manual (2.4.9.0 ed.). <http://opencv.org/>

[27] Real-time Contrast Stretching IP Core, 2021. <https://github.com/4mbilal/XilFPGAdev/tree/main

/Custom_IP_Cores/MathworksHDLCoder/ContrastStretching >

 [28] C. Lu, H. Hsu, L. Wang, “A new contrast enhancement technique implemented on FPGA for real

time image processing,” in 2009 Fifth International Conference on Intelligent Information Hiding and

Multimedia Signal Processing, pp. 542-545, 2009.

https://www.mathworks.com/products/vision-hdl.html

337 Jordan Journal of Electrical Engineering. Volume 9 | Number 3 | September 2023

[29] R. Shandilya, R. Sharma, “FPGA implementation of image enhancement technique for automatic

vehicles number plate detection,” in 2017 International Conference on Trends in Electronics and

Informatics, pp. 1010-1017, 2017.

[30] B. Unal, A. Akoglu, “Resource efficient real-time processing of contrast limited adaptive

histogram equalization,” in 2016 26th International Conference on Field Programmable Logic and

Applications, pp. 1-8, 2016.

