
JJEE Volume 8, Number 1, March 2022
 Pages 90-101

Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619

* Corresponding author Article’s DOI: 10.5455/jjee.204-1630865748

An Optimized Fragile Image Watermarking Method for

Tamper Detection and Recovery Using SPIHT and
Reed-Solomon Coding

Mahmoud Alnaanah1* , Moath Alsafasfeh2 , Ahmad Aljaafreh3 ,

Amir Abu-Al-Aish4

1 Department of Electrical Engineering, Al-Hussein Bin Talal University, Maan, Jordan
E-mail: mahmoud.alnaanah@ahu.edu.jo

 2 Department of Computer Engineering, Al-Hussein Bin Talal University, Maan, Jordan
3 Department of Computer and Communications Engineering, Tafila Technical University, Tafila, Jordan

4 Department of Communications Engineering, Al-Hussein Bin Talal University, Maan, Jordan

Received: September 05, 2021 Revised: October 02, 2021 Accepted: October 09, 2021

Abstract—Tamper detection and recovery have been successfully modeled as a source-channel coding problem
for an erasure channel. Set partitioning in hierarchical trees (SPIHT) and Reed Solomon (RS) codes have been
proven very effective for source and channel coding. This paper presents an optimized tamper detection and
recovery method that provides high recovery quality, high tolerable tampering ratio (TTR) and optimized speed.
The proposed method compresses each block of the image separately - instead of compressing the whole image -
which eliminates the need to store the SPIHT stream in the watermark, and provides a larger space for RS parity
information. The proposed method also optimizes the speed of RS encoder and decoder by minimizing the code
symbol size. The RS code message is composed by taking one symbol at a time from each block, which leads to
reducing the encoding time dramatically. The obtained experimental results show a competing recovery quality
of the proposed method while having high TTR.

Keywords— Image watermarking; Tamper detection; Tamper recovery; SPIHT; Reed Solomon code.

1. INTRODUCTION

With the advance of digital image editing applications, image tampering becomes easier

than ever. For images that have sensitive information, as in forensics and medical

applications, tampering is very tempting and some measures are necessary to detect, and

possibly recover, any tampering. Many methods have been proposed for image

authentication [1, 2]. Some of these methods rely on finding a signature for the image, which

is stored separately from the image itself. Signature-based methods are incapable of detecting

the exact location of tampering or recovering it. Watermarking has been proven as an

excellent solution for tamper detection and recovery problem [3–5]. The watermark is

embedded inside the image itself, which means it will not be lost due to transmission

problems or due to change in the image format.

In general, image watermarking for tamper detection and recovery starts by

partitioning the image into non-overlapping blocks, then reference information is generated

by compressing each block, which minimizes the required space for reference information. A

hash is generated for each block to detect any tampering. In fragile watermarking, the

watermark is stored in the least significant bits (LSBs) of the image. The reference information

is used to recover the tampered blocks. To minimize tamper coincidence problem - where the

block and its related reference information are both lost due to tampering - the reference

https://orcid.org/0000-0003-4124-2017
https://orcid.org/0000-0002-3370-2928
https://orcid.org/0000-0002-8329-8804
https://orcid.org/0000-0002-4120-8065

91 © 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022

information is usually stored in a block that has maximum-distance from the one to which the

reference information corresponds. Also, multiple copies of the reference information could

be stored in the watermark to increase the probability of recovery. Maximum-distance

approach might help when the tampering occurs in an isolated area; however, it makes the

recovery sensitive to the tampering pattern, even if the tampered area is small. Having

multiple copies of reference information increases the watermark-wasting problem. One

solution for tamper coincidence problem is to perform channel-coding for reference

information and store the generated parity bits instead of the reference bits [6–8]. The main

advantage of using channel-coding is the efficient use of the available watermark space while

maintaining a tolerable tampering ratio (TTR) independent of the tampering pattern.

Sarreshtedari and Akhaee proposed an efficient method that relies on source-coding the

whole image using set partitioning in hierarchical trees (SPIHT) algorithm and using Reed

Solomon (RS) code for channel coding [8]. Source-coding the whole image gave their method

the advantage of having high quality recovery using smaller bit per pixel (bpp), especially

because the image is source-encoded before deleting its LSBs. However, the SPIHT stream

needs to be stored in the watermark, which limits the space available for parity information

and results in limited TTR. Sarreshtedari’s method has another disadvantage of using large

symbol size for RS code, which results in increasing coding/decoding time. This paper

presents an optimized tamper detection and recovery method that tries to solve the problems

with Sarreshtedari’s method and provides high recovery quality with high TTR.

One important aspect of any tamper detection and recovery method is the block size

into which the image is partitioned. Using larger blocks has more advantages over using

smaller ones. One of them is having better recovery quality, because a larger block usually has

more redundancy, which is approximated more effectively. To illustrate this, a 512×512

grayscale version of the famous Lena image [9] is partitioned into blocks with the sizes shown

in Table 1. Each block is compressed using SPIHT algorithm [10] with 1 bpp (17 ×17 is the

minimum permissible block size by the used SPIHT algorithm [11]). Table 1 shows the peak

signal to noise ratio (PSNR) between the compressed and the original Lena images. It also

exhibits how increasing the block size increases the compressed image quality for the same

bpp. It is also noticeable that the compression quality decreases dramatically as the block size

decreases, and; therefore, block sizes like 4×4, 2×2, or even 1×1, (as when halftoning is used

[12, 13]) result in a highly degraded image quality.

Table 1. PSNR for Lena image when partitioned into blocks and each block is compressed using

SPIHT algorithm with 1 bpp.

Block size [Pixels] 17×17 32×32 64×64 128×128 256×256 512×512

PSNR [dB] 28.49 35.73 37.20 38.38 39.17 39.83

Another advantage of using larger blocks is reducing the probability of false-negative,

i.e., tampered blocks that are falsely identified as untampered ones. A percentage of the

watermark is assigned as a hash for tamper detection, and as the block size increases, the

© 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022 92

watermark size increases, which provides more bits for the hash. Notice that 𝑃𝑓 = 2−𝑛𝐻 ,

where 𝑃𝑓 is the probability of false-negative and 𝑛𝐻 is the number of bits in the hash.

The main disadvantage of using a larger block size is that more untampered pixels are

included in the tampered blocks, which makes the detection coarser. However, with the

advance of digital cameras, image size grows rapidly and therefore a larger block size is not a

problem for images with large sizes. When each block of the encoded image is secured

independently - using the same secret key - makes the encoded image vulnerable to collage

attack [14], where blocks from an image are used to tamper with other blocks in the same

image or a different one that is secured with same secret key. The solution for collage attack is

to make each block secured using a unique secret key, which can be achieved by combining

the main secret key with the block raster order and a unique serial number for each image. In

the proposed method, the solution for tamper detection and recovery problem is optimized

by taking the following points into account:

 Using a large block size: this improves the recovery quality and reduces the false-

negative probability, as mentioned before. Another advantage of using larger blocks is

reducing their total number, which reduces the symbol size for RS code (as explained in

section 3.1), and that reduces the time required for encoding and decoding [15].

 Using SPIHT algorithm for source-coding the image blocks: SPIHT compression

algorithm has many advantages besides providing a high compression ratio. One of

them is progressive encoding, which gives the ability to truncate the compressed stream

at any point and still be able to decode the image but with a lower quality. This fits

tamper recovery problem as the space available for the watermark might vary

depending on the assigned LSBs for the watermark and the number of bits in the hash.

 Using RS coding: this has an advantage over other erasure channel codes (such as

fountain codes [7, 16]) of being optimal when it comes to guaranteed TTR, and this

makes it fit the tamper recovery problem where the available space is limited.

 Optimizing RS coder speed: the coding complexity of RS code increases in an

exponential manner as the symbol size increases [17, 18]; and therefore, dividing the

message information into smaller pieces will reduce the coding time dramatically. In the

proposed method, the encoded message is composed by taking one symbol from each

block; this will optimize symbol size and reduce the coding time dramatically while

maintaining the same TTR. More details are presented in section 3.

 Enhancing the security measures: to make the proposed method robust against attacks,

especially collage attack, the bits of the watermark are XORed and permuted using a

unique secret key for each block. The uniqueness of the secret key is guaranteed by

combining the original key with the raster order of the block and a unique serial

number for each image.

2. RELATED WORK

Korus and Dziech [7] modeled tamper detection and recovery as an erasure

communication channel. In their method, the image is divided into non-overlapping 8×8

blocks, and three LSBs in each block are assigned for the watermark. Five most significant

bits (MSBs) in each block are compressed by quantizing their discrete cosine transform

(DCT) coefficients into 𝐾 bits. The DCT information is then channel-encoded using random

93 © 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022

linear fountain (RLF) codes to produce 𝑁 = 160 bits code, which in addition to 32 bits

message digest (MD5) hash makes the watermark. The ratio 𝜆 = 𝐾/𝑁 is called the code rate,

and it controls the recovery quality and the TTR. Two code rates were used; the first one is

𝜆 = 1, which produces a lower recovery quality with a higher TTR of 50%. The second is

𝜆 = 2, which provides a higher recovery quality with a lower TTR of 33%. Korus’s method

recovery quality is limited because of using a small block size.

Sarreshtedari and Akhaee [8] proposed a method where the whole original image is

source-coded, i.e., compressed using SPIHT algorithm with a rate of 1 bpp. The source-coded

version of the image is then channel-coded using RS code. The original image is divided into

non-overlapping 8×8 blocks, and 2 or 3 LSBs are assigned for the watermark, which consists

of a portion of the RS codeword along with 32 bits MD5 hash. The TTR is 33% and 60% when

2 and 3 LSBs are used for the watermark, respectively. In the decoding stage, the tampered

blocks are detected using the hash bits, then the input of the RS decoder is collected from all

untampered blocks. The SPIHT decoder information is recovered and passed to the SPIHT

decoder to get the original image, which is used to recover the tampered blocks. Since the

whole image is compressed using SPIHT algorithm and even before deleting its LSBs; this

provides better recovery quality. However, not only the added parity information has to be

stored in the watermark, but also the SPIHT stream. This could be avoided if the blocks of

the image are source-coded individually instead of compressing the whole image.

Sarreshtedari’s method also suffers from security vulnerabilities [19], such as the inability to

detect malicious changes applied to the RS code bits in the watermark, as the hash is

generated only for the MSBs of the image block.

In [18], Sarreshtedari et al. proposed an enhancement of the previously proposed

method in [8]. The enhancement is based on joint source–channel coding (JSCC) by

providing unequal error protection for the bit planes of the encoded SPIHT stream using

dynamic programming optimization approach. The method in [18] is further improved by

Gu et al. [20] by utilizing quadtree decomposition in the bit-planes of SPIHT stream. The

proposed methods in [18] and [20] provide higher TTR with a decent recovery quality at

lower tampering ratio. However, the proposed methods require sending the optimization

parameters along with the encoded image, which increases the complexity of exchanging the

encoded images. Additionally, the recovery quality at higher tampering ratios depends on

the expected tampering ratio and can have values lower than the ones provided by the

proposed method in this paper.

In [19], Fan and Wang highlighted some security issues of Sarreshtedari’s method [8],

such as the inability to detect tampering that affects only the RS code in the watermark

because the hash is generated only for MSBs of the image blocks. Fan and Wang also

proposed a fragile tamper detection and recovery method. In their method, SPIHT coding

(with 0.75 bpp) is applied on the image blocks instead of the whole image, and for channel-

coding, they used repeated coding instead of RS code. The use of repeated coding instead of

RS coding increases the watermark-wasting problem and makes their method sensitive to

tampering pattern.

Sarreshtedari et al. proposed a method for tamper detection and recovery in JPEG

image format [21]. The proposed method tolerates JPEG recompression and noise attacks,

whilst fragile watermarking is vulnerable against these types of attacks. In their method,

© 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022 94

Sarreshtedari et al. modeled the tampering detection and recovery as a source-channel

coding problem. SPIHT is used for source coding, and low-density parity check (LDPC) is

used for channel coding. Hash bits are not used, and instead, a direct comparison between

the recovered and the tampered images is used for tamper localization. Successful recovery

requires that the tampering is within the correcting capability of the LDPC code; otherwise,

the recovered image will be a random pattern. After quantization, the channel-coded

information is embedded in the DCT domain. The tampering rate must not exceed the

correction threshold of the LDPC code, which is 8.6%.

3. DESCRIPTION OF THE PROPOSED METHOD

The encoding and decoding stages of the proposed method are described in this section,

and they are illustrated in Figs. 1 and 2, respectively. An example input image is used for

illustration, the image size is 512×512 pixels, the block size is 32×32 pixels, and 2 LSBs are

used to store the watermark.

Fig. 1. Block diagram for the encoding stage of the proposed method.

Fig. 2. Block diagram for the decoding stage of the proposed method.

95 © 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022

3.1. The Encoding Stage

The encoding stage starts with the original grayscale image 𝐼𝑂 that has a size of 𝑑𝑋 × 𝑑𝑌

pixels, where 𝑑𝑋 and 𝑑𝑌 are its width and height, respectively. For 𝐼𝑂, the LSBs assigned to the

watermark are cleared by storing zeros in them. The resulting image 𝐼𝐶 is then divided into

non overlapping blocks 𝐵𝑖𝑗, where 𝑖 and 𝑗 are the vertical and the horizontal indices of each

block. The raster order is indicated by 𝑚 as in 𝐵𝑚 for block number 𝑚. The size of each block

is 𝑑𝐵 × 𝑑𝐵 pixels (e.g., 32×32 pixels), 𝑑𝑋 and 𝑑𝑌 are supposed to be multiples of 𝑑𝐵. The total

number of blocks in the image is 𝑁𝐵 =
𝑑𝑋

𝑑𝐵
×

𝑑𝑌

𝑑𝐵
. The watermark 𝑊𝑚 stored in each block has a

total number of bits 𝑛𝑊 = 𝑑𝐵 × 𝑑𝐵 × 𝑛𝐿, where 𝑛𝐿 is the number of LSBs assigned for the

watermark (e.g., 2 bits). For the example image, 𝑛𝑊 = 32 × 32 × 2 = 2048 bits.

The next step is to assign a number of bits for the parity of the RS code in each block

(denoted by 𝑛𝑅), and leave the rest of the bits in the watermark for the hash (denoted by 𝑛𝐻.)

The RS parity bits 𝑛𝑅 are supposed to be multiple of (𝑅 − 1) × 𝑛𝑆, where 𝑛𝑆 is the symbol size

for RS code in bits and 𝑅 is the reciprocal of the RS code-rate, or:

𝑅 =
𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ + 𝑃𝑎𝑟𝑖𝑡𝑦 𝐿𝑒𝑛𝑔𝑡ℎ

𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 (1)

𝑅 determines the TTR for the method (as will be illustrated in the following paragraphs). The

possible values for 𝑛𝐻 are given by:

𝑛𝐻 = 𝑚𝑜𝑑(𝑛𝑊, (𝑅 − 1) × 𝑛𝑆) + ℎ × (𝑅 − 1) × 𝑛𝑆 (2)

where ℎ = 0, 1, 2, 3, …, and 𝑚𝑜𝑑 is the modulo operation. For the example image, if 𝑅 is

selected to be 3 and 𝑛𝑆 is 10 bits, then the possible values for 𝑛𝐻 are 𝑚𝑜𝑑(2048, (3 − 1) ×

10) + ℎ × (3 − 1) × 10 = 8, 28, 48, 68, …, 𝑛𝐻 is selected to be 28 bits.

The codeword length for RS code is 𝑁𝑀 + 𝑁𝑅, where 𝑁𝑀 symbols are assigned for the

message and 𝑁𝑅 symbols are assigned for the parity. The message symbols are equal to the

number of blocks, and the parity symbols are equal to the message symbols times (𝑅 − 1), or:

𝑛𝑅 = (𝑅 − 1) × 𝑁𝑀

 = (𝑅 − 1) × 𝑁𝐵
 (3)

The symbol size 𝑛𝑆 for RS code is calculated as:

𝑛𝑆 = 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑅 × 𝑛𝐵)) + 1 (4)

For the example image, NB =
512

32
×

512

32
= 2 and if R = 3 then nS = floor(log2(3 ×

256)) + 1 = 10 bits. Using 10 bits for RS code symbol will result in a codeword length of

2nS − 1 or 1023 symbol. Since the available number of parity symbols (in this example 1023 −

256 = 767) is larger than the needed number (in this example 512), puncturing is used to get

rid of the extra unneeded parity symbols. The number of punctures is:

𝑁𝐶 = 2𝑛𝑆 − 𝑅 × 𝑁𝐵 − 1 (5)

For the example image, 𝑁𝐶 = 210 − 3 × 256 − 1 = 255.

The number of erased symbols 𝑁𝐸 plus the number of punctures 𝑁𝐶 must not exceed the

correcting capability of RS code, which equals 2𝑡, where:

𝑡 = 𝑓𝑙𝑜𝑜𝑟((2𝑛𝑆 − 𝑁𝑀 − 1)/2)

 = 𝑓𝑙𝑜𝑜𝑟((2𝑛𝑆 − 𝑁𝐵 − 1)/2)
 (6)

© 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022 96

Therefore:

𝑁𝐸 + 𝑁𝐶 = 2 𝑓𝑙𝑜𝑜𝑟 ((2𝑛𝑆 − 𝑁𝐵 − 1)/2) (7)

or

𝑁𝐸 = 2 𝑓𝑙𝑜𝑜𝑟 ((2𝑛𝑆 − 𝑁𝐵 − 1)/2) − 𝑁𝐶

 = 2 𝑓𝑙𝑜𝑜𝑟 ((2𝑛𝑆 − 𝑁𝐵 − 1)/2) − 2𝑛𝑆 − 𝑅 × 𝑁𝐵 − 1

 (8)

Since 2𝑛𝑆 is an even number, then:

𝑁𝐸 = 2 𝑓𝑙𝑜𝑜𝑟 ((−𝑁𝐵 − 1)/2) + 𝑅 × 𝑁𝐵 + 1 (9)

If 𝑁𝐵 is an odd number, then:

2 𝑓𝑙𝑜𝑜𝑟 ((−𝑁𝐵 − 1)/2) = −𝑁𝐵 − 1 (10)

or

𝑁𝐸 = −𝑁𝐵 − 1 + 𝑅 × 𝑁𝐵 + 1

 = (𝑅 − 1) × 𝑁𝐵
 (11)

If 𝑁𝐵 is an even number, then:

2 𝑓𝑙𝑜𝑜𝑟 ((−𝑁𝐵 − 1)/2) = −𝑁𝐵 − 2 (12)

or

𝑁𝐸 = −𝑁𝐵 − 2 + 𝑅 × 𝑁𝐵 + 1

 = (𝑅 − 1) × 𝑁𝐵 − 1
 (13)

Each tampered block will result in 𝑅 erased symbols (the message symbol generated

from the block and the parity symbols stored in the block), or 𝑁𝐸 = 𝑅 × 𝑁𝑇 where 𝑁𝑇 is the

number of tampered blocks. Since 𝑁𝑇 is an integer, then:

𝑁𝑇 = 𝑓𝑙𝑜𝑜𝑟 (
(𝑅 − 1) × 𝑁𝐵 − (1 − 𝑚𝑜𝑑(𝑁𝐵 , 2))

𝑅
) (14)

For large 𝑁𝐵, 𝑁𝑇 ≈
𝑅−1

𝑅
 𝑁𝐵, or:

𝑇𝑇𝑅 ≈
𝑅 − 1

𝑅
 (15)

 𝑇𝑇𝑅 = 50%, 66.6%, 75%, 𝑎𝑛𝑑 80% for 𝑅 = 2, 3, 4, 𝑎𝑛𝑑 5.

After dividing the image 𝐼𝐶 into blocks, each block is compressed using SPIHT

algorithm. The number of bits assigned for the compressed stream is 𝑛𝑀 = 𝑛𝑅/(𝑅 − 1). For

the example image, the number of bits assigned for the SPIHT stream in each block is

𝑛𝑅/(𝑅 − 1) = (𝑛𝑊 − 𝑛𝐻)/(𝑅 − 1) = (2048 − 28)/(3 − 1) = 1010 bits, which results in a rate

of 0.986 bpp. Let 𝑆𝑃𝑚 represents the SPIHT stream for the block 𝐵𝑚. After compressing all of

the blocks, the input message for the RS encoder is composed by taking one symbol from each

𝑆𝑃𝑚 stream, and it is then encoded. The RS encoding process continues for the remaining

symbols in 𝑆𝑃𝑚. The parity symbols resulting from the RS encoding process are appended to

form 𝑃𝑅, which is the parity information that will be stored in the watermark 𝑊𝑚. The length

of 𝑃𝑅 is (𝑅 − 1) × 𝑁𝐵; therefore, the parity to be stored in 𝑊𝑚 is the rows in 𝑃𝑅 at positions

𝑚, 𝑚 + 𝑁𝐵, ... , 𝑚 + (𝑅 − 1) × 𝑁𝐵. The remaining hash bits 𝑛𝐻 are calculated in the next step.

The hash bits are found for the concatenation of the MSBs of each block along with the

parity symbols. MD5 hash is selected with the output as binary numbers instead of printable

characters to fully utilize the available hash bits. The probability of false-negative equals to

2−𝑛𝐻. The number of bits in the MD5 hash is larger than 𝑛𝐻; therefore, only the leftmost 𝑛𝐻

97 © 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022

bits are taken from the MD5 hash. The parity bits and hash bits are then appended to produce

the watermark, which is secured in the next step.

Two steps are taken to secure the watermark; the first one is XORing the watermark

with a random sequence, and the second one is randomly permuting the bits of the

watermark. The permutation of the watermark bits is necessary to prevent the random XOR

sequence from being known by any intruder, which could be done by independently

generating the watermark bits and XORing them with the stored one. The randomization

seed for the permutation and the random sequence generation is determined using a

combination of a secret key 𝑘, the raster order of the block and a unique serial number for the

image. In this way, each block is secured with a unique number and cannot be used to tamper

with another block using collage attack. The watermark is then embedded in the designated

LSBs of each block, and the encoded image 𝐼𝐸 is now ready.

3.2. The Decoding Stage

The decoding starts with the image 𝐼𝑇 , which is an encoded image that possibly has

been tampered with. The watermark stored in each block is extracted and inversely

permuted, then it is XORed with the same random sequence that has been used in the

encoding stage. The randomization seed for permutation and random sequence generation is

determined as in the encoding stage.

For each block, an MD5 hash is generated for the MSBs and the stored parity symbols,

then the leftmost 𝑛𝐻 bits of the generated hash are compared with the stored hash bits. If they

are different, then the block is marked as tampered. If the number of tampered blocks exceeds

the recovery capability, then the tampered blocks cannot be recovered; otherwise, they are

fully recoverable. The positions of the erasures in the message and in the parity symbols are

determined using an erasure vector 𝑉𝐸, which is generated by knowing the position of the

tampered blocks. The length of 𝑉𝐸 is 𝑅 × 𝑁𝐵, and each tampered block with a raster order 𝑚

will indicate an erasure in 𝑉𝐸 at positions 𝑚, 𝑚 + 𝑁𝐵, ... , 𝑚 + 𝑅 × 𝑁𝐵.

The parity information 𝑃𝑅 is stored separately, then the LSBs in which the watermark

was stored are cleared by storing zeros in them. Each untampered block is compressed using

SPIHT algorithm, and zeros are stored instead of the SPIHT data for the tampered blocks. Let

𝑆𝑃 denotes the SPIHT compressed data for the image blocks. The number of bits in each row

of 𝑆𝑃 is 𝑛𝑀. 𝑃𝑅 and 𝑆𝑃 are concatenated to form the RS code stream 𝑅𝐶, which has 𝑅 × 𝑁𝐵

rows and each row has 𝑛𝑀 bits.

The next step is to correct the erased rows in 𝑅𝐶 by dividing each row into symbols,

where each symbol has 𝑛𝑆 bits. One symbol is taken from each row of 𝑅𝐶 to form an RS code

vector 𝑉𝑅 that has 𝑅 × 𝑁𝐵 symbols with each symbol has 𝑛𝑆 bits. The code vector 𝑉𝑅 and the

erasure vector 𝑉𝐸 are fed into the RS decoder, and the output is the corrected version of 𝑉𝑅.

The decoding process is repeated for the remaining symbols of 𝑅𝐶 until all of its rows are

corrected. The first 𝑁𝐵 rows of 𝑅𝐶 represent the corrected 𝑆𝑃 stream that has the SPIHT

encoded data for the image. The tampered blocks are recovered by decoding the

corresponding rows in the corrected 𝑆𝑃 using the SPIHT algorithm. The result of this step is

the recovered image 𝐼𝑅.

© 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022 98

The LSBs in 𝐼𝑅, in which the watermark was stored, are adjusted by storing 1 in the left

most (i.e., most significant) LSB and zeros in the remaining bits. By doing this, the PSNR of

the recovered image is enhanced [6]. The output of this step is the final decoded image 𝐼𝐷.

4. RESULTS AND DISCUSSION

To get a statistical overview about the effect of choosing different number of LSBs, block

size, and code-rate (represented by its reciprocal 𝑅), the proposed method is applied to 1000

random images chosen from BOWS-2 data-set [22]. The tampering ratio is increased from 0

(i.e., no tampering) to the TTR applicable for the chosen R, then the average value of the

PSNR for the 1000 images is plotted against the tampering ratio. The average PSNR is plotted

for a block size of 32×32 and 64×64 pixels. The average PSNR is shown in Fig. 3 for 𝑅 = 2, 3, 4,

and 5, respectively.

A
ve

ra
ge

 P
SN

R
 f

o
r

th
e

re
co

ve
re

d
 im

ag
es

 [
d

B
]

0 10 20 30 40 50 60 70 80 90
22

24

26
28

30
32

34
36

38
40

42
44

46
48

50
52

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 f

o
r

th
e

re
co

ve
re

d
 im

ag
es

 [
d

B
]

(b)

0 10 20 30 40 50 60 70 80 90
22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 f

o
r

th
e

re
co

ve
re

d
 im

ag
es

 [
d

B
]

(d)

0 10 20 30 40 50 60 70 80 90
22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 f

o
r

th
e

re
co

ve
re

d
 im

ag
es

 [
d

B
]

(c)

0 10 20 30 40 50 60 70 80 90
22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

Tampering ratio [%]

(a)

1 LSBs, Block size = 32

1 LSBs, Block size = 64

2 LSBs, Block size = 32

2 LSBs, Block size = 64

3 LSBs, Block size = 32

3 LSBs, Block size = 64

1 LSBs, Block size = 32

1 LSBs, Block size = 64

2 LSBs, Block size = 32

2 LSBs, Block size = 64

3 LSBs, Block size = 32

3 LSBs, Block size = 64

1 LSBs, Block size = 32

1 LSBs, Block size = 64

2 LSBs, Block size = 32

2 LSBs, Block size = 64

3 LSBs, Block size = 32

3 LSBs, Block size = 64

1 LSBs, Block size = 32

1 LSBs, Block size = 64

2 LSBs, Block size = 32

2 LSBs, Block size = 64

3 LSBs, Block size = 32

3 LSBs, Block size = 64

Fig. 3. Average PSNR for 1000 random images - chosen from BOWS-2 data-set - for code-rate reciprocal

𝑅 values of: a) 2; b) 3; c) 4; d) 5.

In Fig. 4, the proposed method is compared with two related methods, nalemy

i) Sarreshtedari and Akhaee method [8] and ii) Korus and Dziech method [7]. The average

PSNR is calculated for 1000 random images from BOWS-2 data-set and plotted against

99 © 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022

tampering ratio up to the TTR. In both methods and the proposed in this paper method, the

tampered blocks are replaced by the recovered ones, then the LSBs used to store the

watermark are set to zeros and the most significant LSB is then set to 1 to enhance the PSNR

of the recovered image; this has been done in [6–8].

The average PSNR decreases as the TTR increases because the recovered blocks - due to

compression - have lower quality compared to the original. Increasing the block size will

increase the image quality because larger blocks has better compression quality compared to

small ones, as seen before with Lena image in Table 1. Increasing the number of LSBs for the

watermark increases the recovered image quality because more space is provided for the

compressed reference data in the watermark.

In Korus’s method, for 𝜆 = 1 and 𝜆 = 2 the achieved TTR is 50% and 33%, respectively.

For Sarreshtedari’s method, 2 and 3 LSBs are used, with a TTR of 33% and 60%, respectively.

Only the case of 2 LSBs is chosen for the proposed method as a good compromise between the

tampered and the original image quality. Figs. 4(a) and (b) show the PSNR values for blocks

sizes 32×32 and 64×64, respectively. A block size of 64×64 might seems very coarse for an

image with size of 512×512; however, this block size or even a larger one is quite acceptable

for current time photography size that reaches tens of megapixels. The effect of increasing the

block size on enhancing the PSNR value is apparent by comparing Figs. 4(a) and (b).

By looking at Fig. 4, the proposed technique shows superior quality and higher

recovery ratio when compared to Sarreshtedari’s and Korus’s methods, especially in the case

of 64×64, and it can be seen that it reaches higher TTR (up to 80%) with a good recovery

quality, given that the quality can be further improved by choosing even a larger block size.

0 10 20 30 40 50 60 70 80 90
30

32

34

36

38

40

42

44

46

48

50

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 fo

r
th

e
re

co
ve

re
d

im
ag

es
 [d

B
]

0 10 20 30 40 50 60 70 80 90

30

32

34

36

38

40

42

44

46

48

50

Tampering ratio [%]

A
ve

ra
ge

 P
SN

R
 fo

r
th

e
re

co
ve

re
d

im
ag

es
 [d

B
]

Proposed Method (2 LSBs, Block size =32, R = 2)
Proposed Method (2 LSBs, Block size =32, R = 3)
Proposed Method (2 LSBs, Block size =32, R = 4)
Proposed Method (2 LSBs, Block size =32, R = 5)

Korus's method with λ = 2 (3 LSBs)

Korus's method with λ = 1 (3 LSBs)
Sarreshtedari's mehtod (2 LSBs)
Sarreshtedari's mehtod (3 LSBs)

Proposed Method (2 LSBs, Block size =32, R = 2)
Proposed Method (2 LSBs, Block size =32, R = 3)
Proposed Method (2 LSBs, Block size =32, R = 4)
Proposed Method (2 LSBs, Block size =32, R = 5)

Korus's method with λ = 2 (3 LSBs)

Korus's method with λ = 1 (3 LSBs)
Sarreshtedari's mehtod (2 LSBs)
Sarreshtedari's mehtod (3 LSBs)

(a) (b)

Fig. 4. A comparison between Sarreshtedari’s, Korus’s, and the proposed method, showing the average PSNR for

1000 images chosen from BOWS-2 data-set; block sizes in the proposed method are: a) 32×32; b) 64×64.

5. CONCLUSIONS

In this paper, an optimized tamper detection and recovery method is proposed, in

which image tampering and recovery were modeled as a source-channel coding problem for

© 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022 100

an erasure channel. The proposed method divided the original image into large non-

overlapping blocks and used SPIHT compression algorithm for source-coding, which

provided high recovery quality. RS coding was used for channel-encoding the source-coded

blocks, which provided a guaranteed TTR. To increase the speed of the RS coder, the source-

coded image blocks were divided into symbols, and the message for the RS encoder was

composed by taking one symbol from each block. In this way, the encoding time was reduced

dramatically while maintaining the same TTR. The proposed method also provided enhanced

security measures by randomly permuting the watermark and XORing it with a random

sequence. The seed used for randomization was generated uniquely for each block by

combining a secret key with the raster order of the block and a unique serial number for the

image. When compared to related methods, the proposed method showed a competing

recovery quality while providing a higher TTR.

REFERENCES

[1] A. Haouzia, R. Noumeir, “Methods for image authentication: a survey,” Multimedia Tools and

Applications, vol. 39, no. 1, pp. 1-46, 2008.

[2] P. Korus, “Digital image integrity–a survey of protection and verification techniques,” Digital

Signal Processing, vol. 71, pp. 1-26, 2017.

[3] C. Rey, J. Dugelay, “A survey of watermarking algorithms for image authentication,” EURASIP

Journal on Advances in Signal Processing, vol. 2002, no. 6, pp. 1-9, 2002.

[4] T. Liu, Z. Qiu, “The survey of digital watermarking-based image authentication techniques,” In

6th International Conference on Signal Processing, vol. 2, pp. 1556-1559, 2002.

[5] K. Sreenivas, V. Kamkshi Prasad, “Fragile watermarking schemes for image authentication: a

survey,” International Journal of Machine Learning and Cybernetics, vol. 9, no. 7, pp. 1193-1218, 2018.

[6] X. Zhang, S. Wang, Z. Qian, G. Feng, “Reference sharing mechanism for watermark self-

embedding,” IEEE Transactions on Image Processing, vol. 20, no. 2, pp. 485-495, 2010.

[7] P. Korus, A. Dziech, “Efficient method for content reconstruction with self-embedding,” IEEE

Transactions on Image Processing, vol. 22, no. 3, pp. 1134-1147, 2012.

[8] S. Sarreshtedari, M. Akhaee, “A source-channel coding approach to digital image protection and

self-recovery,” IEEE Transactions on Image Processing, vol. 24, no. 7, pp. 2266-2277, 2015.

[9] Rice University, Lena Image. <https://www.ece.rice.edu/~wakin/images/>

[10] A. Said, W. Pearlman, “A new, fast, and efficient image codec based on set partitioning in

hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3,

pp. 243-250, 1996.

[11] Rensselaer Polytechnic Institute, Matlab Code for SPIHT. <https://ecse.rpi.edu/~pearlman/

SPIHT/EW_Code/MATLAB-SPIHT/_v1.0/_02-12-08.zip >

[12] L. Rosales-Roldan, M. Cedillo-Hernandez, M. Nakano-Miyatake, H. Perez-Meana, B. Kurkoski,

“Watermarking-based image authentication with recovery capability using halftoning

technique,” Signal Processing: Image Communication, vol. 28, no. 1, pp. 69-83, 2013.

[13] J. Molina-Garcia, B. Garcia-Salgado, V. Ponomaryov, R. Reyes-Reyes, S. Sadovnychiy, C. Cruz-

Ramos, “An effective fragile watermarking scheme for color image tampering detection and self-

recovery,” Signal Processing: Image Communication, vol. 81, pp. 115725, 2020.

[14] J. Fridrich, M. Goljan, N. Memon, “Cryptanalysis of the Yeung-Mintzer fragile watermarking

technique,” Journal of Electronic Imaging, vol. 11, no. 2, pp. 262-274, 2002.

[15] S. Lin, D. Costello, Error Control Coding, Scarborough: Prentice Hall, vol. 2, no. 4, 2001.

101 © 2022 Jordan Journal of Electrical Engineering. All rights reserved - Volume 8, Number 1, March 2022

[16] Y. Ma, D. Yuan, H. Zhang, “Fountain codes and applications to reliable wireless broadcast

system,” In 2006 IEEE Information Theory Workshop-ITW'06 Chengdu, pp. 66-70, 2006.

[17] T. Moon, Error Correction Coding: Mathematical Methods and Algorithms, John Wiley and Sons, 2020.

[18] S. Sarreshtedari, A. Abbasfar, M. Akhaee, “A joint source–channel coding approach to digital

image self-recovery,” Signal, Image and Video Processing, vol. 11, no. 7, pp. 1371-1378, 2017.

[19] M. Fan, H. Wang, “An enhanced fragile watermarking scheme to digital image protection and

self-recovery,” Signal Processing: Image Communication, vol. 66, pp. 19-29, 2018.

[20] Y. Gu, H. Yang, B. Yan, X. Wang, Z. Zhao, “Digital image self-recovery algorithm based on

improved joint source-channel coding optimizer,” Multimedia Tools and Applications, vol. 78,

no. 15, pp. 21041-21064, 2019.

[21] S. Sarreshtedari, M. Akhaee, A. Abbasfar, “Source–channel coding-based watermarking for self-

embedding of JPEG images,” Signal Processing: Image Communication, vol. 62, pp. 106-116, 2018.

[22] European Network of Excellence ECRYPT, 2nd BOWS Contest (Break Our Watermarking System).

<http://bows2.ec-lille.fr/>

