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Abstract— In this paper, the design and optimization of infinite impulse response full-band digital differentiator 
(DD) using evolutionary and swarm intelligence algorithms is investigated. Different objective functions based on 
the absolute error, the squared absolute error and the min-max optimality criterion are investigated. The optimal 
DD parameters that result in the best minimum value of the investigated objective functions are obtained using 
differential evolution, particle swarm optimization, genetic algorithm and cuckoo search optimization methods. 
These algorithms are used due to their simplicity, efficiency and robustness in solving general multidimensional 
optimization problems. The investigation outcomes show that minimizing the absolute error gives the most flat 
magnitude response, and minimizing the squared absolute error gives almost the lowest mean error of the 
designed DD. In addition, a new objective function is proposed to improve the linearity of the phase response of 
the designed infinite impulse response full-band DD. It is found that the design of the DD using the differential 
evolution outperforms or at least is comparable to similar designs reported in the literature using other 
optimization methods. 
 
Keywords— Digital differentiator; Evolutionary algorithms; Swarm intelligence algorithms; Optimization. 
      

1. INTRODUCTION  

Digital differentiator (DD) is an important part in signal processing. It has been used in 

many engineering applications such as radars and sonars [1], image processing [2], 

biomedical engineering [3, 4], and system identification and fault detection [5].  

The frequency response of an ideal DD is given by [1]: 

𝐻𝐷𝐷(𝑒𝑗𝜔) = 𝑗𝜔, |𝜔| < 𝜋 (1) 

where ω represents the angular frequency in radians per sample. The DD in Eq. (1) can be 

approximated as a finite impulse response (FIR) or an infinite impulse response (IIR) digital 

system. It is the targeted application of the DD that mostly controls the use of FIR or IIR 

differentiator. FIR digital system is inherently stable and can be easily designed to have linear 

phase but usually has a higher order compared to its IIR counterpart. On the other hand, IIR 

digital system usually has much less order but does not have a linear phase response. In 

addition, the stability constraint on IIR digital system makes the design problem more 

difficult compared to FIR digital system.  

Analytical approaches to design DD that approximate the ideal differentiator in Eq. (1) 

with some desired characteristics have been proposed in literature. In [5], the design of FIR 

differentiators by means of modulating functions and its application for fault detection is 

proposed. The design methodology of Chebyshev approximation of non-recursive filter 

proposed in [6] is used to design full-band and low pass DD filters with linear phase 
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response. Eigenfilter is used in [7] to design higher-order DDs. In [8], maximally-flat DD is 

presented.  

The design of equiripple non-recursive DD using a weighted least-squares technique is 

presented in [9]. Full-band differentiators based on Taylor series is demonstrated in [10]. The 

design of stable IIR DD using iterative quadratic programming is presented in [11]. Difference 

formula and Richardson extrapolation is used to design DD in [12]. In [13], variable frequency 

range FIR DDs are designed. In [14], low-delay band pass maximally-flat FIR DDs are 

designed. Design of IIR DD using constrained optimization is proposed in [15]. Design of FIR 

DD using the L1 optimality criterion is proposed in [16]. 

 On the other hand, only few methods have used evolutionary or swarm intelligence 

algorithms to design and optimize the DD performance. For example in [17], IIR DD is 

designed using the bat algorithm (BA). FIR DD design using BA and particle swarm 

optimization (PSO) based on the L1 optimality criterion is introduced in [18]. The design of 

IIR DD using harmony search (HS) algorithm is proposed in [19].  Simulated annealing (SA), 

genetic algorithm (GA), and modified Fletcher and Powell (FP) optimization are used to 

optimize the design of DD in [20]. Second order DD is designed using GA in [21]. FIR 

fractional order differentiator design using cuckoo search (CS) algorithm is discussed in [22]. 

The design of low pass DD has been considered in [23-33]. In [33],  the  differential evolution 

(DE) algorithm and the L1 optimality criterion were used to design low pass DD and improve 

its phase response by imposing the symmetry property of the numerator coefficients of the 

DD transfer function.  

In [17-20], the DD design problem is formulated using different objective functions 

based on only the absolute magnitude error and the square magnitude error and - to the best 

of our knowledge - none have considered the min-max criterion to design DD.  The 

magnitude response of the designed DD achieved by these studies is acceptable but can be 

further improved. In addition, the phase response of the designed DD achieved by these 

studies does not exhibit linear phase or achieved satisfactory phase response but at the 

expense of getting bad magnitude response. Furthermore, most available methods in the 

literature to design DD, have not considered different objective functions to study the effect of 

the used objective function on the performance of the designed DD. Therefore, we believe that 

more investigations need to be conducted to study different objective functions and their 

effect on the frequency response of the designed DD in order to improve its performance.          

The purpose of this paper is to present a comprehensive investigation on the use of 

different objective functions and well-known optimization algorithms and study their effect 

on the design and performance of IIR DD in order to improve its performance. In this work, 

we consider the following optimality criteria as objective functions to optimize the design of 

DD: the absolute error, the squared error and the min-max criteria which are all related to the 

magnitude response. Empirical studies in [21, 34, 35] have shown that including the phase 

response with the magnitude response in an objective function does not improve the overall 

performance of the designed DD but results in that the search algorithm maturely converges 

to a solution that is a trade-off between the magnitude and the phase response. Well-known 

optimization algorithms, namely the DE, PSO, GA and the CS are utilized in this study to 

search for the differentiator parameters that result in the best minimum value of the proposed 

objective functions. It is worth mentioning that other optimization algorithms such as the BA 
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[17] , the HS algorithm [19], the SA and the FP [20] can be used to solve the DD design 

problem in the proposed formulation. However, the algorithms considered in this work are 

used due to their popularity, implementation simplicity, efficiency and robustness in solving 

general nonlinear optimization problems with and without constraints. In addition, by using 

these algorithms, there will be no need to calculate the derivative of the objective functions as 

usually needed in the traditional optimization methods such as nonlinear programming. 

In this work, we present several design examples of IIR DD and compare our results 

with designs achieved using other techniques available in the literature. In addition, to 

improve the phase linearity of the designed IIR DD, we propose a new objective function that 

is a weighted sum of the three investigated criteria. In this proposed new objective function, 

no constraints are imposed on the coefficients of the DD. Thus, this is a different approach 

than that used in [33].  

The main contributions of this study are summarized in the following points: 

a) A comprehensive investigation is carried out on the use of the absolute error, the 

squared error, and the min-max criteria in addition to the DE, PSO, GA and the CS 

optimization algorithms and their effect on the design and performance of IIR DD.  

b) A new objective function that is a weighted sum of the three investigated criteria is 

proposed to improve the phase linearity of the designed IIR DD.  

The rest of this paper is organized as follows. In section 2, the formulation of the DD 

filter design problem as an optimization problem is presented. Section 3 briefly describes the 

DE, GA, PSO and the CS algorithms and their implementation to solve the DD design 

problem. Design examples and discussion are given in section 4. Finally, the conclusion of this 

paper is given in section 5.  

2. PROBLEM FORMULATION  

In this section, the design of IIR DD is formulated as an optimization problem. The 

frequency response of an Nth order IIR system can be written as [1]: 

𝐻(𝑒𝑗𝜔) =
𝑏0 + 𝑏1𝑒−𝑗𝜔 + 𝑏2𝑒−𝑗2𝜔 + ⋯ . +𝑏𝑁𝑒−𝑗𝑁𝜔

𝑎0 + 𝑎1𝑒−𝑗𝜔 + 𝑏2𝑒−𝑗2𝜔 + ⋯ . +𝑎𝑁𝑒−𝑗𝑁𝜔
 (2) 

In most approaches, the design of DD is performed by selecting the system coefficients 

(𝑏𝑖, 𝑎𝑖, 0 ≤ 𝑖 ≤ 𝑁)  in Eq. (2) to approximate the magnitude of the frequency response in      

Eq. (1). For this purpose, the design is formulated as an optimization problem with 

appropriate objective function related to the magnitude response of an ideal DD. There are 

many different objective functions that can be used to design DD. In this paper, three 

different objective functions are used based on the absolute magnitude error (AME) defined 

in Eq. (3). The AME is the absolute difference between the magnitude responses of the ideal 

DDs (|𝐻𝐷𝐷(𝑒𝑗𝜔)|) and that of the approximated DDs (|𝐻(𝑒𝑗𝜔)|) evaluated at L uniformly 

distributed samples on the frequency interval 0 ≤ 𝜔 ≤ 𝜋. Here, a value of L = 512 samples is 

used [19]. 

𝐴𝑀𝐸 = ||𝐻𝐷𝐷(𝑒𝑗𝜔)| − |𝐻(𝑒𝑗𝜔)||  (3) 
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The IIR DD design in this study is based on the following objective functions as in [19], 

[17] and [36], respectively: 

𝑂1 = min ( ∑ ||𝐻𝐷𝐷(𝑒𝑗𝜔)| − |𝐻(𝑒𝑗𝜔)||
2

+ 𝑃

𝑳 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

)    (4) 

𝑂2 = min ( ∑ ||𝐻𝐷𝐷(𝑒𝑗𝜔)| − |𝐻(𝑒𝑗𝜔)|| + 𝑃

𝑳 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

)      (5) 

𝑂3 = min (𝑚𝑎𝑥 〈||𝐻𝐷𝐷(𝑒𝑗𝜔)| − |𝐻(𝑒𝑗𝜔)||〉) + 𝑃) (6) 

The goal of the optimization algorithm is to find the system coefficients                    

(𝑏𝑖 ,𝑎𝑖 , 0 ≤ 𝑖 ≤ 𝑁 ) of the approximate frequency response 𝐻(𝑒𝑗𝜔)  that result in the best 

minimum value of the considered objective function. In the search for the objective function 

minimum, the stability constraint should be also imposed. For an IIR system to be stable, all 

poles should be inside the unit circle (i.e., |𝑑𝑖| < 1, where  𝑑𝑖 and 1 ≤ 𝑖 ≤ 𝑁 are the poles of 

the system). Therefore, to guarantee the stability of the designed IIR DD, a penalty term, P, is 

used in the objective functions above. In this work, a value of P = 1000 is used whenever any 

of the poles is outside the unit circle; otherwise P = 0. The value of the penalty term P is 

chosen to be large enough such that whenever a candidate solution has any of its poles 

outside the unit circle, the fitness value corresponding to this candidate solution is large. 

Therefore, this solution is considered as a bad solution. For the three considered objective 

functions in this study, we have found that a relatively acceptable solution has a fitness value 

less than 15 so adding a value of 1000 significantly changes the fitness value of the candidate 

solution and the searching algorithm treats it as a bad solution. On the other hand, choosing 

P less than 1000 might make the searching algorithm to consider some of the unstable 

solutions as acceptable solutions especially at early stages of the search. Therefore, for this 

scenario, a large number of iterations might be needed for the algorithm to converge to a 

good solution which will in turn increase the computational time, a problem that we tried to 

avoid. 

3. OPTIMIZATION ALGORITHMS 

In this section, the DE, PSO, GA and the CS algorithms are briefly described. In 

addition, their implementation to solve the DD filter design problem is presented. It should 

be mentioned here that this section is not intended to be a thorough review of the used 

algorithms; for more details, the reader can refer to the references herein. However, the DD 

design problem formulation is given in section 2, and then the role of the optimization 

algorithms is to find the coefficient of the DD system function by solving the formulated DD 

design problem is presented.  

3.1. The DE Algorithm 

The DE algorithm was introduced by Price and Storn as a new floating point encoded 

evolutionary algorithm (EA) for global optimization [37]. The DE algorithm is one of the most 

popular stochastic optimization algorithms that can be used to optimize a user defined 
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objective function of a given optimization problem. The DE algorithm has been successfully 

used in many applications such as pattern recognition [38], communications [39] and digital 

filter design [40]. The DE is an attractive alternative to other algorithms such as the GA and 

PSO due to three advantages. First, it has the ability to find the true global optima regardless 

of the initial parameter values. Second, it has fast convergence speed, and finally it uses few 

parameters to control the progress of the algorithm [36]. In addition, it is simple, fast, easy to 

use, adequately effective in solving nonlinear constraint optimization including penalty 

functions and useful for optimizing multi-modal search spaces [41]. 

Like other EAs, the DE algorithm starts with an initial population of individuals, (NP). 

Each individual is a candidate solution (𝑋𝑖 = {𝑥1,𝑖, 𝑥2,𝑖, … . . , 𝑥𝑁,𝑖  }) that represents the design 

parameters of an N-order optimization problem. Then, a new generation of candidate 

solutions is produced using the current population of candidate solutions through operations 

named mutation and crossover in the DE algorithm. The fitness values of the new generated 

candidate solutions are compared with the corresponding fitness values of the current 

candidate solutions. A new generated solution is taken to the next iteration if its fitness value 

is better than that of the corresponding current candidate solution. The algorithm keeps 

iteratively generating solutions from the current available candidate solutions till a 

termination criterion is met. The termination criterion could be chosen to be a certain number 

of generations or a certain error value. In the mutation operation, a mutant vector                

( 𝑉𝑖 = {𝑣1,𝑖, 𝑣2,𝑖, … . . , 𝑣𝑁,𝑖  } ) is generated for each candidate solution ( 𝑋𝑖 ) in the current 

generation. There are several strategies to generate the mutant vector. The following are two 

common strategies [41]: 

DE/rand/1: 𝑉𝑖 = 𝑋𝑟1
+ 𝐹(𝑋𝑟2

− 𝑋𝑟3
) 

  DE/best/1: 𝑉𝑖 = 𝑋𝑏𝑒𝑠𝑡 + 𝐹(𝑋𝑟2
− 𝑋𝑟3

) 
    (7) 

The subscripts  𝑟1, 𝑟2 and 𝑟3 are random and mutually different integers generated in the 

range [1, NP] and are different from the current candidate solution’s subscript i. F is a factor 

in the range [0, 2] to scale the differential vectors. 𝑋𝑏𝑒𝑠𝑡 is the candidate solution with the best 

fitness value in the current generation. After the mutation operation, a crossover operation is 

used to generate a trial vector (𝑈𝑖 =  {𝑢1,𝑖, 𝑢2,𝑖, … . . , 𝑢𝑁,𝑖  }) to each pair of the generated mutant 

vector 𝑉𝑖, and its corresponding target vector 𝑋𝑖. The jth element in the trial vector is obtained 

according to the following equation [41]: 

𝑢𝑗,𝑖 = {
𝑣𝑗,𝑖, 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 < 𝐶𝑅 )𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

      𝑥𝑗,𝑖,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       𝑗 = 1, 2, . . . . , 𝑁     (8)             

The parameter CR is a user-specified crossover constant in the range [0, 1] and 𝑗𝑟𝑎𝑛𝑑  is a 

randomly chosen integer in the range [1, NP] to ensure that the trial vector 𝑈𝑖 will differ from 

its corresponding target vector 𝑋𝑖 by at least one parameter. 𝑟𝑎𝑛𝑑𝑗 and is a random number 

drawn from uniform distribution in the range [0, 1]. Therefore, the jth element in the trial 

vector is constructed using selected elements of the mutant vector 𝑉𝑖, and its corresponding 

target vector  𝑋𝑖. Finally, the fitness values for both the target vector 𝑋𝑖 and its corresponding 

trial vector 𝑈𝑖 are calculated. If the fitness value of the trial vector 𝑈𝑖 is better than that of the 

target vector 𝑋𝑖 , the trial vector is moved to the next generation and the target vector is 

disregarded. Otherwise, the target vector is retained and moved to the next generation. In our 

implementation of the DE algorithm, DE/rand/1 strategy is used. 
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3.2. The GA  

The GA uses processes analogous to genetic recombination and mutation to produce 

new individuals that best fits a desired objective function [42, 43]. The algorithm starts with a 

randomly generated initial population of individuals (candidate solutions) called generation. 

An individual is a set of the parameters that are to be optimized in the optimization problem. 

Each parameter is represented as an encoded gene in the algorithm. The collection of genes 

makes an individual that is called chromosome. Encoding of genes includes binary and real 

numbers (adopted in this work). The algorithm performs crossover and mutation operations 

on some selected individuals in the current population to produce new individuals to make a 

new generation. The new generation is used for the next iteration in the algorithm. In each 

iteration of the algorithm, selection, crossover and mutation operations are performed to get a 

new generation. The process of producing new generation is repeated until some termination 

criterion is satisfied. The selection operation is used to choose some individuals from the 

current generation to perform crossover and mutation operations on them. The selection is 

made based on the quality of the individuals measured by their fitness value. Individuals 

with better fitness value are most likely to be selected. Popular selection schemes include 

‘roulette wheel’ and ‘tournament’ selection. The former selection method is used in our 

implementation of the GA. During the crossover operation, the genes of two individuals 

(parents) are combined to produce a new individual (child). On the other hand, one or more 

gene values in an individual (chromosome) are stochastically altered during the mutation 

operation to produce a new individual. 

3.3. The PSO  

The PSO was introduced by Kennedy and Eberhart in 1995 [44], and since then it gained 

great popularity and found many applications. All the information needed by the PSO 

algorithm is contained in the following vectors of each particle in the swarm: X (position),      

V (velocity), Pbest (personal best) and Gbest (global best). The velocity and position vectors 

are updated according to [44]: 

𝑉𝑡 = 𝑤 𝑉𝑡−1 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑡−1 − 𝑋𝑡−1) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑡−1 − 𝑋𝑡−1) 

𝑋𝑡 =  𝑋𝑡−1 + 𝑉𝑡 
       (9) 

where the subscript 𝑡 refers to the time index of the current iteration, r1 and r2 are uniformly 

distributed random numbers in the interval [0, 1]. The cognitive parameters 𝑐1 and 𝑐2 specify 

the relative weight of the personal best position versus the global best position. The parameter 

𝑤 is called the “inertial weight,” in the range (0, 1), and specifies the weight by which the 

particle’s current velocity depends on its previous velocity and how far the particle is from its 

personal best and global best positions. More details about the PSO algorithm, typical values 

of its parameters and sample applications can be found in [45-51]. 

3.4. The CS Algorithm   

Yang and Deb have developed the CS algorithm in 2009 based on the strange breeding 

behavior of some species of cuckoo birds [52]. The CS algorithm starts by placing the nest 

population randomly in the search space. Afterwards, the nest locations (potential solutions) 

are updated with time iterations t using [52]:  
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𝑋𝑡 = 𝑋𝑡−1 + 𝛼𝑆𝑡     (10) 

where 𝑆𝑡 is step size, 𝛼 >  0 is a scaling factor, and 𝑋𝑡 stands for the nest location (potential 

solution). In [52, 53], it is suggested that the search capability of the CS algorithm is enhanced 

if the step size 𝑆𝑡 is drawn from a L´evy distribution. For more details about the CS, typical 

values of its parameters and sample applications, the reader may consult the literature [52-58]. 

3.5. Algorithms Implementation and Parameters    

As previously mentioned, during the implementation of the algorithms, all algorithms are run 

to find the system coefficients (𝑏𝑖 , 𝑎𝑖 , 0 ≤ 𝑖 ≤ 𝑁) of an IIR system that result in the best 

minimum of the objective functions in Eqs. (4 - 6). The dimension of the optimization problem 

is the number of the system coefficients (𝑏𝑖, 𝑎𝑖, 0 ≤ 𝑖 ≤ 𝑁). Table 1 shows the representation 

of the optimization parameters (the coefficients of the DD system function) in the different 

algorithms during the implementation. All algorithms start with a randomly generated initial 

population of candidate solutions. At the initialization stage, each element of a candidate 

solution is randomly initialized in the interval [-10, 10]. For each candidate solution, the 

objective function is evaluated. Then a new population is produced using all/some of the 

individuals in the current population by applying the mutation and crossover operations for 

the DE and GA algorithms or the updated Eqs. (9) and (10) for the PSO and CS algorithms, 

respectively. The production process of new population continues till a termination criterion 

is reached. Here, the maximum number of iterations is adopted as the termination criterion. 

The main steps in our implementation of the algorithms are summarized as follows: 

Step1: The objective function is defined and a population of candidate solutions (randomly 

initialized) is produced. 

Step2: The objective function is evaluated for all candidate solutions in the current 

population. 

Step3: A new population is produced by applying some certain operations (such as 

mutation, crossover, etc.). 

Step 4: The termination criterion is checked and if it is not met, then go back to step 2. 
    

Table 1. Representation of the optimization parameters in the used algorithms. 

Algorithm DE GA PSO CS 

(𝑏𝑖, 𝑎𝑖 , 0 ≤ 𝑖 ≤ 𝑁) Individual Chromosome Position of a particle Nest 

 

Table 2 gives the control parameters of the utilized algorithms. These parameters are 

chosen based on our personal and other researchers’ experience in this field to achieve 

satisfactory solution and fast convergence for a wide range of engineering optimization 

problems [37-58]. Other values of these parameters (in their typical ranges) may be tried, but 

we found that the values listed in Table 2 are the best for our design problem. Then, the 

different algorithms were implemented using MATLABTM [59] on a personal computer with 

Intel (R) Core (TM) i7 CPU with 2.67 GHz and 4 GB of RAM. 
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Table 2. Implementation parameters of the used algorithms.  

Parameter 
Algorithm 

DE GA PSO CS 

Population size 71 71 71 71 

Maximum Iterations 500 500 500 500 

F, CR 0.47, 0.88 - - - 

Crossover, Crossover probability - 2 points, 1 - - 

Selection, Initial mutation probability   roulette wheel, 0.01 - - 

c1 and c2 - - 2 - 

Winitial, Wfinal - - 0.9, 0.4 - 

Abandon probability, pa - - - 0.25 

4. DESIGN EXAMPLES AND DISCUSSION 

In this section, we present design examples of third and fourth order IIR DDs using the 

DE, GA, PSO, and CS algorithms. To validate our results, we compared our results with 

published results in the literature using other techniques and algorithms. The comparison is 

mainly made based on the value of the objective function considered and the mean error 

value (in dB). Table 3 shows the comparison of the designed IIR DDs based on the squared 

AME (𝑂1) using the DE, GA, PSO, CS and HS algorithms [19]. The AMEs of the designed DDs 

based on 𝑂1 are shown in Figs. 1 and 2. The results clearly show that the designed DDs using 

the DE outperformed the designed DDs using other algorithms.  

 
Table 3. IIR DD design based on O1.  

Method Order Sum of Squared AME Mean [dB] 

DE  

 

3 

 

0.001 -58.616 

GA 1.553 -26.870 

PSO 0.592 -32.684 

CS 0.029 -46.499 

HS [19] 0.012 -49.855 

DE  

 

4 

0.001 -73.055 

GA 0.115 -39.998 

PSO 0.109 -40.629 

CS 0.024   -46.020 

HS [19] 0.017 -46.953 

 

 
Fig. 1. AME for third order IIR DD design based on O1 using different algorithms. 
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Fig. 2. AME for fourth order IIR DD design based on O1 using different algorithms. 

 

The optimization results of the designed IIR DDs based on AME (𝑂2) using the DE, GA, 

PSO, SA [20], GA [20], FP [20], GA [21] and BA [17] are given in Table 4. The AMEs of the 

designed DDs based on 𝑂2 are shown in Figs. 3 and 4. As can be seen from Figs. 3 and 4 and 

Table 4, the DDs designed using the DE based on 𝑂2 has much better performance compared 

with those designed using other algorithms.  
 

Table 4. IIR DD design based on O2.  

Method Order Sum of Squared AME Mean [dB] 

DE 

 

 

3 

 

0.438 -61.353 

GA 13.903 -31.322 

PSO 20.819 -27.815 

CS 2.790 -45.273 

SA [20] 2.336 -46.813 

GA [20] 2.962 -44.751 

FP [20] 0.856 -55.531 

DE 

 

 

4 

0.320 -64.083 

GA 11.607 -32.890 

PSO 3.276 -43.877 

CS 3.708 -42.801 

SA [20] 2.151 -47.532 

GA [20] 2.067 -47.876 

FP [20] 0.757 -56.594 

 

 
Fig. 3. AME for third order IIR DD design based on O2 using different algorithms. 
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Fig. 4. AME for fourth order IIR DD design based on O2 using different algorithms. 

 

Table 5 and Figs. 5 and 6 show the performance comparison of the designed DDs based 

on 𝑂3. Again, the designed DDs using the DE algorithm outperformed those obtained using 

other algorithms.  

 
Table 5. IIR DD design based on O3. 

Method Order Sum of Squared AME Mean [dB] 

DE  

 

3 

 

0.009 -44.391 

GA 0.085 -27.274 

PSO 0.040 -31.374 

CS 0.034 -35.422 

DE 
 

 

4 

0.004 -51.800 

GA 0.084 -27.479 

PSO 0.031 -33.922 

CS 0.027 -38.714 

 

As can be seen from Tables 3-5, the DE algorithm was able to find better solution in 

terms of the minimum value of the objective functions. 

 

 
Fig. 5. AME for third order IIR DD design based on O3 using different algorithms. 
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Fig. 6.  AME for fourth order IIR DD design based on O3 using different algorithms. 

 
The comparisons of the magnitude (using AME) and phase response for the designed 

DDs using the DE algorithm based on the three objective functions are shown in Figs. 7 to 12. 

It can be seen in Figs. 7 and 10 that the design of the IIR DD based on the AME (O2) achieved 

the most flat magnitude response as it has the lowest absolute error for most of the frequency 

band. On the other hand, as shown in Figs. 8 and 11, the phase response of the designed IIR 

DD based on the three objective functions (O1, O2 and O3) is close enough to linear for most 

of the frequency band with deviation from linearity especially at very low and high 

frequencies. This conclusion is more clearly supported by the group delay in Figs. 9 and 12. 

The coefficients of the designed DDs using the three objectives are listed in Tables 6-8. 

 

 
Fig. 7. AME for the best third order IIR DD design using DE based on O1, O2, O3 and O4. 

 

[ ]
 

Fig. 8. Phase response for the best third order IIR DD design using DE based on O1, O2, O3 and O4. 
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[ ]  
Fig. 9. Group delay for the best third order IIR DD design using DE based on O1, O2, O3 and O4. 

 

 
Fig. 10. AME for the best fourth order IIR DD design using DE based on O1, O2, O3 and O4. 
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Fig. 11. Phase response comparisons for the best fourth order IIR DD design using DE based on O1, O2, O3 and O4. 
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[ ]
 

Fig. 12. Group delay for the best fourth order IIR DD design using DE based on O1,O2,O3, and O4. 

 
Table 6. Coefficients for the IIR DD design based on O1. 

Method Order Denominator Numerator 

DE 
 

 

3 

 

-6.5920   -9.5895   -3.6616   -0.2613 -2.7194   -6.9855    2.0908    7.6142 

GA 7.1230    3.1999    0.4390    0.4662 1.9183   -9.4441    3.0    2.2939 

PSO -10.0   -5.4558   -0.0637   -0.1735 -1.0432    4.5391    9.1828  -10.0 

CS -8.6482   -5.8704    0.2980    0.2037 -10.0    4.9764    5.8816   -0.8374 

HS [19] 1.0054    1.2538    0.4122    0.0283 1.1644    0.0827   -0.9484   -0.2858 

DE 

 

 

4 

1.4090   2.7877   1.7597   0.3735   0.0156   0.3746   1.8408   0.5614  -1.8069   -0.9747 

GA 7.0373    2.9544    1.3918    3.0    0.5244  -3.1356    1.4110   -0.5568   -6.7613   7.6310 

PSO -8.1427   -0.8833   -2.6017   -2.5345   -0.1204  9.4885  -10.0    4.1079   -1.2531   -2.1865 

CS 7.1088   -0.3195   -3.5724    0.4168    0.1597  -5.4265    2.4254    9.6084   -7.9326   1.4403 

HS [19] 1.0383  1.7181   1.0077    0.2480    0.0157  1.1821    0.5283   -0.9171   -0.7236   -0.1644 

 
 

Table 7. Coefficients for the IIR DD design based on O2. 

Method Order Denominator Numerator 

DE  

 

3 

 

-7.4293   -9.7653   -3.2771  -0.1969 2.3158    7.4309   -1.1590   -8.5833 

GA -8.1404   -0.4746   -2.5429   -0.7214 9.8612  -10.0000    4.6163   -3.0000 

PSO -10.0000   -4.8056   -8.3137   -1.7452 9.6163   -4.4445    9.7643  -10.0000 

CS 8.6796    6.1637    0.4941   -0.0257 5.6197    4.8268   -9.8274    0.1924 

SA [20] 1.0000    0.8662    0.1612    0.0028 1.1555   -0.3582   -0.7140   -0.0833 

GA [20] 1.0000    0.7981    0.0884         0 1.1533   -0.4432   -0.7060   -0.0041 

FP [20] 1.0000    1.2488    0.4076    0.0256 1.1548    0.0798   -0.9499   -0.2847 

DE  

 

4 

7.7822    9.7575    2.6120   -0.1804  -0.0360 -2.7590  -7.5992   2.5367   8.8090  -0.9923 

GA -8.8850   -4.9759    1.5771   -1.7181  -0.6224 -7.6728   5.7239   8.5119  -6.2148  2.5804 

PSO 10.0000    5.2443    4.4444    2.5841   0.1781 4.7455   6.2915  -10.0000   3.7102  -5.1511 

CS -8.8459   -6.0297   -7.5960  -4.6612  -0.4317 -9.9953   5.3908  -2.7669   4.4455   3.9716 

SA [20] 1.0000    1.3788    0.6230    0.1059    0.0059 1.1540   0.2290  -0.8794  -0.4486  -0.0549 

GA [20] 1.0000    0.9054    0.1713    0.0066      0 1.1553  -0.3170  -0.7560  -0.0817  -0.0006 

FP [20] 1.0000    1.7315    1.0150    0.2208    0.0109 1.1554   0.6388  -0.9050  -0.7518  -0.1374 

BA [17] 0.4173      0.7473    0.4200    0.0773  0.0027   0.0431  0.3190   0.4154  -0.2951  -0.4823 
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Table 8. Coefficients for the IIR DD design based on O3. 

Method Order Denominator Numerator 

DE  

 

3 

 

7.8107    9.8474    2.7057    0.0254 1.8356    8.0818   -0.7967   -9.0552 

GA 9.6950    6.9309    2.0549    0.6575 10.0000   -6.5521   -4.3850   -0.7140 

PSO 10.0000    8.4115    1.8786    0.2389 -1.7667  -10.0    7.1752    5.4159 

CS 8.4475    6.2267   -0.5158   -0.2464 1.9830  -10.0    1.2914    7.1816 

DE 
 

 

4 

7.3345   6.9194  -3.1142  -3.3986  -0.3668  -5.9456   5.7087  9.6987  -5.1754   -4.2616 

GA -7.9787  -1.5789   0.1850  -0.6104  -0.0724   0.1875  -8.4454   9.8330   0.1748   -0.8967 

PSO -10.0   -9.3626   -6.5103   -6.6038   -1.2208  -7.1854  2.3189   -5.7443   -0.0587    9.6171 

CS 8.9065    6.0931   -0.0267    1.0188    0.3171    1.1347   -2.0584    5.7673    5.4710  -10.0 

 

During our investigation of the three different objective functions, we have noticed that 

the magnitude response (in certain frequency band) of the designed DD based on a given 

objective function is better than that of the other two objective functions while the phase 

response is worse and vice versa. Therefore, based on this finding, we propose a new 

objective function which is a weighted sum of the three objective functions (which represents 

a compromise between the two contradictory objectives) in an attempt to improve both the 

magnitude and phase response of the designed DD. The new proposed objective function is: 

𝑂4 = ∑ 𝑊𝑖𝑂𝑖

3

𝑖=1

             (11) 

where Wi ’s are weighting factors that are chosen through different trial runs. We have 

empirically studied the effect of the weights on the frequency response by considering many 

different combinations in the range of 1 to 10. Based on the used objective function in Eq. (11), 

our empirical study showed that using the weights W1 = 3, W2 = 1 and W3 = 3 gives the best 

effect on the phase linearity improvement.  

The AME of the designed IIR DDs using objective function O4 are given in Figs. 7 and 10 

which show that the designs based on O4 have better, or at least comparable, performance 

compared with designs based on the objective functions O1, O2, and O3, but the use of O4 

greatly improved the phase response of the designed IIR DDs. 

The improvement of phase linearity of the designed IIR DD using objective function O4 

is demonstrated in Figs. 8, 9, 11, and 12 where it is very clear that the phase (Figs. 8 and 11) is 

almost linear (constant group delay in Figs. 9 and 12) for the entire frequency band except for 

very small deviation at very high frequencies. The deviation from linearity at very low 

frequencies is much improved and moderated at high frequencies for all of the IIR DDs 

designs as compared with IIR DDs designs based on the objective functions O1, O2, and O3,  

separately. Quantitative measure of the phase linearity using the mean group delay of the 

designed DDs is given in Table 9. It shows that the DDs designed based on O4 have the lowest 

mean group delay.    

The designed IIR DDs using the DE algorithm - which has the best performance among 

all methods based on O4 - is given in Table 9, where we see that the mean AME of the 

designed IIR DDs based on O4 is less than those of the designed IIR DDs based on O1 and O3. 

But the designed IIR DDs based on O4 has slightly higher maximum AME as compared to 

the designed IIR DDs based on O1 and O3. Table 9 also shows the mean of the group delay 

for the designed DDs based on the four objective functions. DDs designed based on O4 have 
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the lowest mean of the group delay. Therefore, the use of O4 improved the linearity of the 

phase response for the designed IIR DDs and did not significantly degrade its magnitude 

response. Table 10 contains the coefficients of the designed IIR DDs based on O4.  

 
Table 9. IIR DD best design using DE based on the used objective functions O1, O2, O3 and O4. 

Method Order 
Max of 

AME 

Sum of 

AME 

Sum of 

Squared AME 

Max of 

AME  [dB] 

Mean of 

AME [dB] 

Mean of 

group delay 

𝑂1  

 

3 

 

0.015 0.600 0.001 -36.364 -58.616 2.49 

𝑂2 0.032 0.438 0.003 -29.710 -61.353 2.48 

𝑂3 0.009 3.088 0.023 -40.267 -44.391 2.52 

𝑂4 0.020 0.471 0.002 -33.784 -60.707 0.49 

𝑂1 
 

 

4 

0.007 0.113 0.001 -42.562 -73.055 1.52 

𝑂2 0.032 0.320 0.003 -29.898 -64.083 2.48 

𝑂3 0.004 1.315 0.004 -47.641 -51.800 1.44 

𝑂4 0.010 0.095 0.001 -39.816 -74.619 0.49 

 
Table 10. Coefficients for the IIR DD design based on O4 using DE. 

Order Denominator Numerator 

3 -6.8852   -9.3649   -3.2685   -0.2055                            7.9557    1.4375   -7.0471   -2.3461 

4 -4.7651   -9.5208   -6.1220   -1.3460  -0.0606      -5.5069  -4.5101    4.5565    4.6365    0.8240 

 

To show the robustness of the used search algorithms, the designs reported in this 

work are achieved by running each algorithm hundred independent runs and then report 

the best frequent design. For example, in Table 11 we show statistics for hundred 

independent runs of the DE algorithm for selected designs. We see that the DE algorithm 

reached similar designs in terms of the best value of the used objective function as evident 

from the small value of the standard deviation for the hundred runs. Of course reaching the 

same value of the objective function does not necessarily mean the same coefficient values. 

However, it shows the ability of the DE algorithm to find good solutions with different 

independent runs. Finally, the ability of the best designed DD using the DE algorithm to 

determine the derivative of input signal is tested on two synthetic signals.  

 
Table 11. Statistics for 100 independent runs of the DE algorithm based on O2. 

Absolute Magnitude Error (AME) 

Order Mean Max Min Reported Standard Deviation 

3 0.439 0.453 0.437 0.438 0.005 

4 0.206 0.348 0.094 0.320 0.101 

 

The response of the designed DD to two sample synthetic signals is shown in Fig. 13 

where we clearly see that the designed DD has successfully produced the derivative of the 

input signals with negligible error. 
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(a) 

 

 
(b) 

Fig. 13. Response of the fourth order IIR DD to selected synthetic signals designed using the DE based on O4. 

5. CONCLUSIONS 

In this paper, we presented a thorough investigation of the design of optimum IIR full-

band DD based on three different objective functions and using some of the well-known 

evolutionary and swarm intelligence algorithms. For this purpose, we used the DE, PSO, GA 

and CS as search algorithms. For the numerical examples studied in this paper, the achieved 

DD performance in most cases is better than that achieved using other reported in literature 

methods. It was also found that using the DE algorithm to minimize the absolute error and 

the squared error gave the most flat magnitude response and almost the lowest mean error 

of the designed DDs, respectively. Furthermore, the linearity of phase response of IIR DD is 

greatly improved by using a newly-proposed objective function that is a weighted sum of the 

three studied objective functions. The robustness of the used algorithms is also verified 

through a hundred independent runs for some design examples. 
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