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Abstract— Nowadays, embedded device applications have become partially correlated and can share platform 
resources. Cross-execution and sharing resources can cause memory access conflicts, especially in the Last Level 
Cache (LLC). LLC is a promising candidate for improving system performance on multicore embedded systems. 
It leads to a reduction in the number of high-latency main memory accesses. Currently, commercial devices can 
use cache partitioning. The software could better utilize the LLC and conserve energy by caching. This paper 
proposes a new energy-optimization model for embedded multicore systems based on a reconfigurable artificial 
neural network LLC architecture. The proposed model uses a machine-learning approach to express the 
reconfiguration of LLC, and can predict each task’s next interval LLC partitioning factor at runtime. The obtained 
experimental results reveal that the proposed model - compared to other algorithms - improves energy 
consumption by 28%, and gives 33% reduction in the LLC miss rate. 
 
Keywords— Energy optimization; Multicore embedded systems; Last level cache; Cache partitioning; Machine 
learning.   
     

1. INTRODUCTION  

As the volume and complexity of multicore embedded systems grow, the need for 

increased performance while consuming less energy has become a requirement. As a result, 

multicore architectures are being used to design many embedded systems. Furthermore, the 

academic community in embedded systems has already recognized the need for new 

implementation models that can account for such nonlinearities between the CPU and 

memory. Some attempts have been made to isolate memory delay from computing clock 

cycles by establishing workload models with two different execution cycles, namely, 

computation and memory cycles. Because the core frequency can affect the computing cycles, 

it should be split into the execution period factor, providing a more accurate execution model. 

Memory cycles are only affected by the memory’s operating frequency and bus topology. As a 

result of using such models, researchers would assume that the core and memory subsystems 

are entirely responsible for a task’s execution time, and adding the task’s features may be 

characterized by the amount of compute cycles and memory cycles.  

Moreover, several multicore embedded systems use energy-saving methods that neglect 

the effect that caches have on system energy use. Cache has been previously established to 

meet performance loads by connecting the speed hole between the CPU and main memory.  
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The cache takes up a significant amount of space in the cores and consumes a significant 

amount of energy. Many generic strategies, such as selective-way energy conservation, have 

been suggested to offset the energy lost due to caching. Although, the advances in cache 

architectures to reduce energy usage, applying similar strategies to multicore systems has 

received little attention. Even with considerable advances in heterogeneous multicores and 

energy-efficient deadline-constrained scheduling, previous work suffers from two major 

drawbacks [1-4]. First, it disregarded the effect of the shared cache within task runtime. 

Recurrent memory requests from processes running on separate cores can cause unexpected 

execution time delays; for example, an executing task’s relevant cache lines may be evicted 

from the shared cache by a task operating on another core. Due to the nature of memory 

requirements, schedulable tasks may miss deadlines. Second, it is assumed that tasks scale 

proportionally with core frequency. The memory latency encountered during task execution 

is not captured by this simple assumption. While increasing the core frequency does not 

influence the number of calculation cycles, it does increase memory latency cycles, which 

depend on the internal properties of the executing process. The memory system architecture 

includes caches and their levels, the consistency model, cache coherence support, and intra-

chip interconnects. These describe how the cores communicate together and allow the system 

to be incredibly efficient, totally programmable, and parallel. Cache levels can be defined as 

the configuration of caches that governs the size, associativity, and number of levels of caches 

that the system requires. The workload determines the quantity of cache needed for a specific 

architecture. Also, the number of cache levels is determined by the interconnection between 

the main memory and each processing element (core). 

Memory management frees up memory after the task process is completed. Any system 

that can multitask at any given time must have efficient memory allocation. Also, it is 

influenced by the hardware, operating system, and active workloads [5]. Cache partitioning 

(CP) can be employed in one of two ways. The first is a static scheme in which the CP given to 

a core remains constant during the task set execution [6]. While the second is a dynamic 

scheme in which the CP assignments can be altered at execution time. Several cache partition 

algorithms are created to schedule LLC to overcome the problem of performance delay 

induced by such a coarse-sized partition. Some partitioning algorithms use a performance 

collector to produce an LLC allocation scheme based on detailed performance statistics. 

For example, the work aims to partition LLC in the workload based on each task’s cache 

miss. They necessitate real-time monitoring of each task’s cache misses and the 

implementation of a fine-grained cache division [7]. Machine learning (ML) has been widely 

employed in recent years in computer vision, natural language processing, automation, and 

other fields to make perfectly all-right judgments with minimal overhead [8]. Moreover, there 

is a complicated internal link between architectural clues (memory bandwidth, LLC capacity) 

and task performance [9]. Computer architectural suggestions are only required once as input 

to the ML models to infer the best partition for capturing relationships. In other words, the 

best split is determined in practice by sampling architectural clues one time. As a result, using 

ML in the LLC partition reduces the profiling overhead. 

We can summarize the significant contributions of this paper as follows:  

1) We propose a new energy optimization using cache partitioning in multicore embedded 

systems based on ML. 
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2) The proposed model provides the optimum LLC partition factor for individual tasks. It 

leads to minimizing the latency of main memory accesses. 

3) The proposed model achieves the highest load balance to allocate tasks using a BIN 

packing optimizer. 

4) We guarantee the effectiveness of the proposed approach in multicore embedded 

systems by assessing the optimum energy efficiency on different benchmarks to 

examine its suitability and reliability. 

The organization of this paper is as follows: section 2 presents a summary of the related 

work. Section 3 demonstrates the methodology of the system model. Section 4 describes the 

proposed model and its algorithms. Section 5 explores a performance evaluation through the 

platform, experimental setup, results, and discussion. Section 6 discusses the conclusions. 

2. RELATED WORK 

Systems have been using several strategies: way shutdown, way management, cache 

splitting, and scalability [10-12]. Sheikh et al. suggested energy optimization approaches that 

improve the baseline scenario for each core and cache level [13]. They presented levels of 

cache and added a fascinating dimension to multicore embedded systems’ energy 

minimization, which become heterogeneous multicore architectures that gain prominence in 

embedded multicore systems. In [14], authors proposed a comprehensive technique to 

reduce energy usage on clustered heterogeneous multicore systems while accounting for 

previous work’s unsophisticated assumptions. They build a heuristic scheduling method 

called Task-Heterogeneity-Energy Aware Mapping (THEAM). More research was done to 

determine how Dynamic Voltage and Frequency Scaling (DVFS) and cache-partitioning 

strategies affect memory delay cycles that work independently. Nejat et al. presented a new 

online resource management algorithm (RMA) [15]. It utilizes a coordinated scheduler for 

DVFS and last-level cache partitioning to determine the most effective resource setting at 

each task period to decrease two essential processor energy components, primarily core 

energy per instruction and DRAM shares. To reduce run-time overhead, it should use the 

RMA as the heuristic technique that performs a polynomial-time configuration space search. 

In [16-18], the team obtained a vulnerability-aware energy optimization method for 

multicore embedded systems. They combined private L1 cache dynamic cache 

reconfiguration (DCR) with shared L2 cache partitioning (CP). Under the constraints of 

performance and vulnerability, the L2 CP is decreasing inter-core interference successfully, 

while L1 DCR can further reduce energy consumption. The suggested technique uses 

dynamic programming to efficiently explore the space for optimal L1 cache configurations 

for each workload and L2 cache partition factors for each core. This research in [19] described 

a machine-learning-based LLC capacity allocation technique for cross-applications that 

aimed to improve overall throughput and fairness. The Support Vector Machine (SVM) 

model is employed in the proposed method to group applications into three classes so that 

each task within the same class has equivalent performance change patterns. Furthermore, 

the Bayesian Optimizer is used to construct the ideal LLC resource allocation schema based 

on application classes. High write latencies in NVRAM-based main memory architectures 

result in performance and energy overheads in machine learning and graph applications 

[20]. This research improves the performance of systems by smartly designing software data 
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structures with reuse distances that change as a task is done. Last-level cache partitions are 

dynamically adjusted to maintain market data on the chip, reducing write access to off-chip 

evictions. In [21], they employed reinforcement learning (RL) to guide and expedite their 

design to build a cost-effective cache replacement policy. They used features that are easy to 

access in the LLC to educate an RL agent. In [22], they have developed a non-intrusive, 

artificial neural network (ANN)-based runtime energy optimizer for multicore embedded 

systems that can cope with the stringent time requirements of essential tasks in this research. 

DVFS and task migrations are two of the energy optimizer’s features. It is activated by the 

ANN output, which seeks to forecast the impact of frequency scaling on a task’s performance 

based on its performance trace. Researchers in [23] proposed that the application program’s 

behavior is described using its IPC trend as a function of varying resources. They try to 

classify applications using a statistical approach called the k-means algorithm. The 

workloads are classified as herbivores, carnivores, omnivores, or amphibians using the k-

means machine-learning algorithm used in the studies. The expected outcomes are consistent 

with the characterization. Nour et al. in [24] provided a practical and dependable hybrid 

approach for reducing energy and makespan in multicore systems. To achieve optimal 

Voltage/Frequency (Vmin/F) values, the suggested hybrid model improves and merges the 

greedy approach with dynamic programming. Then, based on the available workloads, the 

allocation mechanism assigns a suitable core or island for each task. 

3. METHODOLOGY 

This paper uses a machine-learning approach to optimize energy efficiency for 

multicore embedded systems. In contrast, ML determines the optimal partition factor for 

each task to the Last Level Cache (Shared Cache L2). The suggested ML model is 

automatically trained to predict objectives based on the data obtained from the input 

features. This model improved predictions based on the data gathered from the proposed 

platform and enhanced the decisions taken under crucial time constraints. Therefore, it is 

suitable and most appropriate for this model to use supervised learning approaches. It leads 

to a decrease in the error between the prediction model and the objective. The optimum goal 

is estimated using the normalizing features. 

3.1. Multicore Architecture Model 

Fig. 1 shows a typical multicore system with a shared on-chip L2 cache and one private 

L1 cache for each core. The shared L2 cache includes way-based partitioning. Also, the 

private L1 caches are separated into data and instruction caches (IL1 and DL1). As in [25], a 

shared L2 cache has way-based partitioning. Each L2 cache set (8-way associativity) is 

divided into four sections. Each section is assigned to a single core, as shown in Fig. 1. Each 

core will only access the cache sets allocated to it and implement the “least recently used” 

(LRU) policy for a replacement among its group of ways. The number of ways assigned to a 

core is called the cache partition factor. Fig. 1 shows that Core 0 has an L2 partition factor of 

3. In this paper, static partitioning is used for the global L2 cache. In another sense, L2 

partition factors are certified for each core. Also, it remains consistent during runtime. All 

workloads processed on that core have almost the same L2 partition factor. 
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Fig. 1. Multicore architecture model including both the L1 private caches and the partition shared L2 cache. 

3.2. Energy Model 

The proposed energy model is described in [26]. As in Eq. (1), the cache energy usage 

combines static and dynamic energy hierarchy models proposed for shared L2 and private 

L1 (instruction and data caches). Static and dynamic energy is taken into account, as 

demonstrated in Eqs. (2) to (7): 

     𝐸 = 𝐸𝑠𝑡𝑎 + 𝐸𝑑𝑦𝑛                                                                           (1) 

𝐸𝑑𝑦𝑛 =  (𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡𝑠) ∗  𝐸ℎ𝑖𝑡 + (𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠) ∗  𝐸𝑚𝑖𝑠𝑠                          (2) 

𝐸𝑚𝑖𝑠𝑠 =  𝐸(𝑜𝑓𝑓  𝑐ℎ𝑖𝑝 𝑎𝑐𝑐𝑒𝑠𝑠)  +  (𝑚𝑖𝑠𝑠 𝑐𝑦𝑐𝑙𝑒𝑠)  ∗  𝐸(𝐶𝑃𝑈  𝑠𝑡𝑎𝑙𝑙) + 𝐸(𝑐𝑎𝑐ℎ𝑒 𝑓𝑖𝑙𝑙)               (3) 

  𝑀𝑖𝑠𝑠 −  𝐶𝑦𝑐𝑙𝑒𝑠 =  (𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠)  ∗  (𝑚𝑖𝑠𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦) +  ((𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠)  ∗  (𝑙𝑖𝑛𝑒 𝑠𝑖𝑧𝑒/16)) 

                                  ∗ (𝑚𝑒𝑚𝑜𝑟𝑦 −  𝑏𝑎𝑛𝑑 −  𝑤𝑖𝑑𝑡ℎ)                                                                     (4) 

      𝐸𝑠𝑡𝑎 =  (𝑡𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒)  ∗  𝐸(𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑒𝑟 𝑐𝑢𝑐𝑙𝑒)                                                                              (5) 

𝐸(𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒)  =  (𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛 𝐾𝑏𝑦𝑡𝑒)  ∗  𝐸(𝑝𝑒𝑟 𝑘𝐾𝑏𝑦𝑡𝑒)                                             (6) 

𝐸(𝑝𝑒𝑟 − 𝐾𝑏𝑦𝑡𝑒)  =  (𝐸(𝑑𝑦𝑛 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑐𝑎𝑐ℎ𝑒)  ∗  .10)/ 𝑏𝑎𝑠𝑒 𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛 𝐾𝑏𝑦𝑡𝑒                     (7) 

The proposed work is built on the Gem5 simulator [27]. The Gem5 simulator is used to 

figure out the dynamic energy, and the static power is considered 10% of the dynamic energy. 

The CPU consumed around 30% of the system’s total energy. There are no links between 

instruction and data cache operations. L1 caches are studied locally with instruction, but the 

data caches are analyzed separately. In addition, the cache accesses hits and misses for each 

task set extracted using Gem5. Gem5 also investigates the shared cache L2. We got off-chip 

access energy from a standard low-power memory. Consequently, the fetch from the main 

memory took forty times as long as a retrieve from the level 2 cache. Also, memory 

bandwidth is measured [25]. 

3.3. Problem Formulation 

The suggested model is a multicore embedded system with four rules that turn the 

exploration into a linear program as follows: 

 The model consists of n cores. The set of all cores is symbolized by C: c1, c2, . . . , cn . 

 Each core consists of private L1 (Instructions and Data) caches. 

 The way-based partitioning factor is k-way associative with the shared cache L2, shared 

by all n cores. 
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 The m-independent tasks T: t1, t2 …, tm are performed on the proposed model. Each 

task in a given mix of jobs may conclude at a different time, but there is a standard soft 

deadline by which all tasks should be finished. 

Our model aims to discover the best partition factor for the L2 cache so that the 

assigned tasks consume the least energy. Machine learning generates all possible L2 cache 

partitioning schemes W: w1, w2 …, wk and assigns wk ways to them. The minimization 

problem can be defined as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝐸𝑖)𝑛
𝑖=0                   (8) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (𝑇𝑖𝑚𝑒𝑖)  <=  𝐷
𝑛

𝑖=0
                                                      (9)         

𝑊  = ∑ 𝑊𝑖𝜖[1, 𝑘]𝑛
𝑖=0                                                                             (10) 

Because such tasks do not exceed their deadlines (Timei), the total energy usage for all 

tasks (Ei) is reduced. Eqs. (8) and (9) ensure that all tasks are completed before the deadline 

(D). Eq. (10) confirms that the partitioning strategy is correct. Therefore, the overall 

partitioning factor is similar to shared L2 cache ways. 

4. THE PROPOSED MODEL  

4.1. Linear Regression using ANN  

The shallow neural network approach allocates the sum of the input neurons, the few 

neurons at the hidden layer, and the output layer. The proposed model uses a supervised 

ANN to complete linear regression. Consequently, the ANN topology has three layers: an 

input layer, a hidden layer, and an output layer. The input neurons represent the received 

feature parameters (i.e., three features). While the output neurons represent the predicted 

partition factor. The hidden layer uses the sigmoid function to achieve the intended result 

effectively. 

On the other hand, the output layer is used in the step of the unit function to become a 

linear output. Fig. 2 shows the suggested ANN topology. This design has the potential to 

deliver a high-impact performance. Initially, offline training of the ANN model is required. 

Then, we can modify the ANN hidden layer to establish an initial configuration for the 

hidden layer. We used pre-collected data. Therefore, we avoid cold start difficulties. It 

improves results using a simpler topology and a slight learning rate. In addition, many 

configurations of the ANN hidden layer are added. Therefore, the proposed model can 

quickly overfit the training data set [22, 28-30]. 

 

 
Fig. 2. The proposed ANN topology. 
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4.2. Predict Cache Partition Factor using ML 

Fig. 3 shows an overview of the proposed optimization energy system model with 

ANN. Additionally, Algorithm 1 explains the implementation. In the beginning, some 

workloads were run on simulation, and the Gem5 in AIP was used for this. After that, we fill 

up the entries on the tables with simulated tasks in different configurations. Then, the models 

are trained several times using the collected data, and the model with the minimum error is 

selected. If the error is below or equal to a certain threshold, this model predicts the rest of the 

partition factor for LLC for the next workload. If not, more training data are collected by 

performing additional simulations and repeating the operation until the error threshold 

condition is met. 

 

 
Fig. 3. The proposed optimization model using ML. 

4.2.1. Data Collection and Feature Processing 

Feature Selection: The most crucial component of a machine learning challenge is choosing 

appropriate features. The predicting partition factor and LLC cache entries with different 

cache configurations are selected as the features. Let X = <X0, X1, X2, X3> be the feature 

vector where: 

    X0      1 (Bias). 

    X1   refers to the type of task if memory or CPU task, where memory task X1=1, CPU task 

X1=0. 

    X2    refers to the utilization of task, where the range of X2 is 0 < X2 < 1. 

    X3   refers to the miss rate of L1 Cache, where the range of X3 is 0 < X3 < 1. 
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i=
0 

Increasing the number of features makes the learning model more sensitive to over-

fitting. When there are more features, the over-fitting issue can be resolved by using more 

training data sets. In the proposed scenario, another option is to reduce the training data. 

Trained Model:  The data are prepared with the filled table entries X and their LLC cache 

partition factor. The proposed model is divided into training, cross-validation, and testing. 

The training group is used to train the model. A cross-validation group is utilized for hyper-

parameter tunings such as learning rate or weight adaptation. The test group is used to 

determine the model with the slightest inaccuracy. The experiment uses a split of 80% for 

training, 10% for cross-validation, and 10% for testing. Finally, after training models with 

multiple hyper-parameters, the model with the lowest Mean Square Error (MSE) on the test 

set is chosen, as illustrated in Algorithm 1. 
 

Algorithm 1. Predict cache partition factor based machine learning 

(Trained Model). 

Input Layer:  Queue of tasks (T 1 ........ Ti) 

1: X0=1 (Bias) 

    2:  X1(Memory Task or CPU Task) where Memory Task=1 and CPU Task=0. 

    3: X2 (Utilization of Task) where 0 < X2 < 1 

    4: X3 (Miss rate of L1 Cache) where 0 < X3 < 1 

Output Layer: Cpi = Predict Optimum Cache Partition Factor per task. 

5: Input layer data and the actual value of observation were generated from simulation. 

6:  for ti = t1 to Ti do 

    7: Wi= Random Weights Parameters (W0, W1, W2, W3) 

   8: Artificial Neural Network (ANN) 

   9: while the actual output ⋍ Prediced ouput do  

10: Calculate SOP= Σ3    (WXi) 

   11: Calculate Cost Function= the Sigmoid Function 

   12: One Hidden Layer 

13: Linear Regression 

   14: Calculate Step unit Function 

   15: Calculate Error =MSE 

16: if (Error > threshold) then 

   17: Select Learning Rate η 

18: 0 < η < 1 

  19: Calculate Weights Adaptation 

20: else 

21: Cpi = simulated output 

22: break 

23: end if 

24: end while 

25: end for 

4.3. Allocation Tasks using Bin Packing 

The bin-packing problem is an NP-hard problem in which various tasks must be 

assigned to the smallest number of accessible bins (cache partition). The task allocation 

between cores is done using one of the bin-packing strategies that have resulted in the 

development of numerous heuristics in this field. After applying the energy-efficient selector 
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approach described in Algorithm 1, each task’s LLC partition factor (Cpi) is determined, and 

the job is assigned to a single core. As a result of Algorithm 1, the sum of the partition factor 

to all the tasks may have the same total cache partition for multicore systems total cache 

partition (Tp) or greater than or less than it. So, bin-packing techniques are used to resolve 

this problem. 

Additionally, this paper proposes a new best-fit (BF) partitioning technique for 

multicore embedded systems. The BF gets the optimal allocation to all tasks to save more 

energy. Algorithm 2 is divided into three phases; the first phase splits duties into three 

groups. On the other hand, the second phase tries to get the optimally allocated jobs for each 

core. Finally, the third phase runs all tasks according to the Cpi and BF allocated. 
 

Algorithm 2. Allocation tasks using bin packing. 

Input: Output from Algorithm 1 (Predict Optimum Cache Partition Factor per task)(Cpi) 
    1:  Tp=Total Cache Partition for Multi-core Systems Model SF= Split Factor 

2: G1, G2 and G3 (task groups) Output: Best fit for all tasks per Cores.  
3: SF=Tp/2 
4: First Phase: 
5: for cpi = cp1 to Cpi do 

     6: if  (cpi > SF )  then  
7:  assign cpi to G1 
8: else if (cpi < SF) then 
9: assign cpi to G2 

10: else 
11: assign cpi to G3 
12: end if 
13: end for 
14:  Second Phase: 

15: Sorting descending to three groups 
16: for (i = 1 to T G1) do 
17: for (j = 1 to T G2) do 
18: if  (Cpi + Cpj  <= Tp) then 
19: map Ti and Tj to  empty cores 
20: else if (cpi <= Tp) then 
21: map Ti to  empty cores 
22: else 
23: map Tj to  empty cores 
24: end if 
25: Update Tp 
26: Tp=Tp-((Cpi + Cpj) 
27: end for 
28: end for 
29: for (k = 1 to T G3) do 
30: if (Cpk + Cpk+1 <= Tp) then 
31: map Tk and Tk+1 to  empty cores 
32: else 
33: map Tk to  empty cores 
34: end if 
35: Update Tp 
36: Tp=Tp-(Cpk + Cpk+1 ) 
37: end for 
38:  Third Phase: 
39: The tasks are running according to their partition factor Cpi per task and allocated best 

fit (Bin Packing) 
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The first phase splits the tasks into three groups, where group 1 is called G1, group 2 is 

called G2, and group 3 is called G3. The “split factor” (SF) determines how to assign tasks to 

a specific group. The value of SF is equal to the total cache partition for the system divided 

into two. The first phase starts when checking if the Cpi of each task individually is greater 

than SF, at which point this task is assigned to G1.  If the Cpi is smaller than SF, the task is 

delegated to G2. However, if the Cpi is the same as SF, this task is delegated to G3 (as shown 

in lines 3 to 13). When the first phase is finished filling out the three groups, the second 

phase will start. The first step of the second phase is sorting descending order into three 

groups (as in line 15). The next stage of this phase is taking the first element of G1. After that, 

this element is added to each component in G2 to achieve the condition. The condition is that 

the sum of the cache partition factor Cpi in G1 and the cache partition factor Cpj in G2 is less 

than or equal to Tp (as in lines 17 to 19). The phase will map each Cpi (Ti) and Cpj (Tj) to 

empty cores if the condition is actual. If it is not obtained, the stage will check that the Cpi is 

less than or equal to Tp; if accurate, map Ti to empty cores; otherwise, map Tj to empty cores 

(as in lines 20 to 24). Subsequently, the phase updates Tp with a new value (as in lines 25 to 

26). The stage will repeat all the above steps for all elements in G1 and G2. The final step of 

the second phase maps every two elements in G3 to empty cores if the summing of the 

partition factor Cpk of the first element in this group and the Cpk+1 of the next part is less 

than or equal to Tp. The phase will map each of Cpk and Cpk+1 to empty cores; otherwise, it 

will map Cpk to empty cores (as in lines 28 to 34). Subsequently, the phase updates Tp with a 

new value (as in lines 35 to 36). The third phase starts after the second phase, which is the 

end phase in Algorithm 2. In this phase, the tasks run according to their partition factor Cpi 

and are allocated according to “best fit” bin packing (as in line 38). 

5. PERFORMANCE EVALUATION 

The proposed heuristic model is tested on a different set of experiments for validation. 

Many random experiments with real-time workloads have been done. This section presents 

the platform, how to set up the investigation, the results, and the discussion. For comparison, 

the proposed model is compared with three competitive algorithms: CRUML [17], OMLFEA 

[22], and THEAM [14], using the same set of experiments. 

5.1. Platform     

The performance of the proposed model is assessed on a four-core Cortex-A53 power 

platform. In addition, it has a 32 kB instruction cache and a 32 kB data cache as a private L1 

cache (IL1, DL1). The single cluster can share the shared L2 cache that supports 512 kB. As 

shown in Table 1, an 8-way associative with 32-byte lines can operate in the same dynamic 

voltage frequency scaling (DVFS) domain. In our experiments, it used 25 benchmarks from 

three separate benchmark sets, Parallel Suites Benchmark: NAS V3.3.1 (NPB) [31], SPEC suite 

CPU2006 [32], and PARSEC suite v3.0 [33]. Also, online parallel benchmark suites are 

available. The power data is tracked for each trial, such as energy, full use, and benchmark 

data about operations per second. Each experiment was performed ten times, and the average 

value was calculated. 
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Table 1. Architecture model parameters. 

Parameter 

type 
Parameter Parameter value/ description 

Cores 

Parameters 

Number of cores 4 (One Cluster) 

Core Frequency 2.4 GHz 
Instruction set architecture X86 

Memory 
Parameters 

L1 Cache 
Private and separate instruction and data cache, 

each    32 kB in size 
L2 Cache Reconfigurable, shared and 512 kB in size 

Cache coherence 
MESI two-level directory based cache coherence 

protocol 
Memory size 4 GB DDR 

5.2. Experimental Setup 

The Gem5 simulator [27] is considered a promising candidate for the design tools used 

by computer architecture researchers. Researchers can use this simulation infrastructure to 

simulate modern computer hardware on a cycle-by-cycle level. Also, they can run large tasks 

for different architectures, such as X86, Arm, and RISC-V, on top of Linux operating systems. 

The proposed work used the Gem5 simulator to simulate the multicore system, as shown in 

Fig. 1. The simulator has been enhanced to provide way-based partitioning of the shared L2 

cache. The statistics and machine learning Python code are used to train the proposed 

machine learning model. The energy consumption of the task described in Table 1 was 

evaluated on the same platform using a Linux power governor to provide a baseline for 

assessing the suggested energy optimizer (using Raspberry Pi OS with Kernel version 5.4). 

Conservative power-governor strategies and CPUFreq OnDemand were chosen in our model. 

5.3. Results 

The experimental parameters employed are listed in the preceding section. As a result, 

for each core form, we create an energy model. Also, we measure the energy efficiency of each 

core and the total amount of energy used at the same frequencies by dividing the benchmarks 

of multicores within all LLC partitioning configurations. 

5.3.1. Energy Efficiency Results 

Fig. 4 shows the energy efficiency of the cores for our proposed model across three 

other competitive models, CRUML  [17], OMLFEA [22], and THEAM [14]. We used the cache 

partitioning technique in all those models while running each benchmark. As demonstrated, 

when the task has a variable rate that it takes to finish, we can expect different levels of 

efficiency for different rules. As shown in Fig. 4, the proposed model has improved energy 

consumption compared with other models, and the efficiency variations range from 

approximately 18% to 34%. As a result, cache partitioning reduces energy consumption, 

especially for tasks that require a long time to execute, such as sequential tasks like milc and 

mcf, as shown in Fig. 4(a).  

Against parallel operations, energy consumption decreases or does not grow when the 

system’s utilization increases. Also, when it has a long execution time with cache partitionings 

such as MG and dedup, as shown in Fig. 4(b).  
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In short, the proposed model can increase system use in the case of one application 

rather than others. So, across all benchmarks, we use the proposed architecture with cache 

partitioning to reduce energy consumption. Fig. 4 shows that our proposed method 

effectively reduces energy use for most usage benchmarks. 

 

 
(a) 

 
(b) 

Fig. 4. Energy consumption: a) sequential tasks; b) parallel tasks. 

5.3.2. L2 Cache Miss Rate 

The properties of the benchmarks that we utilize are depicted in Fig. 5. The number of 

L2 cache misses per 1000 core cycles for various L2 cache sizes is shown in the graph. Fig. 5 

demonstrates the rate of L2 misses using the suggested methodology and other comparable 

models, where the partitioning cache improves by 41% in some workloads. The results 

showed a value gap between the presented model and the different techniques of 18% to 32%. 

The proposed model has the highest success rate. It is also worth noting that the CRUML [17] 

technique does not work better because it ignores the L1 miss rate. 
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Fig. 5. L2 cache misses. 

5.4. Discussion 

This section introduces the performance enhancements of the proposed model. The 

proposed model was compared with CCRUML [17], OMLFEA [22], and THEAM [14] in 

various benchmarks. On average, the proposed model achieves a 22% to 32% reduction in 

energy consumption compared with the competitive methods. LLC and the cache partition 

factor are considered the most critical parts of the proposed model. The proposed LLC 

configuration can save energy without affecting the accuracy of task timing or 

outperforming the deadline strategy. The evaluated tasks are given different formats for the 

LLC. These configurations provide a multicore embedded system’s adaptive capability. As a 

result, the proposed model obtains the optimal LLC configurations for each task. 

The proposed ANN models provide the generic tasks’ starting data during offline 

training. The suggested model is expected to adapt ANN through learning in the first cache 

partition factor reductions. Consequently, the proposed model successfully predicts the 

tested tasks and can achieve the best cache partition factor configuration without 

compromising fundamental task timing accuracy. 

Table 2 summarizes the overall performance measures for the proposed ANN models 

against the other three competitive models across several benchmarks. The results show that 

the suggested model outperforms all performance measures compared with other 

competitors. In addition, the proposed method achieves the best LLC configuration levels for 

handling different workloads on different systems. Moreover, the proposed model optimizes 

the number of cache partition factors and allows the cores to be more deterministic by using 

BIN packing. As shown in Table 2, the proposed model achieves the optimal goal through 

the minimum error during training. 

 
Table 2. Overall performance evaluation. 

Algorithms 
Average Energy [J] 

± Std. dev. [%] 

Average L2 Misses Rate  

± Std. dev. [%] 

ML Error 

[%] 

CRUML [17] 1348 ± 13.91 2.696 ± 0.027 0.30 

OMLFEA [22] 1338 ± 14.81 2.776 ± 0.028 0.48 

THEAM [14] 1607 ± 16.35 3.123± 0.032 .52 

The Proposed Model 1128 ± 11.51 2.256 ± 0.023 0.20 
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Additionally, Fig. 6 explains the effect of the LLC partition factor on both the energy 

and L2 miss rates. It guarantees that increasing the LLC partition factor increases the power, 

as shown in Fig. 6(a); however; it reduces the L2 miss rate, as shown in Fig. 6(b). 

 

 
(a) 

 
(b) 

Fig. 6. LLC partition factor: a) normalized average energy; b) normalized average L2 miss rate. 

6. CONCLUSIONS 

This paper introduced a holistic model to minimize energy consumption on multicore 

embedded systems. The proposed model suggested a new ML-based LLC resource-

partitioning strategy. As demonstrated, the proposed model involved learning the multicore 

embedded system. In addition, it can choose the best partition LLC for each task, minimizing 

memory latency and using the least amount of energy. 
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Furthermore, the introduced model used a pin-packing optimizer to produce the best 

task allocation schema based on the LLC partitioning factor. For validation, the proposed 

engine was tested in different applications to examine its suitability and reliability. Results 

showed average and maximum energy savings of 22% to 32% individually for each core. In 

addition, it gave 18% to 34% for system-level energy consumption. At the same time, it could 

achieve an average 33% reduction in the L2 miss rate. 
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