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Abstract—Tamper detection and recovery have been successfully modeled as a source-channel coding problem 
for an erasure channel. Set partitioning in hierarchical trees (SPIHT) and Reed Solomon (RS) codes have been 
proven very effective for source and channel coding. This paper presents an optimized tamper detection and 
recovery method that provides high recovery quality, high tolerable tampering ratio (TTR) and optimized speed. 
The proposed method compresses each block of the image separately - instead of compressing the whole image - 
which eliminates the need to store the SPIHT stream in the watermark, and provides a larger space for RS parity 
information. The proposed method also optimizes the speed of RS encoder and decoder by minimizing the code 
symbol size. The RS code message is composed by taking one symbol at a time from each block, which leads to 
reducing the encoding time dramatically. The obtained experimental results show a competing recovery quality 
of the proposed method while having high TTR. 
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1. INTRODUCTION 

With the advance of digital image editing applications, image tampering becomes easier 

than ever. For images that have sensitive information, as in forensics and medical 

applications, tampering is very tempting and some measures are necessary to detect, and 

possibly recover, any tampering. Many methods have been proposed for image 

authentication [1, 2]. Some of these methods rely on finding a signature for the image, which 

is stored separately from the image itself. Signature-based methods are incapable of detecting 

the exact location of tampering or recovering it. Watermarking has been proven as an 

excellent solution for tamper detection and recovery problem [3–5]. The watermark is 

embedded inside the image itself, which means it will not be lost due to transmission 

problems or due to change in the image format. 

In general, image watermarking for tamper detection and recovery starts by 

partitioning the image into non-overlapping blocks, then reference information is generated 

by compressing each block, which minimizes the required space for reference information. A 

hash is generated for each block to detect any tampering. In fragile watermarking, the 

watermark is stored in the least significant bits (LSBs) of the image. The reference information 

is used to recover the tampered blocks. To minimize tamper coincidence problem - where the 

block and its related reference information are both lost due to tampering - the reference 
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information is usually stored in a block that has maximum-distance from the one to which the 

reference information corresponds. Also, multiple copies of the reference information could 

be stored in the watermark to increase the probability of recovery. Maximum-distance 

approach might help when the tampering occurs in an isolated area; however, it makes the 

recovery sensitive to the tampering pattern, even if the tampered area is small. Having 

multiple copies of reference information increases the watermark-wasting problem. One 

solution for tamper coincidence problem is to perform channel-coding for reference 

information and store the generated parity bits instead of the reference bits [6–8]. The main 

advantage of using channel-coding is the efficient use of the available watermark space while 

maintaining a tolerable tampering ratio (TTR) independent of the tampering pattern. 

Sarreshtedari and Akhaee proposed an efficient method that relies on source-coding the 

whole image using set partitioning in hierarchical trees (SPIHT) algorithm and using Reed 

Solomon (RS) code for channel coding [8]. Source-coding the whole image gave their method 

the advantage of having high quality recovery using smaller bit per pixel (bpp), especially 

because the image is source-encoded before deleting its LSBs. However, the SPIHT stream 

needs to be stored in the watermark, which limits the space available for parity information 

and results in limited TTR. Sarreshtedari’s method has another disadvantage of using large 

symbol size for RS code, which results in increasing coding/decoding time. This paper 

presents an optimized tamper detection and recovery method that tries to solve the problems 

with Sarreshtedari’s method and provides high recovery quality with high TTR. 

One important aspect of any tamper detection and recovery method is the block size 

into which the image is partitioned. Using larger blocks has more advantages over using 

smaller ones. One of them is having better recovery quality, because a larger block usually has 

more redundancy, which is approximated more effectively. To illustrate this, a 512×512 

grayscale version of the famous Lena image [9] is partitioned into blocks with the sizes shown 

in Table 1. Each block is compressed using SPIHT algorithm [10] with 1 bpp (17 ×17 is the 

minimum permissible block size by the used SPIHT algorithm [11]). Table 1 shows the peak 

signal to noise ratio (PSNR) between the compressed and the original Lena images. It also 

exhibits how increasing the block size increases the compressed image quality for the same 

bpp. It is also noticeable that the compression quality decreases dramatically as the block size 

decreases, and; therefore, block sizes like 4×4, 2×2, or even 1×1, (as when halftoning is used 

[12, 13]) result in a highly degraded image quality. 

 
Table 1. PSNR for Lena image when partitioned into blocks and each block is compressed using  

SPIHT algorithm with 1 bpp. 

Block size [Pixels] 17×17 32×32 64×64 128×128 256×256 512×512 

PSNR [dB] 28.49 35.73 37.20 38.38 39.17 39.83 

 

Another advantage of using larger blocks is reducing the probability of false-negative, 

i.e., tampered blocks that are falsely identified as untampered ones. A percentage of the 

watermark is assigned as a hash for tamper detection, and as the block size increases, the 
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watermark size increases, which provides more bits for the hash. Notice that 𝑃𝑓 = 2−𝑛𝐻 , 

where 𝑃𝑓 is the probability of false-negative and 𝑛𝐻 is the number of bits in the hash. 

The main disadvantage of using a larger block size is that more untampered pixels are 

included in the tampered blocks, which makes the detection coarser. However, with the 

advance of digital cameras, image size grows rapidly and therefore a larger block size is not a 

problem for images with large sizes. When each block of the encoded image is secured 

independently - using the same secret key - makes the encoded image vulnerable to collage 

attack [14], where blocks from an image are used to tamper with other blocks in the same 

image or a different one that is secured with same secret key. The solution for collage attack is 

to make each block secured using a unique secret key, which can be achieved by combining 

the main secret key with the block raster order and a unique serial number for each image. In 

the proposed method, the solution for tamper detection and recovery problem is optimized 

by taking the following points into account: 

 Using a large block size: this improves the recovery quality and reduces the false-

negative probability, as mentioned before. Another advantage of using larger blocks is 

reducing their total number, which reduces the symbol size for RS code (as explained in 

section 3.1), and that reduces the time required for encoding and decoding [15]. 

 Using SPIHT algorithm for source-coding the image blocks: SPIHT compression 

algorithm has many advantages besides providing a high compression ratio. One of 

them is progressive encoding, which gives the ability to truncate the compressed stream 

at any point and still be able to decode the image but with a lower quality. This fits 

tamper recovery problem as the space available for the watermark might vary 

depending on the assigned LSBs for the watermark and the number of bits in the hash. 

 Using RS coding: this has an advantage over other erasure channel codes (such as 

fountain codes [7, 16]) of being optimal when it comes to guaranteed TTR, and this 

makes it fit the tamper recovery problem where the available space is limited. 

 Optimizing RS coder speed: the coding complexity of RS code increases in an 

exponential manner as the symbol size increases [17, 18]; and therefore, dividing the 

message information into smaller pieces will reduce the coding time dramatically. In the 

proposed method, the encoded message is composed by taking one symbol from each 

block; this will optimize symbol size and reduce the coding time dramatically while 

maintaining the same TTR. More details are presented in section 3. 

 Enhancing the security measures: to make the proposed method robust against attacks, 

especially collage attack, the bits of the watermark are XORed and permuted using a 

unique secret key for each block. The uniqueness of the secret key is guaranteed by 

combining the original key with the raster order of the block and a unique serial 

number for each image. 

2. RELATED WORK 

Korus and Dziech [7] modeled tamper detection and recovery as an erasure 

communication channel. In their method, the image is divided into non-overlapping 8×8 

blocks, and three LSBs in each block are assigned for the watermark. Five most significant 

bits (MSBs) in each block are compressed by quantizing their discrete cosine transform 

(DCT) coefficients into 𝐾 bits. The DCT information is then channel-encoded using random 
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linear fountain (RLF) codes to produce 𝑁 =  160 bits code, which in addition to 32 bits 

message digest (MD5) hash makes the watermark. The ratio 𝜆 = 𝐾/𝑁 is called the code rate, 

and it controls the recovery quality and the TTR. Two code rates were used; the first one is  

𝜆 = 1, which produces a lower recovery quality with a higher TTR of 50%. The second is   

𝜆 = 2, which provides a higher recovery quality with a lower TTR of 33%. Korus’s method 

recovery quality is limited because of using a small block size. 

Sarreshtedari and Akhaee [8] proposed a method where the whole original image is 

source-coded, i.e., compressed using SPIHT algorithm with a rate of 1 bpp. The source-coded 

version of the image is then channel-coded using RS code. The original image is divided into 

non-overlapping 8×8 blocks, and 2 or 3 LSBs are assigned for the watermark, which consists 

of a portion of the RS codeword along with 32 bits MD5 hash. The TTR is 33% and 60% when 

2 and 3 LSBs are used for the watermark, respectively. In the decoding stage, the tampered 

blocks are detected using the hash bits, then the input of the RS decoder is collected from all 

untampered blocks. The SPIHT decoder information is recovered and passed to the SPIHT 

decoder to get the original image, which is used to recover the tampered blocks. Since the 

whole image is compressed using SPIHT algorithm and even before deleting its LSBs; this 

provides better recovery quality. However, not only the added parity information has to be 

stored in the watermark, but also the SPIHT stream. This could be avoided if the blocks of 

the image are source-coded individually instead of compressing the whole image. 

Sarreshtedari’s method also suffers from security vulnerabilities [19], such as the inability to 

detect malicious changes applied to the RS code bits in the watermark, as the hash is 

generated only for the MSBs of the image block. 

In [18], Sarreshtedari et al. proposed an enhancement of the previously proposed 

method in [8]. The enhancement is based on joint source–channel coding (JSCC) by 

providing unequal error protection for the bit planes of the encoded SPIHT stream using 

dynamic programming optimization approach. The method in [18] is further improved by 

Gu et al. [20] by utilizing quadtree decomposition in the bit-planes of SPIHT stream. The 

proposed methods in [18] and [20] provide higher TTR with a decent recovery quality at 

lower tampering ratio. However, the proposed methods require sending the optimization 

parameters along with the encoded image, which increases the complexity of exchanging the 

encoded images. Additionally, the recovery quality at higher tampering ratios depends on 

the expected tampering ratio and can have values lower than the ones provided by the 

proposed method in this paper. 

In [19], Fan and Wang highlighted some security issues of Sarreshtedari’s method [8], 

such as the inability to detect tampering that affects only the RS code in the watermark 

because the hash is generated only for MSBs of the image blocks. Fan and Wang also 

proposed a fragile tamper detection and recovery method. In their method, SPIHT coding 

(with 0.75 bpp) is applied on the image blocks instead of the whole image, and for channel-

coding, they used repeated coding instead of RS code. The use of repeated coding instead of 

RS coding increases the watermark-wasting problem and makes their method sensitive to 

tampering pattern. 

Sarreshtedari et al. proposed a method for tamper detection and recovery in JPEG 

image format [21]. The proposed method tolerates JPEG recompression and noise attacks, 

whilst fragile watermarking is vulnerable against these types of attacks. In their method, 
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Sarreshtedari et al. modeled the tampering detection and recovery as a source-channel 

coding problem. SPIHT is used for source coding, and low-density parity check (LDPC) is 

used for channel coding. Hash bits are not used, and instead, a direct comparison between 

the recovered and the tampered images is used for tamper localization. Successful recovery 

requires that the tampering is within the correcting capability of the LDPC code; otherwise, 

the recovered image will be a random pattern. After quantization, the channel-coded 

information is embedded in the DCT domain. The tampering rate must not exceed the 

correction threshold of the LDPC code, which is 8.6%. 

3. DESCRIPTION OF THE PROPOSED METHOD 

The encoding and decoding stages of the proposed method are described in this section, 

and they are illustrated in Figs. 1 and 2, respectively. An example input image is used for 

illustration, the image size is 512×512 pixels, the block size is 32×32 pixels, and 2 LSBs are 

used to store the watermark. 

 
Fig. 1. Block diagram for the encoding stage of the proposed method. 

 

 
Fig. 2. Block diagram for the decoding stage of the proposed method. 
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3.1. The Encoding Stage 

The encoding stage starts with the original grayscale image 𝐼𝑂 that has a size of 𝑑𝑋 × 𝑑𝑌 

pixels, where 𝑑𝑋 and 𝑑𝑌 are its width and height, respectively. For 𝐼𝑂, the LSBs assigned to the 

watermark are cleared by storing zeros in them. The resulting image 𝐼𝐶 is then divided into 

non overlapping blocks 𝐵𝑖𝑗, where 𝑖 and 𝑗 are the vertical and the horizontal indices of each 

block. The raster order is indicated by 𝑚 as in 𝐵𝑚 for block number 𝑚. The size of each block 

is 𝑑𝐵 × 𝑑𝐵 pixels (e.g., 32×32 pixels), 𝑑𝑋 and 𝑑𝑌 are supposed to be multiples of 𝑑𝐵. The total 

number of blocks in the image is 𝑁𝐵 =
𝑑𝑋

𝑑𝐵
×

𝑑𝑌

𝑑𝐵
. The watermark 𝑊𝑚 stored in each block has a 

total number of bits 𝑛𝑊 = 𝑑𝐵 × 𝑑𝐵 × 𝑛𝐿, where 𝑛𝐿  is the number of LSBs assigned for the 

watermark (e.g., 2 bits). For the example image, 𝑛𝑊 = 32 × 32 × 2 = 2048 bits. 

The next step is to assign a number of bits for the parity of the RS code in each block   

(denoted by 𝑛𝑅), and leave the rest of the bits in the watermark for the hash (denoted by 𝑛𝐻.) 

The RS parity bits 𝑛𝑅 are supposed to be multiple of (𝑅 − 1) × 𝑛𝑆, where 𝑛𝑆 is the symbol size 

for RS code in bits and 𝑅 is the reciprocal of the RS code-rate, or: 

𝑅 =  
𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ + 𝑃𝑎𝑟𝑖𝑡𝑦 𝐿𝑒𝑛𝑔𝑡ℎ

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
               (1) 

𝑅 determines the TTR for the method (as will be illustrated in the following paragraphs). The 

possible values for 𝑛𝐻 are given by: 

𝑛𝐻 = 𝑚𝑜𝑑(𝑛𝑊, (𝑅 − 1) × 𝑛𝑆) +  ℎ × (𝑅 − 1) × 𝑛𝑆                    (2) 

where ℎ =  0, 1, 2, 3, …, and 𝑚𝑜𝑑  is the modulo operation. For the example image, if 𝑅  is 

selected to be 3 and 𝑛𝑆  is 10 bits, then the possible values for 𝑛𝐻  are 𝑚𝑜𝑑(2048, (3 − 1) ×

10) + ℎ × (3 − 1) × 10 = 8, 28, 48, 68, …, 𝑛𝐻 is selected to be 28 bits. 

The codeword length for RS code is 𝑁𝑀  + 𝑁𝑅, where 𝑁𝑀 symbols are assigned for the 

message and 𝑁𝑅 symbols are assigned for the parity. The message symbols are equal to the 

number of blocks, and the parity symbols are equal to the message symbols times (𝑅 − 1), or: 

𝑛𝑅 = (𝑅 − 1) × 𝑁𝑀 

     = (𝑅 − 1) × 𝑁𝐵 
                   (3)           

The symbol size 𝑛𝑆 for RS code is calculated as: 

𝑛𝑆 = 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑅 × 𝑛𝐵)) + 1                    (4) 

For the example image, NB =
512

32
×

512

32
= 2  and if R =  3  then nS = floor(log2(3 ×

256)) + 1 = 10 bits. Using 10 bits for RS code symbol will result in a codeword length of 

2nS − 1 or 1023 symbol. Since the available number of parity symbols (in this example 1023 −

256 =  767) is larger than the needed number (in this example 512), puncturing is used to get 

rid of the extra unneeded parity symbols. The number of punctures is: 

𝑁𝐶 = 2𝑛𝑆 − 𝑅 × 𝑁𝐵 − 1                    (5) 

For the example image, 𝑁𝐶 = 210 − 3 × 256 − 1 = 255.  

The number of erased symbols 𝑁𝐸  plus the number of punctures 𝑁𝐶  must not exceed the 

correcting capability of RS code, which equals 2𝑡, where: 

𝑡 = 𝑓𝑙𝑜𝑜𝑟((2𝑛𝑆 − 𝑁𝑀 − 1)/2) 

   = 𝑓𝑙𝑜𝑜𝑟((2𝑛𝑆 − 𝑁𝐵 − 1)/2) 
                   (6)          
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Therefore: 

𝑁𝐸 +  𝑁𝐶 = 2 𝑓𝑙𝑜𝑜𝑟 ((2𝑛𝑆 − 𝑁𝐵 − 1)/2)                    (7) 

or 

𝑁𝐸 = 2 𝑓𝑙𝑜𝑜𝑟 ((2𝑛𝑆 − 𝑁𝐵 − 1)/2) − 𝑁𝐶 

      = 2 𝑓𝑙𝑜𝑜𝑟 ((2𝑛𝑆 − 𝑁𝐵 − 1)/2) − 2𝑛𝑆 − 𝑅 × 𝑁𝐵 − 1 

                    

                   (8) 

Since 2𝑛𝑆 is an even number, then: 

𝑁𝐸 = 2 𝑓𝑙𝑜𝑜𝑟 ((−𝑁𝐵 − 1)/2) + 𝑅 × 𝑁𝐵 + 1                    (9) 

If 𝑁𝐵 is an odd number, then: 

2 𝑓𝑙𝑜𝑜𝑟 ((−𝑁𝐵 − 1)/2) = −𝑁𝐵 − 1                  (10) 

or 

𝑁𝐸 =  −𝑁𝐵 − 1 + 𝑅 × 𝑁𝐵 + 1 

       = (𝑅 − 1) × 𝑁𝐵               
                 (11) 

If 𝑁𝐵 is an even number, then: 

2 𝑓𝑙𝑜𝑜𝑟 ((−𝑁𝐵 − 1)/2) = −𝑁𝐵 − 2                  (12) 

or 

𝑁𝐸 =  −𝑁𝐵 − 2 + 𝑅 × 𝑁𝐵 + 1 

       = (𝑅 − 1) × 𝑁𝐵  − 1      
                 (13) 

Each tampered block will result in 𝑅 erased symbols (the message symbol generated 

from the block and the parity symbols stored in the block), or 𝑁𝐸  =  𝑅 × 𝑁𝑇 where 𝑁𝑇 is the 

number of tampered blocks. Since 𝑁𝑇 is an integer, then: 

𝑁𝑇 =  𝑓𝑙𝑜𝑜𝑟 (
(𝑅 − 1) × 𝑁𝐵 − (1 − 𝑚𝑜𝑑(𝑁𝐵 , 2))

𝑅
)                  (14) 

For large  𝑁𝐵, 𝑁𝑇 ≈
𝑅−1

𝑅
 𝑁𝐵, or: 

𝑇𝑇𝑅 ≈
𝑅 − 1

𝑅
                  (15) 

 𝑇𝑇𝑅 =  50%, 66.6%, 75%, 𝑎𝑛𝑑 80% for 𝑅 =  2, 3, 4, 𝑎𝑛𝑑 5. 

After dividing the image 𝐼𝐶  into blocks, each block is compressed using SPIHT 

algorithm. The number of bits assigned for the compressed stream is  𝑛𝑀  =  𝑛𝑅/(𝑅 −  1). For 

the example image, the number of bits assigned for the SPIHT stream in each block is 

𝑛𝑅/(𝑅 − 1)  =  (𝑛𝑊 −  𝑛𝐻)/(𝑅 − 1) =  (2048 − 28)/(3 − 1) = 1010 bits, which results in a rate 

of 0.986 bpp. Let 𝑆𝑃𝑚 represents the SPIHT stream for the block 𝐵𝑚. After compressing all of 

the blocks, the input message for the RS encoder is composed by taking one symbol from each 

𝑆𝑃𝑚 stream, and it is then encoded. The RS encoding process continues for the remaining 

symbols in 𝑆𝑃𝑚. The parity symbols resulting from the RS encoding process are appended to 

form 𝑃𝑅, which is the parity information that will be stored in the watermark 𝑊𝑚. The length 

of 𝑃𝑅 is (𝑅 − 1) × 𝑁𝐵; therefore, the parity to be stored in 𝑊𝑚 is the rows in 𝑃𝑅 at positions     

𝑚, 𝑚 + 𝑁𝐵, ... , 𝑚 + (𝑅 − 1) × 𝑁𝐵. The remaining hash bits 𝑛𝐻 are calculated in the next step. 

The hash bits are found for the concatenation of the MSBs of each block along with the 

parity symbols. MD5 hash is selected with the output as binary numbers instead of printable 

characters to fully utilize the available hash bits. The probability of false-negative equals to 

2−𝑛𝐻. The number of bits in the MD5 hash is larger than 𝑛𝐻; therefore, only the leftmost 𝑛𝐻 
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bits are taken from the MD5 hash. The parity bits and hash bits are then appended to produce 

the watermark, which is secured in the next step. 

Two steps are taken to secure the watermark; the first one is XORing the watermark 

with a random sequence, and the second one is randomly permuting the bits of the 

watermark. The permutation of the watermark bits is necessary to prevent the random XOR 

sequence from being known by any intruder, which could be done by independently 

generating the watermark bits and XORing them with the stored one. The randomization 

seed for the permutation and the random sequence generation is determined using a 

combination of a secret key 𝑘, the raster order of the block and a unique serial number for the 

image. In this way, each block is secured with a unique number and cannot be used to tamper 

with another block using collage attack. The watermark is then embedded in the designated 

LSBs of each block, and the encoded image 𝐼𝐸 is now ready. 

3.2. The Decoding Stage 

The decoding starts with the image 𝐼𝑇 , which is an encoded image that possibly has 

been tampered with. The watermark stored in each block is extracted and inversely 

permuted, then it is XORed with the same random sequence that has been used in the 

encoding stage. The randomization seed for permutation and random sequence generation is 

determined as in the encoding stage. 

For each block, an MD5 hash is generated for the MSBs and the stored parity symbols, 

then the leftmost 𝑛𝐻 bits of the generated hash are compared with the stored hash bits. If they 

are different, then the block is marked as tampered. If the number of tampered blocks exceeds 

the recovery capability, then the tampered blocks cannot be recovered; otherwise, they are 

fully recoverable. The positions of the erasures in the message and in the parity symbols are 

determined using an erasure vector 𝑉𝐸, which is generated by knowing the position of the 

tampered blocks. The length of 𝑉𝐸 is 𝑅 × 𝑁𝐵, and each tampered block with a raster order 𝑚 

will indicate an erasure in 𝑉𝐸 at positions 𝑚, 𝑚 + 𝑁𝐵, ... , 𝑚 + 𝑅 × 𝑁𝐵. 

The parity information 𝑃𝑅 is stored separately, then the LSBs in which the watermark 

was stored are cleared by storing zeros in them. Each untampered block is compressed using 

SPIHT algorithm, and zeros are stored instead of the SPIHT data for the tampered blocks. Let 

𝑆𝑃 denotes the SPIHT compressed data for the image blocks. The number of bits in each row 

of 𝑆𝑃 is 𝑛𝑀. 𝑃𝑅 and 𝑆𝑃 are concatenated to form the RS code stream 𝑅𝐶, which has 𝑅 × 𝑁𝐵 

rows and each row has 𝑛𝑀 bits. 

The next step is to correct the erased rows in 𝑅𝐶 by dividing each row into symbols, 

where each symbol has 𝑛𝑆 bits. One symbol is taken from each row of 𝑅𝐶 to form an RS code 

vector 𝑉𝑅 that has 𝑅 × 𝑁𝐵 symbols with each symbol has 𝑛𝑆 bits. The code vector 𝑉𝑅 and the 

erasure vector 𝑉𝐸 are fed into the RS decoder, and the output is the corrected version of 𝑉𝑅. 

The decoding process is repeated for the remaining symbols of 𝑅𝐶 until all of its rows are 

corrected. The first 𝑁𝐵  rows of 𝑅𝐶  represent the corrected 𝑆𝑃 stream that has the SPIHT 

encoded data for the image. The tampered blocks are recovered by decoding the 

corresponding rows in the corrected 𝑆𝑃 using the SPIHT algorithm. The result of this step is 

the recovered image 𝐼𝑅. 
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The LSBs in 𝐼𝑅, in which the watermark was stored, are adjusted by storing 1 in the left 

most (i.e., most significant) LSB and zeros in the remaining bits. By doing this, the PSNR of 

the recovered image is enhanced [6]. The output of this step is the final decoded image 𝐼𝐷. 

4. RESULTS AND DISCUSSION 

To get a statistical overview about the effect of choosing different number of LSBs, block 

size, and code-rate (represented by its reciprocal 𝑅), the proposed method is applied to 1000 

random images chosen from BOWS-2 data-set [22]. The tampering ratio is increased from 0 

(i.e., no tampering) to the TTR applicable for the chosen R, then the average value of the 

PSNR for the 1000 images is plotted against the tampering ratio. The average PSNR is plotted 

for a block size of 32×32 and 64×64 pixels. The average PSNR is shown in Fig. 3 for 𝑅 = 2, 3, 4, 

and 5, respectively. 
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Fig. 3. Average PSNR for 1000 random images - chosen from BOWS-2 data-set - for code-rate reciprocal 

𝑅 values of: a) 2; b) 3; c) 4; d) 5. 

 

In Fig. 4, the proposed method is compared with two related methods, nalemy               

i) Sarreshtedari and Akhaee method [8] and ii) Korus and Dziech method [7]. The average 

PSNR is calculated for 1000 random images from BOWS-2 data-set and plotted against 
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tampering ratio up to the TTR. In both methods and the proposed in this paper method, the 

tampered blocks are replaced by the recovered ones, then the LSBs used to store the 

watermark are set to zeros and the most significant LSB is then set to 1 to enhance the PSNR 

of the recovered image; this has been done in [6–8]. 

The average PSNR decreases as the TTR increases because the recovered blocks - due to 

compression - have lower quality compared to the original. Increasing the block size will 

increase the image quality because larger blocks has better compression quality compared to 

small ones, as seen before with Lena image in Table 1. Increasing the number of LSBs for the 

watermark increases the recovered image quality because more space is provided for the 

compressed reference data in the watermark. 

In Korus’s method, for 𝜆 = 1 and 𝜆 = 2 the achieved TTR is 50% and 33%, respectively. 

For Sarreshtedari’s method, 2 and 3 LSBs are used, with a TTR of 33% and 60%, respectively. 

Only the case of 2 LSBs is chosen for the proposed method as a good compromise between the 

tampered and the original image quality. Figs. 4(a) and (b) show the PSNR values for blocks 

sizes 32×32 and 64×64, respectively. A block size of 64×64 might seems very coarse for an 

image with size of 512×512; however, this block size or even a larger one is quite acceptable 

for current time photography size that reaches tens of megapixels. The effect of increasing the 

block size on enhancing the PSNR value is apparent by comparing Figs. 4(a) and (b). 

By looking at Fig. 4, the proposed technique shows superior quality and higher 

recovery ratio when compared to Sarreshtedari’s and Korus’s methods, especially in the case 

of 64×64, and it can be seen that it reaches higher TTR (up to 80%) with a good recovery 

quality, given that the quality can be further improved by choosing even a larger block size. 

 

0 10 20 30 40 50 60 70 80 90
30

32

34

36

38

40

42

44

46

48

50

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 fo

r 
th

e 
re

co
ve

re
d 

im
ag

es
 [d

B
]

 
0 10 20 30 40 50 60 70 80 90

30

32

34

36

38

40

42

44

46

48

50

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 fo

r 
th

e 
re

co
ve

re
d 

im
ag

es
 [d

B
]

 

Proposed Method (2 LSBs, Block size =32, R = 2)
Proposed Method (2 LSBs, Block size =32, R = 3)
Proposed Method (2 LSBs, Block size =32, R = 4)
Proposed Method (2 LSBs, Block size =32, R = 5)

Korus's method with λ = 2 (3 LSBs)

Korus's method with λ = 1 (3 LSBs)
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Fig. 4. A comparison between Sarreshtedari’s, Korus’s, and the proposed method, showing the average PSNR for 

1000 images chosen from BOWS-2 data-set; block sizes in the proposed method are: a) 32×32; b) 64×64. 

5. CONCLUSIONS 

In this paper, an optimized tamper detection and recovery method is proposed, in 

which image tampering and recovery were modeled as a source-channel coding problem for 
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an erasure channel. The proposed method divided the original image into large non-

overlapping blocks and used SPIHT compression algorithm for source-coding, which 

provided high recovery quality. RS coding was used for channel-encoding the source-coded 

blocks, which provided a guaranteed TTR. To increase the speed of the RS coder, the source-

coded image blocks were divided into symbols, and the message for the RS encoder was 

composed by taking one symbol from each block. In this way, the encoding time was reduced 

dramatically while maintaining the same TTR. The proposed method also provided enhanced 

security measures by randomly permuting the watermark and XORing it with a random 

sequence. The seed used for randomization was generated uniquely for each block by 

combining a secret key with the raster order of the block and a unique serial number for the 

image. When compared to related methods, the proposed method showed a competing 

recovery quality while providing a higher TTR. 
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