
JJEE

 Volume 9 | Number 2 | June 2023 | Pages 125-148

* Corresponding author Article’s DOI: 10.5455/jjee.204-1667422472

Jordan Journal of Electrical Engineering

ISSN (print): 2409-9600, ISSN (online): 2409-9619

Homepage: jjee.ttu.edu.jo

Software Code Bloats and Security Identification Model Based

on Mikado Methodology: a Refactoring Practice

Taghi Javdani Gandomani1* , Hamid Shabani Sichani2, Behzad Soleimani

Neysiani3

1 Department of Computer Science, Shahrekord University, Iran

E-mail: javdani@sku.ac.ir
2, 3 Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Received: November 02, 2022 Revised: January 01, 2023 Accepted: January 06, 2023

Abstract— The term “code smell” or “bad smell” refers to a code that has been written incorrectly and reflects
severe defects in software design. Some code smells cause, particularly, security vulnerabilities in software codes.
Until now, identification of these codes is mainly done through software tools and not by process methods or
models. Based on the Mikado methodology, this paper proposes a model that uses a syntax-metric parser engine
to detect insecure software code bloats and security vulnerabilities. This model, named Touba, assesses and
analyzes the discovered cases and provides an interactive method for code review and statistical analysis.
Employing the proposed model in testing the Juliet Test Suites shows its outstanding performance in terms of the
selected measures of precision, recall, and F-measure. The obtained results show that the proposed model has a
better performance - compared to the existing tools - in terms of accuracy by 20.3%, recall by 16.76%, and
F-measure by 18.61% on average. These results indicate the effectiveness of the proposed - security vulnerability
identification - model as the main contribution of this investigation.

Keywords— Code smell; Software security vulnerabilities; Refactoring; Mikado method.

1. INTRODUCTION

Static code analysis, aiming to detect and identify the vulnerabilities of the

programming codes, is a process that has evolved in the past years and attracted the

attention of software engineers and scientists. Meanwhile, various tools have been developed

and used for static code analysis. However, most of these tools have considered codes

written in Java language [1]. As a result of time and financial constraints and customer

pressures, the software teams do not put enough accuracy into programming the required

codes. The developed codes are subject to defects, resulting in severe problems in the future.

Security problems, high maintenance costs, and code evolution are the outcomes of coding

defects. Thus, considering the analysis of programming codes to detect the existing defects is

very important. Software engineers take advantage of “code smell” as a sign to detect such

defects [2].

In static code analysis, the presence of code smell indicates a defect in a source code

under review. Different code smells represent different defects [3]. Thus, various classes have

been defined for the code smells. Many researchers have investigated detecting, classifying,

and resolving code smells. Security code smells are one of the important cases that can be

mailto:javdani@sku.ac.ir
https://orcid.org/0000-0002-8333-7957
https://orcid.org/0000-0001-8043-4818

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 126

used to detect and identify the security defects of source codes. However, a few studies have

studied identifying security defects using code smells. It seems that the introduced tools such

as CodePro, FindBugs, and FindSecurityBugs are not very efficient. Also, in these studies, a

proper methodology has not been used to identify the code smells [4].

In terms of code smell, the basis of bloaters’ behavior and inherent nature are achieved

by the mechanism of bloating, by leaving huge footprints during installation, extravagant

use of system resources and providing useless features that users do not use. In computer

programming, a bloater is the generation of source code or machine code that is

unnecessarily verbose (large) and slow to infer, or in short, wastes resources. For this reason,

there are security vulnerabilities that can be classified as bloating in terms of the type of

behavior they exhibit. Therefore, assuming that it is done, in the continuation of the article,

we can understand the relationship between different types of security breaches with code

smells, especially the smell of the Bloaters type. Therefore, it is not possible to ignore the

worries and problems caused by Bloaters, such as increasing the size of the program,

inserting static code, excessive consumption of RAM and CPU, insecure holes, etc.

The research tries to answer the ambiguities and security issues. This study aims to

resolve the above challenge (detecting and evaluating the security vulnerabilities and bloats).

In this study, the syntax-metric parser engine, which is called the Touba security bloat

mistakes detector hereafter, and comprises three steps of data pre-processing, primary

analysis, and secondary analysis, is used. Finally, the steps are adapted to the Mikado

method for modeling an agile method. Mikado is a simple method that is mainly used by

software teams to improve their software codes in an iterative manner in refactoring phase.

This method helps them to find hidden problems, vulnerabilities, and code smells.

The rest of this paper is organized as follows. Section 2 presents various code smell

classes along with their details and the Mikado method. The literature review is presented in

section 3. Section 4 presents the proposed method and related measures in the context of

security vulnerabilities and bloats. Section 5 evaluates the proposed approach. Section 6

discusses the research constraints. Section 7 presents future suggestions, and finally, the

paper is concluded in section 8.

2. BACKGROUND

The evolution of software products is one of the important challenges for software teams

after the completion of the software development process. The generated codes should be

reviewed to identify and resolve their problems and challenges due to various reasons. To

detect the problems with the software codes, various techniques and methods are used [5].

Using the code smell is a technique to identify the problems and defects of software codes.

Using code smell detection techniques can simplify the process of identifying the defects of

software codes. Code smells exist in different forms, and each one can refer to a specific defect.

In addition, there are various tools and methodologies in this context that try to simplify the

process of identifying the defects of the software codes. In the following, the code classification

and the Mikado method, one of the most popular methods in this context, are investigated.

127 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

2.1. Code Smell Classification

The literature review shows that previous studies have presented different forms of

code smells. In one of these studies, Fowler and Beck [6] introduced 22 types of bad code

smells. Since classification makes smells more understandable and represents the

relationships between the smells more clearly, some studies have classified these smells. In

one of the most famous studies, seven different units have been introduced for the code

smells, including bloaters, object orientation abusers, change preventers, dispensible,

encapsulators, couplers, and other smells [7]. Table 1 represents those units.

Table 1. Units of the code smells.

Unit Code smells involved

Bloaters
Long method, large class, data clumps, primitive obsession, and long

parameter list

Object orientation

abusers

Switch statements, temporary field, refused bequest, and alternative classes

with different interfaces

Change preventers Divergent change, shotgun surgery, and parallel inheritance hierarchies

Dispensables Lazy class, data class, duplicate code, dead code, and speculative generality

Encapsulators Message chains and middle man

Couplers Feature envy and inappropriate intimacy

Others Incomplete library class and comments

According to Table 1, Bloaters represent something in the code that has grown so large

that it cannot be effectively managed. The type of Object Orientation Abusers includes those

in which the system does not take full advantage of object-oriented design capabilities. A

common origin of this problem is programmers having prior experience in procedural

programming and lack of training or understanding of object-oriented programming. Change

Preventers is related to code structures, which significantly prevents software modification.

Dispensables indicate unnecessary code that should be removed from the code. Classes that

are not doing enough need to be removed or their responsibility needs to be increased. The

Encapsulators deal with data communication mechanisms or encapsulation. The sixth

category is Couplers smells which occur because of coupling issues in the code are included

in this category. The other category contains the two remaining smells Incomplete Library

Class, and Comments that do not fit into any of the categories [8].

2.2. The Mikado Method

The name of this method is adopted from the Mikado game. Mikado originated in

Europe and is a game in which wooden bars are selected [9]. This method includes a process

that improves the codes gradually, aiming to resolve the defects of the software codes. It has a

suitable position in the static analysis of software codes due to its special characteristics. This

method is of interest to experts in the refactoring of software codes. Table 2 describes some of

its properties. Also, Fig. 1 shows the main steps of the Mikado method.

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 128

Table 2. Characteristics of the Mikado method.

No. Characteristics

1 It fits nicely in an incremental process

2 It is very lightweight (pen and paper, or whiteboard)

3 It increases the visibility of the work.

4 It provides stability to the codebase while you are changing it.

5 It supports continuous deployments by finding a nondestructive change path.

6 It improves communication between people.

7 It enhances learning.

8 It aids reflection on the work done.

9 It leverages different competencies, abilities, and knowledge

10 It helps collaboration within a team.

11 It scales by enabling the distribution of the workload over the team

12 It is easy to use

Start

Draw the Mikado Goal

Implement the goal/
perquisite naively

Are there any
errors?

Come up with
immediate solutions to

the errors

Yes

Draw the solutions as
new prerequisites

Revert your changes

Select the next
prerequisites to work

with

No
Does the change

make sense?

Commit your changes

Yes

Is the Mikado�s
 goal met?

Done

Yes

No

No

Fig. 1. The steps defined in the Mikado method.

129 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

There are four fundamental and known concepts that summarize the Mikado

method [9]:

a) Set a goal: thinking and writing about the codes that should be changed. The concepts:

1) a starting point for the change; 2) an ending point or successful measures of the

change are the basis of the experiment step.

b) Experiment: experiment is a procedure to validate a hypothesis. To achieve the goal of

the experiments for the code change, the prerequisites are feedback. The goal and

prerequisites are visualized.

c) Visualize: visualization is carried out when the goal and required prerequisites to

achieve that goal are written. A graph is the only artifact of the Mikado method. The

Mikado diagram shows the goal and all prerequisites needed to achieve that goal, telling

what the next step is.

d) Undo: when an experiment separates the system to implement a goal or a prerequisite,

and you have visualized the change that should be applied to the system to prevent this

outcome, your changes should be undone to return to the previous state. In the Mikado

method, you always visualize the prerequisites and then undo the separation of the

changes.

The experiment, visualization, and undo processes for each prerequisite are iterated for

the next layer of the prerequisites, and so on. In the following, matching and employing the

Mikado phases in different steps of the proposed approach are described in detail.

3. RELATED WORK

The literature review demonstrates that various techniques and methods have been

presented to identify code smells, where each one has a specific objective. Some of the most

important relevant studies are examined in this section.

Gadient et al. [10] stated that the inter-component communication (ICC) is the common

source of security vulnerabilities in the android programs. They proposed a lightweight static

analysis tool on the Android Lint that analyzes the code being developed, providing just-in-

time feedback in IDE about the presence of such smells in the code. In another study, Goseva-

Popstojanova and Perhinschi [11] evaluated three common commercial static code analysis

tools using the benchmarking test suite Juliet. They compared these tools in terms of their

abilities to detect security vulnerabilities in C, C++, and Java. The results showed that despite

recent advances in static code analysis methods employed in these tools, they could not detect

security vulnerabilities efficiently.

Nunes et al. [12] studied choosing the right static analysis tools for finding vulnerabilities

in web applications. They proposed a benchmark for comparing and evaluating static analysis

tools in terms of their ability to detect security vulnerabilities. Using this benchmark, they

showed that the best performance of static analysis tools depends on the deployment scenario

and the vulnerability class being identified. However, this novel benchmark is a valuable tool

to improve the abilities of static analysis tools, its implementation in practice is not easy.

Mumtaz et al. [13] investigated how removing bad code smells through refactoring can

improve program security. Conducting several experiments using various security metrics,

they showed that refactoring helps to improve the security of the software without affecting

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 130

the overall quality of the software systems. However, they did not propose a structured

method in this regard.

According to Li et al. [14], ASIDE, ESVD, LAPSE+, SpotBugs, and FindSecBugs are five

open-source IDE plug-ins that can identify and report vulnerabilities. The plug-ins were then

assessed and compared in terms of the number of vulnerability categories they could detect,

how they detected vulnerabilities, and how user-friendly their output was. The findings

revealed that although some vulnerabilities, such as broken access control, are widely

supported by most plug-ins, others are simply ignored.

According to Rachow [15], current approaches simply address code smells and design

issues while neglecting the architectural impacts. The goal of this project was to create a

decision-making framework that integrated architectural smell detection, appropriate

refactoring selection, and impact analysis to prioritize refactoring that helped developers and

software architects by measuring and comparing the required time and quality of the obtained

software using control groups.

Fontana et al. [16] used correlation analysis to compare 19 code smells, six code smell

categories, and four architectural smells in a case study. The goal of this investigation was to

see if architectural smells are independent of code smells or if they may be derived from a

group of code smells. The findings revealed that architectural smells are only associated with a

small number of code smell events and that they cannot be derived from code smells.

Rahman and Williams [17] conducted an empirical study to help software experts to

improve infrastructure quality as coded scripts (IaCs) that identify the source code attributes of

defective infrastructures as IaC coding scripts. To discover the source code attributes

associated with incomplete IaC scripts, qualitative analysis was employed in this work to

confirm linked defects gathered from open-source software repositories. Their structural defect

prediction models showed an approximate accuracy between 0.70 and 0.78 and a recall of 0.54

to 0.67. According to the findings, experts are advised to try hard to inspect and test IaC

scripts, which include all ten features of the identified source code of IaC scripts.

In a systematic review, Kaur et al. [18] examined how code smells are prioritized in

object-oriented software. Researchers noted that due to difficulties such as market pressure

and time constraints, developers were often unable to eliminate all code smells and have to

prioritize them. Also, Dos Reise et al. [19] investigated code smell detection methodologies and

tools in another systematic literature review. They revealed that the most important smell

detection techniques are search-based, metric-based, and sign-based approaches. Moreover, in

another study, Kaur et al. [20] classified code smell detection strategies and tools based on

simple and hybrid machine learning algorithms.

Koch et al. [21] developed three new smell detection approaches that use approximated

spreadsheet structures to improve spreadsheet smells. Applying these approaches led to

minimizing the amount of mistakenly reported smells and finding new code smells.

To promote secure programming techniques, Ghafari et al. [22] evaluated security-

related studies and discovered avoidable vulnerabilities in Android devices and security code

smells. They addressed the key vulnerabilities and smell in detail and explained how to

eliminate or reduce them during development. In addition, they proposed a lightweight static

analysis tool and assessed its performance to find various vulnerabilities on around 46,000

Apps hosted in the official Android market. In this study, 28 security code smells were found

131 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

and grouped into five classes while introducing the approaches for introducing secure

programming.

The literature review shows that the main focus of the related cases and studies is on

Java codes. This has been reported by several related work [23, 24]. For this reason, most

related studies have focused on this language to compare their achievements with previous

works. Moreover, only a few studies have investigated identifying security bloats. Thus, this

research aims to provide an effective solution to fulfill this research and practical gap. In this

context, a methodology and tool for a thorough assessment of security code bloating are

described in the current article. The advantages and contributions of this work are explained in

the next sections.

Most of the tools are designed based on the Abstract Syntax Tree parser model, and they

also perform code parsing on Java codes, which must be compiled before code parsing. In

comparison, the proposed model focuses on the syntax-metric parsing engine. Another

advantage of the proposed model is to cover the search for possible insecurity cases that exist

in the form of comments within the codes. In addition, the developed tool covers four

programming languages. Using the proposed method in the current study, the codes in Java

language do not need to be compiled for analysis. Moreover, as mentioned before, the existing

models are often analyzed in Java language and compiled codes. In comparison, the proposed

model proposed in our research has the ability to add criteria according to Common Weakness

Enumeration (CWE) from the website https://cwe.mitre.org.

4. RESEARCH DESIGN

Through analysis of the insecure gaps of the code smell, a set of collected measurements

in programming languages that mostly result in insecurity of the produced codes is offered in

this section. For this purpose, the proposed way to match a measure for detecting code

abnormalities is investigated in the following, and the security bloat classes are added as a new

subclass to the smells, taking into account the necessity of describing the behavior of each

metric. Since the security issue in information systems has been established, this term is

commonly used in a variety of scenarios, which are explained by examining the behaviors

displayed by these programs.

Some faults in this structure were discovered after reviewing numerous approaches and

code smell types, as well as studying various refactoring methods, paving the path for more

study and research in this area. We took steps to develop new concepts in this context and

investigate the classifications offered by earlier researchers and the requirements of this context

for the introduction of insecure bloat, which had been disregarded, due to a lack of study in

the context of insecure codes in code smells. For the first time, the class of insecure bloaters is

investigated in a novel way, aiming to expand the range of smells.

4.1. Overview of the Proposed Model: Touba

In this paper, a method for detecting insecure bloat vulnerabilities is proposed. This

method is known as Touba Security Bloat Mistake Detector (TSBMD). Because of the model’s

special objective of detecting and addressing security bloat problems, the proposed solution

has been given the name Touba, which refers to the Touba military march. This name was also

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 132

given to one of Japan’s rulers in honor of his devotion to the Mikado. According to the type of

analysis language, several metrics are evaluated for monitoring and detecting insecure bloat

problems. These metrics are classified into two categories: similar and dissimilar metrics

(homogeneous and heterogeneous metrics).

After determining the impact of employing similar and dissimilar metrics in identifying

security concepts, this work proposes a system that allows users to use many metrics at the

same time. In general, this approach scans the parameters used to construct the searched

bloaters first, then summarizes the examples found using various metrics. The code’s security

is then calculated using these two sets of metrics, and the results are then combined. It is worth

noting that the metrics in this study are calculated using a variety of input and output factors,

which are introduced in the following parts. In addition, the suggested solution includes a

novel engine for parsing code and aggregating the above-mentioned findings. Furthermore,

the static analysis procedures have been adapted to the phases of the Mikado approach in

order to make the proposed method compatible with it.

The suggested tool’s high-level architecture is depicted in Fig. 2. The files are first

received as input in this step. The engine separates the code, which is the primary section of

static analysis, after satisfying the syntax-metric analysis criteria. This analysis can be adjusted

according to the end user’s rules, as a consequence of which probable bloaters in the code are

identified, and the findings are visualized after analysis. After the process is completed, the

tool outputs the analysis results in a statistical format.

File / Project

Syntax
comparator

Metric
comparator and

parser

Manually
modified code

Recommended
refactoring with the

Mikado

Unchanged code

Comparing

Static analysis

Criteria set by the
user

Deathtrap parser
intermediate

Unsafe
Bloat(s)

detection

Detection
visualization

Providing
statistical
analysisNo unsafe bloat(s)

Unsafe bloat(s)
detected

Fig. 2. High-level architecture of the proposed model.

To follow and match the proposed code analysis processes with Mikado phases, the

following steps are taken:

a) The goal of the Mikado approach is to find and refactor the recognized insecure bloats,

the descriptions and code lines about the detected bloaters from the goal step.

133 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

b) The Mikado method’s experiment step involves parsing and analyzing all of the codes in

a program. The tool provides numerous mappings to the incoming code that are actually

the undo step during the code analysis.

c) The visualization process includes statistical analysis and graphics related to separation

and constructing the final result.

d) In an agile method, undoing or repeating is an unavoidable element of the process; as a

result, it is essential to repeat the identification operation after refactoring in order to

locate the bloaters which have not been refactored.

The proposed method based on the Mikado method is depicted in Fig. 3.

Pre-process

Code analysis

Match detection

Analysis process

Initial review to
determine goals

Parsing and
separation goals (the

experiment)

Visualize test results

Extract results for use
in repeating test or

goal

End of SBloats
smell detection

Source code

Mapping to original
code

Mikado method phases

Fig. 3. Overview of the proposed method based on the Mikado method.

In all phases of the proposed model, including data pre-processing, primary analysis,

and secondary analysis, there is access to the source code, and the analysis is done based on

the accessible codes. Based on the codes received in the first phase, the required statistical data

and charts are created in the last phase.

4.1.1. Inputs and Outputs of the Model

The proposed method requires particular inputs and generates proper outputs based on

achieving the desired goals. The following are some of the inputs to the suggested method:

 Various files containing a sample programming language code that is being assessed.

These files are used as Test Suites for analysis.

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 134

 The insecure signs and security bloaters’ database. To compare and match the received

codes with the identification metrics, the tool needs to read information of these metrics

as input and match them with the received codes.

 Initial settings for scanning by the user.

The outputs of the proposed model include 14 parameters, which are listed in Table 3.

Table 3. Output parameters of the proposed model.

No. Output parameter

1 The total number of project code lines

2 Total of comment lines

3 Number of lines without code

4 Total of lines

5 Number of potentially unsafe codes

6 Number of security signs

7 Percentage of file code contribution in the project

8 The total number of project code lines

9 Total of comment lines

10 Number of lines without code

11 Total of lines

12 Number of potentially unsafe codes

13 Number of security signs

14 Percentage of file code contribution in the project

4.1.2. Abbreviations

Table 4 lists the abbreviations used in the proposed model and its application.

Table 4. Abbreviations used in the proposed model.

Abbreviation Phrase

PR Project

UBC Unsafe Bloat Code

SF Single File

WS WhiteSpace

CL Comment Line

DTC DeathTrap Code

ToB Total of Bug

DTS DeathTrap Signs

PUC Percentage of Unsafe Code

PSC Percentage of Safe Code

PCD Percentage of Contribution Deathtrap

TUS Total UnSecure

PFC Percentage of File Contribution

LoC Line of Code

ToL Total of Line

Cmt Comment

135 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

4.2. Details of the Proposed Model

The suggested approach, as shown in Fig. 4, is divided into three sections: data pre-

processing, static code bloating analysis, and metric index classification processor, all of which

are explained in this section.

Fig. 4. Steps and phases of the proposed model.

Start Select language

Detect test files

Input source code
repositories

Files

Successful reading for
primary analysis

Candidate test files

Select files having
at least 1 LOC for

parsing

Detect associated
product file

Yes No

Code file(s)

Syntax-
metrics

languages
repository

DPI

Joiner

Classifier

Recognition
rules

Code
parsing

Syntax-metric parser engine

LOC Comment WS Parsing (n)

Deathtrap bloat
detector

Metric Matching

Sta
tic C

o
d

e
 B

lo
at A

n
a

ly
sis (P

A
)

Draw graph &
statistic info

Calculate output PA
& SBSM engine

Export final resultStop

M
e

tric In
d

e
xe

s C
lassifie

r
P

ro
ce

sso
rs (SA

)

D
ata

 P
re

p
ro

ce
ssin

g

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 136

4.2.1. Section 1: Data Pre-Processing

Static analysis tools and models work on the source code directly. This feature is

advantageous for these tools because tools that operate on compiled code do not appropriately

discover existing errors. The model suggested in this study works with source code and

requires that the source codes be pre-processed before being used as analytic inputs.

The data pre-processing phase is the first stage in the future processes of data analysis.

The circumstances and fundamental principles for processing the received data are reviewed

for this purpose. If the selected pre-processing language does not match the files, the user must

either adjust the intended language or introduce the files relevant to the selected language to

the program using these guidelines. In subsequent phases, files that do not include at least one

line of code will be excluded from the analysis process. All activities in this step are conducted

automatically without human interaction after selecting the language and input files. The

order of actions in the data pre-processing step is shown in Table 5.

Table 5. The sequence of work process in the data preprocessing phase.

No

.

Operation

1 Select the type of programming language

2 Read source code from a file or project as input

3 Check the compatibility of the selected project with the type of language being

analyzed 4 Mismatch of input files with the type of target language and return in one or two

operational order 5 Separate user interface files from source code files

6 Array navigation of all files throughout the project to perform duplicate operations

and avoid creating duplicate code 7 Checking the validity of candidate files in terms of file type for code analysis and

user interface 8 Failure to qualify in number seven and return to stage two

9 List indexed test files for initial analysis

10 Check for at least one line of code in the measured file to continue the analysis

process 11 Final check of file extension related to programming language

12 Prioritize files for parsing by filename

13 Extract extensions of participating files in the project

14 Display a list of the number of filtered files allowed for analysis and processing in

the second phase 15 Save pre-processing indexes in the temporary database

4.2.2. Section 2: Static Code Analysis and Detecting Insecure Bloaters

The initial data analysis is the second phase of the suggested model. The data processing

findings from the previous phase are used as input in this step; that is, the codes are ready for

analysis, and all of the essential conditions for analysis have been set. The potential faults from

now on are unrelated to the preceding phase. The syntax-metric parser engine receives the

revised codes. The separation is done simultaneously and in parallel on the syntax metrics and

the insecure bloater detection metrics. The specified engine’s insecure analysis portion uses a

metric adaptor in conjunction with a database of similar and dissimilar metrics, which is

detailed further below. To allow two-way communication between the adapter and the

database, a deathtrap parser intermediate (DPI) is used. Bloater detection rules are used by the

DPI to categorize the cases that are found. The sequencing of operations in this step is shown

in Table 6.

137 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

Table 6. The sequence of work process in static code analysis phase.

No. Operation

1 Create a tuple of files received from the pre-processing phase and metrics stored in the database

2 Check the occurrence of exceptions in analysis calculations

3 Exception error handling and processing

4 Issue a message according to the managed errors

5 Array navigation of a set of code lines throughout the file to perform operations on each code

line separately 6 Syntactic parsing process on the analyzed code line

7 Scrolling through the set of metric in the benchmark repository for each line of code

8 Checking the compliance of the code line with the criterion for measuring vulnerability

9 Compare each metric according to the target programming language

10
Analyze detected security vulnerabilities according to SQL injection criteria, deadlock, script

injection through website, integer overflow, prime vector, etc.

11 Classify the criteria found in bloated code for secondary analysis

 Insecure Metrics in the Detection Process

Insecure bloats caused by haphazard management and the use of untrained

programmers result in security gaps in the developed software, which can be exploited by

hackers and unauthorized access. From the overall list of 927 Common Weakness Enumeration

(CWE) of current software, the items discovered and selected as security bloaters are the most

similar to the cases and behaviors of software bloats, according to several metrics introduced

on the Mitre site [25]. Bloats are split into two kinds in the suggested method for this purpose:

similar metrics (common) and dissimilar metrics (specific).

Intentionally or inadvertently, the existence of insecure bloats renders the code and

executable file vulnerable. The process of damaging programs can be stopped, or their

structure can be addressed by current vulnerability detection by recognizing numerous

insecure bloated metrics in these two groups.

 Insecure Similar Metrics

The metrics that have been found as security bloater defects in more than one or all of

the popular programming languages are bloater-related metrics in the process of detecting

insecure code. Insecure bloats like these are used to characterize situations and behaviors that

are typical in these languages. These are defects in software that cause security issues by

lowering its quality and performance. The following are some of the most relevant evaluation

measures in this class.

Table 7 illustrates the similar measures that were used in the proposed model’s test case

analysis.

 Insecure Dissimilar Metrics

Bloater dissimilar metrics are metrics that are not common among conventional coding

languages in terms of behavior, states, structure, and type of vulnerabilities, and they are

limited to a single language in the insecure code detection procedure. Table 8 demonstrates the

dissimilar metrics employed in the suggested approach's test case analysis.

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 138

Table 7. Public metrics in the proposed model.

No. Metric

1 Check for cross-site scripting (XSS)

2 SQL injection problems

3 Check for un-validated variables being executed via cmd line/system calls

4 Insecure network protocol (check for safe redirects and safe use of URLs)

5 Int overflow

6 Race conditions

7 TOCTOU vulnerabilities

8 Weak crypto algorithm

9 Weak crypto configuration

10 Exposed credentials

11 Brute-force and dictionary attacks

12 Hardcoded keys

Table 8. Private metrics in the proposed model.

No. Metric

1 Check for turned off of .NET default validation

2 Enable or disable the config file to determine the .NET

debugging and default errors 3 Identify any initialization vector keys

4 Identify potential for deadlocking

5 random functions that are not cryptographically secure

6 Correct implementation of inherited SAML2 functions

7 Check for unsafe cloning implementation

8 Check for turned off of .NET default validation

9 Check for any issues related to servlets, such as bloat

management 10 Unsafe use of java.lang.Runtime.exec

11 Security check used in try ... catch blocks

12 Identify occurrences of realloc

13 Identify entry to the class destructor, report any exception

thrown within the destructor 14 Check for printf format string vulnerabilities

Much of the identification of key metrics and variables use the Regular Expressions

method; these terms are used to search for and match one or more specific search patterns.

Following a specific pattern defined for each metric, vulnerabilities are identified and

categorized. That is, if there is a specific type of security vulnerability, it is transferred to the

defined category, and numerical calculations are performed based on it. In fact, the detection

thresholds presented in each of the similar and dissimilar criteria operate based on the

mechanism described. Criteria detection is based on a comparison of keywords and regular

phrases.

4.2.3. Section 3: Metric Index Classification Processor

The findings of the second stage, comprising the parameters retrieved by the syntax-

metric parser engine, are collected, and the derived statistics are processed in the secondary

analysis step, also known as calculating and processing the analysis results. As a result of the

tool’s output, statistical data and analytical graphs are generated and presented. The

operations connected to the acquired results have been designed as relationships and

139 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

equations to improve the readability of the computations and make the symbols used in the

suggested technique easier to understand. To this end, the suggested model’s output

parameters are computed using the relationships and equations below.

Eq. (1) is used to calculate the number of lines of a project. In this equation, PR is the

whole project, LOC is the pure number of lines of a code, ToL is the total number of lines of a

project without filtering, including white space (WS), and the comment lines (CL). SF

represents the singular files, and the summation operation is carried out to the number of

files of the project. The value of the involved parameters is obtained through the summation

of every single value in the singular files of the source code, where SFn represents the

number of files that should be incorporated in this equation. In ∑ 𝑇𝑜𝐿𝑃𝑅
𝑆𝐹𝑛
𝑖=1 − (𝑊𝑆𝑃𝑅 + 𝐶𝐿𝑃𝑅),

for the first to the nth singular file (SF), the total lines of the white space and the comment

lines are obtained, and then the total number of lines is subtracted from 𝑊𝑆𝑃𝑅 and 𝐶𝐿𝑃𝑅; the

result is pure lines of code.

𝐿𝑂𝐶𝑃𝑅(𝑆𝐹) = ∑ 𝑇𝑜𝐿𝑃𝑅
𝑆𝐹𝑛
𝑖=1 − (𝑊𝑆𝑃𝑅 + 𝐶𝐿𝑃𝑅) (1)

To obtain the total number of lines of a singular file with the symbol 𝑇𝑜𝐿𝑆𝐹, three key

parameters of the total number of lines of code (LoC), comments, and white space should be

counted. The 𝑇𝑜𝐿𝑆𝐹 value of the total of the parameters obtained in each line is obtained for i

= 0, 1, …n for lines of code ‖𝐿𝑜𝐶𝑖‖, j=0,…,m, for the comment lines ‖𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑗‖, K=0,..,q, and

for the white space lines, ‖𝑊ℎ𝑖𝑡𝑒𝑆𝑝𝑎𝑐𝑒𝑘‖. Since comment and white space might not exist in

a singular file, these two parameters are counted from zero; Therefore, the number of lines in

a file is calculated using Eq. (2).

𝑇𝑂𝐿𝑆𝐹 = ‖𝐿𝑜𝐶𝑖‖ + ‖𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑗‖ + ‖𝑊ℎ𝑖𝑡𝑒𝑆𝑝𝑎𝑐𝑒𝑘‖ (2)

First, the number of lines of code, comment, and white space in each singular should

be calculated to estimate the total number of lines in a project. In this process, the lines of

code LoC= (LoC1, LoC2, …, LoCn), comment lines Cmt= (Cmt1, Cmt2, …, Cmtn), and white space

lines WS= WS1, WS2, …, WSn) are a set of n digits obtained in each file, where LoCj, Cmtj and

WSj are equal to 𝑗ℎ the largest component in SF=(SF1, SF2, …, SFn) and SFn are equal to the

number of files that should be measured. Thus, the final value and the sum of the mentioned

values depend on the number of the singular files. It is evident that the main factor that

determines this operation is calculated by the n value of the file for the whole project is

calculated using Eq. (3).

TOL(SF1, SF2, …, SFn) = ∑ (𝐿𝑜𝐶𝑗 + 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑗 + 𝑊ℎ𝑖𝑡𝑒𝑆𝑝𝑎𝑐𝑒𝑗
𝑛
𝑗=1)= (LoC1+Cmt1+WS1)

+ (LoC2+Cmt2+WS2) +…+ (LoCn+Cmtn+WSn) (3)

Eq. (4) is used to obtain the number of detected codes with a security vulnerability that

their presence results in security bloat in the developed program. In this regard, DTCSF

represents the number of insecure bloaters for a file, which is denoted by the finder function

Cnt and the value of the insecure bloating code (UBC). Then, the operation, Cnt(UBC)1,

Cnt(UBC)2, …, Cnt(UBC)n is calculated m times in ∑ 𝐶𝑛𝑡(𝑈𝐵𝐶)𝑚
𝑖=1 .

DTCSF = ∑ 𝐶𝑛𝑡(𝑈𝐵𝐶)𝑚
𝑖=1 (4)

The total amount of insecure codes discovered in a file or project determines the

project’s vulnerability. Eq. (5) is used to calculate the insecurity degree of a singular file

represented by PUCSF, and Eq. (6) is used to measure the insecurity degree of a code for the

entire project, represented by PUCPR, which is expressed in percent and requires two

parameters of potentially insecure codes DTC and lines of code LoC, whose calculation is

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 140

described in the previous equations. How to obtain them was discussed in earlier

relationships .

In Eq. (5), the LoC parameter is first calculated for all lines of code, and then the final

value of the two primary parameters DTCSF is divided by the total lines of code in the

singular file LoCSF. Finally, the values are expressed in percent.

PUCSF= (
𝐷𝑇𝐶𝑆𝐹

∑ 𝐿𝑜𝐶𝑐𝑛𝑡
𝑛
𝑐𝑛𝑡=1

) ∗ 100 (5)

For all singular files SFn, the total value of the parameters LoC and DTC are determined

first in Eq. (6). The DTC value for all source code files is then divided by LoC, and the result

is expressed in percent.

PUCpr = (
∑ 𝐷𝑇𝐶

𝑆𝐹𝑛
𝑐𝑛𝑡=1

∑ 𝐿𝑜𝐶
𝑆𝐹𝑛
𝑐𝑛𝑡=1

) ∗ 100 (6)

The percentage of secure code, PSCPR, is derived using Eq. (7) for the entire project.

PSCPR= (100-PUCPR) (7)

In order to calculate the total number of errors detected (ToBSF) in a file in terms of

code (DTC) and Bloater insecure signs (DTS), the sum of these two

parameters, ∑ 𝐷𝑇𝐶 ⋃ 𝐷𝑇𝑆𝑛
𝑐𝑛𝑡=1 , is calculated and divided by the count LoC (CLoC) in a

singular file using Eq. (8).

𝑇𝑜𝐵𝑆𝐹 =
1

𝐶𝐿𝑜𝐶
 ∑ (𝐷𝑇𝐶 ⋃ 𝐷𝑇𝑆𝑛

𝑐𝑛𝑡=1) (8)

DTS are lines of code that contain commands and codes of the analyzed programming

language, but they are included in the code as comments. Signs are calculated based on the

number of lines of comment that are considered security vulnerabilities.

Eq. (9), where 𝐷𝑇𝐶𝑎,𝑛 is the 𝑛𝑡ℎ insecure bloater found by the 𝑎𝑡ℎ file divided by the

total number of Bloaters detected in the whole project yields the percentage of Contribution

Deathtrap (PCD) of a file in terms of the identified bloaters to the complete project.

𝑃𝐶𝐷(𝑆𝐹𝑎,𝑖) =
∑ (𝑖

𝑛=1 𝐷𝑇𝐶𝑎,𝑛)

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑖𝑡𝑈𝑛𝑠𝑎𝑓𝑒
 (9)

The total insecurity of a project is determined as the total insecurity of the project to the

total mistakes of the singular files, including discovered insecure bloaters and signs (DTC,

DTS) for i=1,2,…,n the existing TotalLoC of the project using Eq. (10).

𝑇𝑈𝑆(𝑃𝑅) =
∑ (𝐷𝑇𝐶,𝐷𝑇𝑆)𝑛

𝑖=1

𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝐶
 ∗ 100 (10)

Eq. (11) calculates the contribution of each singular file of the project PFC(PR) to the total

LoC of the project. ToLSFi is the number of lines (code, comments, and white space) in the ith

singular file, divided by ToLPR, or total calculated lines in a project, and expressed in percent.

𝑃𝐹𝐶(𝑃𝑅) =
𝑇𝑂𝐿𝑆𝐹𝑖

𝑇𝑜𝐿𝑃𝑅
∗ 100 (11)

The proposed method covers a wide range of security vulnerabilities. Among these,

some are placed in the category of code smells and in the sub-group of bloaters. So, the

engine is designed so that it is not exclusive to a specific type of vulnerability. Bloats have

been mentioned as part of the vulnerabilities, and a number of criteria that can be used to

detect them have been included in the proposed method.

The reason for naming the syntax-metric identification engine based on bloaters is that

it has received more research attention. Highlighting bloats has been done due to the

importance and more attention of this category. Like other security vulnerabilities, bloaters

141 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

are detected based on well-defined regular expressions and specific criteria patterns. For

example, static codes are a typical example of bloaters.

4.3. Advantages of the Proposed Model

The suggested method differs from earlier methods in several ways. This strategy

considers expanding the security bloats’ application range and synchronizing the metrics

scanning. The source code is examined rather than the compiled code. This paradigm also

has the advantage of processing input from four programming languages: Visual Basic,

C-Sharp, C++, and Java, rather than being limited to a single language like Java. It should be

noted that most of the existing tools operate on Java codes only.

5. EVALUATION AND RESULTS

The proposed solution is implemented using the framework shown in Fig. 4. The

program core and independent software components are created using Visual Studio .NET

version 2015, C#, and Visual Basic programming languages, and data is stored using the

open-source SQLite database management system. The proposed solution was implemented

using the C#.NET environment as the principal programming language and is known as

TSBMD in this article, as it was mentioned before. This tool contains a syntax-metric rule

detection engine that works with source code programming languages like VB.NET,

C#.NET, ASP.NET, C, C++, and Java. The aforementioned software is user-friendly, and

numerous security metrics in the above languages can be added to the metrics pool and

participate in the analysis process without the need for programming experience. A code

editor is also included with the software to help with the process. The proposed tool

categorizes the identified vulnerabilities based on the criteria considered in the metrics

repository. Figs. 5 and 6 show the output of the software tool.

Fig. 5. Graphical output of the developed tool after completion of the analysis.

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 142

Fig. 6. Statistical output of the developed tool after completion of the analysis.

In the artificial scenario, Juliet Test Suites [26] are offered in two components of the

Java programming language and C++ to software developers for security evaluation.

Thousands of test cases are included in each component, including similar functionalities

with and without defects. These situations are referred to as bad and good codes,

respectively. A common weakness enumeration (CWE) identifies defects in bad code,

making defect detection simple. Each Juliet test case is designed to represent a CWE ID and

includes good and bad codes. The defect reported by the CWE ID is present in the bad code.

The matching good code is identical to the bad code, with the exception that it lacks the

associated defect. Each test case focuses on a single sample defect; however, there may be

more defects. Other defects in the test are disregarded to simplify the automated analysis

outlined in the following section. Only the Java language and a few metrics in the field of

code insecurity are used to evaluate the tool for the results to be presented in legitimate

scientific forums.

The detailed data for the Juliet 1.2 test suite [27] is shown in Table 9. The number of

various CWE identities covered by the test suite is listed in the CWE column. The LoC

column shows the number of non-white lines in the code of each language that are without a

remark.

Table 9. Juliet 1.2 specifications.

 CWEs Test Cases Files LoC

C/C++ 118 61387 102092 4719409 (C), 3882727 (C++)

Java 112 25477 41170 4565713

Because the Juliet Test Suites contain carefully identified defects, tool warnings can be

automatically assessed. With the overall overview shown in Fig. 7, this section outlines the

143 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

analytical procedure. If their defect types are related, that is, their CWE IDs belong to the

same group, and there is at least one warning spot in the allocated block, the tool alert is

matched with a test case. The following are the details of the agreement calculation [28].

 If a related security vulnerability or unsafe bloat was in bad code, the tool had a true

positive (TP).

 If no related security vulnerabilities or unsafe bloat was in bad code, the tool had a

false negative (FN).

 If a related security vulnerability or unsafe bloat was in good code, the tool had a false

positive (FP).

 If no related security vulnerabilities or unsafe bloat was in good code, the tool had a

true negative (TN).

Any unrelated security vulnerabilities were disregarded.

Warnings
location(s) CWE

Test Cases
Bad code

Good Code
CWE

CWE Matches

In bad code

In good code

Yes

TP

FP

FN

TN

Disregard

No

Yes

Yes

No

No

Fig. 7. The evaluation process for synthetic test suites.

The following are the formulas for calculating precision, recall, and F-Measure, as shown

in Eqs. (12) to 14.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 * 100 (12)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 * 100 (13)

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑠𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (14)

The first scenario test examines the scenarios that were chosen from the Juliet Test Suites.

In this part, five tests from a total of 112 test cases written in Java are chosen to assess the

effectiveness of the proposed tool. CWE83 SQL injection, CWE78 OS command injection,

CWE83 XSS attribute injection, CWE190 Integer overflow, and CWE80 XSS injection are among

the tests. The given tool, which is based on the method of this study, is compared to the most

well-known tools in order to assess the efficiency of the proposed method. Some tools are

demonstrated below.

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 144

The University of Maryland created FindBugs. It comes as a standalone application as

well as an Eclipse plug-in [29]. In addition to static parsing, CodePro Analytix is only

accessible as an Eclipse plug-in and provides several security check functions [30]. In the

Linux platform, the FindSecurityBugs plug-in is utilized as a standalone application.

Additionally, this tool includes a valuable feature that allows extra rules (add-on, double) to

be supplied to extend the tool's experiments [31]. SonarQube is a program that, in addition

to Java, supports a variety of other languages and may be used in conjunction with

IDEs and other external tools [32]. The SQL injection test is used to identify the relevant

defects [33, 34].

Because different tools have different limitations in CWE identification, the Juliet Test

Suites are chosen proportionally to the same test for comparison, and the comparison in one

test could be between many tools in one test and between two tools in another. Because other

tools do not support the CWE test, this is the case. According to the CWE ID and the

measuring tools in each parameter, Table 10 categorizes positive and negative samples. Table

11 compares the proposed model’s precision, recall, and F-measure to those of other tools

In general, the results of using the proposed model and implementing the Touba

Security Bloating Mistake Detector Tool show that the proposed model is effective in detecting

security defects and has passed the Juliet test cases successfully. It should be noted that the

lower performance of TSBMD compared to the other tools is because CWE80 uses a particular

regular expression. Nonetheless, TSBMD was able to detect security vulnerabilities to a

reasonable extent in CWE80. The findings also suggest that the proposed model and tool can

be utilized as a solution and a code evaluation tool, reflecting the program’s difficulties in

being used by developers (development team) and stakeholders of software systems that have

been developed or are being produced. Fig. 8 shows the precision, recall, and F-Measure of the

proposed model compared to the existing tools in the test case CSEs.

Table 10. Statistical results of the data.

CSW ID Tools Total bad test cases Total good test cases TP FP FN TN

CWE 89

TSBMD 2220 8165 1409 1200 811 6965

CodePro 2220 8165 795 4347 1425 3818

FindBugs 2220 8165 1200 3097 1020 5068

SonarQube 2220 8165 888 1200 1332 6965

CSE 78
TSBMD 444 1047 437 527 7 520

FindSecurityBugs 444 1047 400 679 44 368

CWE 80

TSBMD 666 1566 327 95 339 1471

CodePro 666 1566 409 38 257 1528

FindBugs 666 1566 491 213 175 1353

CWE 83

TSBMD 333 783 108 37 225 746

CodePro 333 783 27 56 306 727

FindBugs 333 783 18 43 315 740

CWE 190
TSBMD 2553 9456 1363 2302 1190 7154

FindBugs 2553 9456 135 1090 2418 8366

145 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

Table 11. Comparison of precision, recall, and F-measure of the proposed model with other tools.

Fig. 8. Comparison diagram of precision, recall, and f-measure of the proposed model with other tools in the test

case CWEs.

5
4

.0
1

1
5

.4
6

2
7

.9
3

4
2

.5
3

4
5

.3
3

3
7

.0
7

7
7

.4
9

9
1

.5
0

6
9

.7
4

7
4

.4
8

3
2

.5
3

2
9

.5
1

 3
7

.1
9

1
1

.0
2

6
3

.4
7

3
5

.8
1

5
4

.0
5

4
0

.0
0

9
8

.4
2

9
0

.0
9

4
9

.1
0

6
1

.4
1

7
3

.7
2

3
2

.4
3

8
.1

1

5
.4

1

5
3

.3
9

5
.2

9

5
8

.3
6

2
1

.6
0

3
6

.8
3

4
1

.2
3

6
2

.0
7

5
2

.5
3

 6
0

.1
1

7
3

.5
0

7
1

.6
8

4
5

.1
9

1
2

.9
8

9
.1

4

4
3

.8
4

7
.1

5

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

TS
B

M
D

C
o

d
e

P
ro

Fi
n

d
B

u
gs

So
n

ar
Q

u
b

e

TS
B

M
D

Fi
n

d
Se

cu
ri

ty
B

u
gs

TS
B

M
D

C
o

d
e

P
ro

Fi
n

d
B

u
gs

TS
B

M
D

C
o

d
e

P
ro

Fi
n

d
B

u
gs

TS
B

M
D

Fi
n

d
B

u
gs

CWE89 CWE78 CWE80 CWE83 CWE190

P
er

ce
n

ta
ge

 [
%

]

Precision Recall F-Measure

CWE ID Tools Precision Recall
F-

measure

Improved TSBMD compared to

Tools Precision Recall F-measure

CWE89

TSBMD 54.01 63.47 58.36

CodePro 15.46 35.81 21.60 CodePro 38.54 27.66 36.76

FindBugs 27.93 54.05 36.83 FindBugs 26.08 9.41 21.53

SonarQube 42.53 40.00 41.23 SonarQube 11.48 23.47 17.13

 AVG. 25.37 20.18 25.14

CWE78

TSBMD 45.33 98.42 62.07

FindSecurityBugs 37.07 90.09 52.53 FindSecurityBugs 8.26 8.33 9.55

 AVG. 8.26 8.33 9.55

CWE80

TSBMD 77.49 49.10 60.11

CodePro 91.50 61.41 73.50 CodePro -14.01 -12.31 -13.38

FindBugs 69.74 73.72 71.68 FindBugs 7.74 -24.62 -11.57

 AVG. -3.13 -18.47 -12.48

CWE83

TSBMD 74.48 32.43 45.19

CodePro 32.53 8.11 12.98 CodePro 41.95 24.32 32.21

FindBugs 29.51 5.41 9.14 FindBugs 44.97 27.03 36.05

 AVG. 43.46 25.68 34.13

CWE190
TSBMD 37.19 53.39 43.84

FindBugs 11.02 5.29 7.15 FindBugs 26.17 48.10 36.69

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 146

6. LIMITATIONS

Because of its nature, this study has some limitations; where the most significant ones are

as follows:

 Pattern standardization (Benchmark): since bloater search and detection in each

language is based on keywords, graphemes, and various functions, pattern

standardization is necessary. As a result, the number of metrics that can be used to

compare and search bloaters in the target languages is restricted.

 Tool comparison: there are only a few security tools that can be compared to and

evaluated against the proposed tools and methodologies.

 Incomplete metric coverage: security vulnerability detection tools and software, in

general, do not cover all of the metrics reported in this study. As a result, various tools

are employed to assess certain indicators.

 Measurable programming language: as mentioned before, because security vulnerability

analysis tools focus on the mentioned language, it is not possible to compare logical

advancements and evaluate the existing tools due to a lack of thorough study.

 Test cases (formal test): artificial test cases for insecurity analysis tools have been

confirmed. There are valid tests in the context of C++ and Java, such as the Juliet test,

and sufficient documentation to guide the user in using them; however, there is no

documentation for using these test cases and determining the number of positive and

negative samples by their developer, despite having test cases for other languages such

as C#, Python, PHP, and so on.

7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Code smell, as a serious sign of security vulnerabilities, has been considered by software

researchers. The current study proposed a model that uses a syntax-metric parser engine to

detect security vulnerabilities. This model is rooted in the Mikado methodology. Moreover,

based on the proposed method, a software tool has been developed to show its real

performance in detecting security vulnerabilities. Evaluation of this model by Juliet test cases

revealed that the proposed tool outperformed other tools in four out of five CWE scenarios. In

general, the proposed method showed a better performance compared to the existing tools in

terms of accuracy by 20.3%, recall by 16.76%, and F-measure by 18.61% on average.

The necessity of applying security detection metrics for bloat detection becomes evident

when considering the conducted studies and the analysis and assessment outcomes of the tools

offered in this paper. However, most of the existing tools focused on employing metrics and

approaches regarding the different forms of code smell presented in earlier studies. So, making

some changes to existing tools and integrating procedures may improve the results clearly. As

a result of the debate above, the following can be examined in future studies.

 Investigating common metrics of insecure bloaters in programming languages in related

research fields in order to assess the quality of output code generated by various

parameters and apply changes to make them more compatible with this field.

 Due to the extent of integrated software development environments and lack of

comprehensive studies, identified insecure scenarios are fairly limited; however, more

147 Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023

programming languages can be added to current tools to find security factors if the

target languages are carefully examined.

 One method for simplifying the operation environment and its interaction with the

processed IDE is to create a plug-in in the same development environment, which

simplifies the operation when identifying smells and allows programmers to identify

insecure smells in their code without having to switch between two environments.

 In the context of insecure code, artificial intelligence and machine learning can be

utilized to improve identification and refactoring, allowing the system to learn how to

provide the best methods for reconstructing the insecure code.

REFERENCES

[1] S. Habchi, N. Moha, R. Rouvoy, “Android code smells: From introduction to refactoring,” Journal

of Systems and Software, vol. 177, pp. 110964, 2021.

[2] M. Gholami, F. Daneshgar, G. Beydoun, F. Rabhi, “Challenges in migrating legacy software

systems to the cloud — an empirical study,” Information Systems, vol. 67, pp. 100-113, 2017.

[3] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp. 58-61, 2006.

[4] J. Al Dallal, A. Abdin, “Empirical evaluation of the impact of object-oriented code refactoring on

quality attributes: a systematic literature review,” IEEE Transactions on Software Engineering,

vol. 44, no. 1, pp. 44-69, 2018.

[5] M. Laguna, Y. Crespo, “A systematic mapping study on software product line evolution: from

legacy system reengineering to product line refactoring,” Science of Computer Programming,

vol. 78, no. 8, pp. 1010-1034, 2013.

[6] K. Beck, M. Fowler, G. Beck, “Bad smells in code,” in Refactoring: Improving the Design of Existing

codeWestford, Massachusetts: Addison Wesley Longman Inc., pp. 75-88, 1999.

[7] S. Singh, S. Kaur, “A systematic literature review: Refactoring for disclosing code smells in object

oriented software,” Ain Shams Engineering Journal, vol. 9, pp. 2129-2151, 2018.

[8] M. Mantyla, J. Vanhanen, C. Lassenius, “A taxonomy and an initial empirical study of bad smells

in code,” International Conference on Software Maintenance, Amsterdam, The Netherlands,

pp. 381-384, 2003.

[9] O. Ellnestam, D. Brolund, The Mikado Method, Manning Publications Co., 2014.

[10] P. Gadient, M. Ghafari, P. Frischknecht, O. Nierstrasz, “Security code smells in Android ICC,”

Empirical Software Engineering, vol. 24, no. 5, pp. 3046-3076, 2019.

[11] K. Goseva-Popstojanova, A. Perhinschi, “On the capability of static code analysis to detect

security vulnerabilities,” Information and Software Technology, vol. 68, pp. 18-33, 2015.

[12] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, M. Vieira, “Benchmarking static analysis

tools for web security,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1159-1175, 2018.

[13] H. Mumtaz, M. Alshayeb, S. Mahmood, M. Niazi, “An empirical study to improve software

security through the application of code refactoring,” Information and Software Technology, vol. 96,

pp. 112-125, 2018.

[14] J. Li, S. Beba, M. M. Karlsen, “Evaluation of open-source ide plugins for detecting security

vulnerabilities,” Proceedings of the Evaluation and Assessment on Software Engineering, pp. 200-209,

2019.

[15] P. Rachow, “Refactoring decision support for developers and architects based on architectural

impact,” in 2019 IEEE International Conference on Software Architecture Companion, Hamburg,

Germany, pp. 262-266, 2019.

[16] F. Fontana, V. Lenarduzzi, R. Roveda, D. Taibi, “Are architectural smells independent from code

smells? An empirical study,” Journal of Systems and Software, vol. 154, pp. 139-156, 2019.

Jordan Journal of Electrical Engineering. Volume 9 | Number 2 | June 2023 148

[17] A. Rahman, L. Williams, “Source code properties of defective infrastructure as code scripts,”

Information and Software Technology, vol. 112, pp. 148-163, 2019.

[18] A. Kaur, S. Jain, S. Goel, G. Dhiman, “Prioritization of code smells in object-oriented software: a

review,” Materials Today: Proceedings, 2021.

[19] J. dos Reis, F. e Abreu, G. de Figueiredo Carneiro, C. Anslow, “Code smells detection and

visualization: a systematic literature review,” Archives of Computational Methods in Engineering,

pp. 1-48, 2021.

[20] A. Kaur, S. Jain, S. Goel, G. Dhiman, “A review on machine-learning based code smell detection

techniques in object-oriented software system (s),” Recent Advances in Electrical and Electronic

Engineering, vol. 14, no. 3, pp. 290-303, 2021.

[21] P. Koch, B. Hofer, F. Wotawa, “On the refinement of spreadsheet smells by means of structure

information,” Journal of Systems and Software, vol. 147, pp. 64-85, 2019.

[22] M. Ghafari, P. Gadient, O. Nierstrasz, “Security smells in Android,” in 2017 IEEE 17Th

International Working Conference on Source Code Analysis and Manipulation, Shanghai, China,

pp. 121-130, 2017.

[23] A. Gupta, N. Chauhan, “A severity-based classification assessment of code smells in Kotlin and

Java application,” Arabian Journal for Science and Engineering, vol. 47, no. 2, pp. 1831-1848, 2022.

[24] N. Lambaria, T. Cerny, “A data analysis study of code smells within Java repositories,” Annals of

Computer Science and Information Systems, vol. 32, pp. 313-318, 2022.

[25] T. Enumeration, “About CWE,” 2021. < https://cwe.mitre.org/about/index.html>

[26] N. Technology, “SAMATE Reference Dataset,” 2017. <http://samate.nist.gov/SRD/>

[27] T. Boland, P. Black, “Juliet 1. 1 C/C++ and Java test suite,” Computer, vol. 45, no. 10, pp. 88-90,

2012.

[28] A. Delaitre, B. Stivalet, P. Black, V. Okun, T. Cohen, A. Ribeiro, “Sate v report: Ten years of static

analysis tool expositions,” 2018.

[29] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge, “Why don't software developers use static

analysis tools to find bugs?,” in 2013 35th International Conference on Software Engineering, San

Francisco, CA, USA, pp. 672-681, 2013.

[30] T. Xie, Improving Automation in Developer Testing: State of the Practice, North Carolina State

University, Dept. of Computer Science, 2009.

[31] H. Shahriar, K. Riad, A. Talukder, H. Zhang, Z. Li, “Automatic security bug detection with

findsecuritybugs plugin,” in Conference on Cybersecurity Education, Research and Practice, Kennesaw

State University, USA, 2019.

[32] G. Campbell, P. Papapetrou, SonarQube in Action, Manning Publications Co., 2013.

[33] M. Adil, I. A. Sumra, “Using model checking to detect SQL injection vulnerability in Java code,”

Engineering Science and Technology International Research Journal, vol. 3, no. 4, pp. 33-41, 2019.

[34] T. Paananen, Analyzing Java EE Application Security with SonarQube, Master JAMK University of

Applied Sciences, Finland, 2016.

https://cwe.mitre.org/about/index.html
http://samate.nist.gov/SRD/

