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Abstract— The problem of in-operation fault detection in mesh-connected multicore and many-core VLSI 
multiprocessors is considered. A novel approach to the multiprocessor test based on the combination of self-test 
and mutual inter-unit test performed in a multiplexed mode is presented; it allows for an increase in the successful 
fault detection probability. Formal rules are defined for forming sets of testing and tested neighbors for each 
processor node of the mesh that is invariant to the location of the node within the mesh and its dimension. In 
contrast to the mutual inter-unit test mechanism, the same testing neighbor is alternately used to test the two 
processors in a multiplexed mode; and the test result is formed by applying the majority operator to the individual 
faulty/healthy tags calculated by all testing neighbors and the current unit itself in the course of its self-test. The 
formulae for determining the number of testing neighbors for each node depending on the dimension of the mesh 
are given. The successful fault detection probability is evaluated in the case when the proposed approach is used. 
The successful fault detection probability versus the individual test unit reliability dependencies is investigated. 
For all practically significant cases, the proposed approach is shown to provide an increased successful fault 
detection probability compared to the mutual inter-unit test and self-checking. 
 
Keywords— Built-in self-test, Fault tolerance, Majority operator, Mesh-connected VLSI multiprocessors, 
Multiplexer, Mutual inter-unit test. 
 
 
Nomenclature 
 
D number of dimensions in the multiprocessor mesh 

1 2 dx x xu   
a processor node (unit) of a d-dimensional multiprocessor 

X horizontal coordinate of a node in the mesh 

Y vertical coordinate of a node in the mesh 

M number of rows in the multiprocessor mesh 

N number of columns in the multiprocessor mesh 

1 2 dx x xC   set of neighbors tested by processor 
1 2 dx x xu   

1 2

1
dx x xC   

subset of neighbors tested by processor 
1 2 dx x xu   during phase 1 

1 2

2
dx x xC   

subset of neighbors tested by processor 
1 2 dx x xu   during phase 2 

1 2 dx x xK   set of neighbors testing processor 
1 2 dx x xu   

1 2 dx x xK ′
  

set of nodes testing processor 
1 2 dx x xu   

iB
 

ith parallel thread of the testing algorithm 

( )1 2 dx x xT k

 
kth test signature produced by testing node

1 2 dx x xu   

1 2

max
dx x xk   

number of test signatures supported by testing node
1 2 dx x xu   

K test signature counter of processor 
1 2 dx x xu   

max
1iτ  

maximum time needed by tested processor node 1 1 1
1 2
i i i

dx x xu


 to form a test response 

mailto:jamil.azzeh@bau.edu.jo


194                              © 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 3 

1iτ  
test response wait counter of node 1 1 1

1 2
i i i

dx x xu


 

( )1 1 1
1 2
i i i

dx x xR k

 

test response signature issued by tested processor 1 1 1
1 2
i i i

dx x xu


 after 

( )1 2 dx x xT k  is received 

( )2 2 2
1 2 1
i i i

dx x xR k −

 

test response signature issued by tested processor 2 2 2
1 2
i i i

dx x xu


 after 

( )1 2 1dx x xT k −  is received 

( )1 1 1
1 2

0

i i i
dx x xR k

 

reference test response signature expected to be issued by processor 1 1 1
1 2
i i i

dx x xu


 

after receiving ( )1 2 dx x xT k  

( )2 2 2
1 2

0 1
i i i

dx x xR k −

 

reference test response signature expected to be issued by processor 2 2 2
1 2
i i i

dx x xu


 

after receiving ( )1 2 1dx x xT k −  

1 2
1 1 1

1 2

d
i i i

d

x x x
x x x

ϕ 

  

partial faulty/healthy flag of processor 1 1 1
1 2
i i i

dx x xu


 formed by testing processor 

1 2 dx x xu   during test phase 1 

1 2
2 2 2

1 2

d
i i i

d

x x x
x x x

ϕ 

  

partial faulty/healthy flag of processor 2 2 2
1 2
i i i

dx x xu


 formed by testing processor 

1 2 dx x xu   during test phase 2 

1 2 dx x xϕ   
faulty/healthy flag of processor 

1 2 dx x xu   

is
 

2 2 2
1 2
i i i

dx x xu


response to analyze disable flag 

( )P t  successful fault detection probability provided by the proposed approach 

( )tπ  
probability that a processor node of the multiprocessor is unambiguously detected 
as faulty by a separate test unit or a self-test unit

 ( )0P t  
successful fault detection probability provided by the mutual inter-unit test 
approach 

i
jC  number of combinations of i items out of j 

I. INTRODUCTION 

Multicore and many-core VLSI multiprocessors have become a promising trend in the 
construction of high-performance embedded systems [1], [2]. Ongoing VLSI miniaturization 
has enabled the integration of up to thousands of processing cores on a single chip [3], [4]. 
However, the unreliability of multiprocessor components has emerged as one of the 
fundamental barriers to future scaling [5]. To maintain connectivity and correct long-term 
operation of such many-core systems, specific fault-tolerance issues must be taken into 
account when designing the multiprocessor fabric. Pinpointing the location of defective or 
faulty components is one of these issues. 
If a dedicated defect detection and isolation mechanism is used, a VLSI multiprocessor can be 
made healthy despite containing faulty components. If no specific spare replacement scheme 
is used, the overall performance of the multiprocessor gracefully degrades [6], [7]. Otherwise 
[8], [9], the multiprocessor performance is retained even in the presence of unhealthy 
components. In both cases, a multiprocessor with physical defects is logically reconfigured 
and remains healthy as a whole. 
The problem of locating faulty components in VLSI multiprocessors is typically solved based 
on the use of built-in self-checking or neighbor-checking methods [10]-[12], [13]-[17]. For 



© 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 3                              195 

example, it can be done by allowing a processor node to send probe signals to its neighbors 
and to mark neighboring units as defective if an acknowledgment is not received within a 
certain time interval. Self-test methods are a simple and efficient solution for providing in-
operation fault detection. However, because test hardware itself is not 100% reliable, 
relatively low testability is the main problem of the self-test approach. Additionally, self-
checking mechanisms may miss faults/defects in some cases or treat healthy units as defective; 
thus, the probability that a processor node’s fault is properly detected is not high enough. The 
same applies to the neighbor-checking methods in which processor nodes test their peers 
independently, i.e., with no inter-processor coordination.  
A more complex approach, the mutual inter-unit test, is presented in [18], where each 
processor node is checked by a number of its neighbors (3, 5, 7, or more depending on the 
number of dimensions in the mesh). The final faulty/healthy decision is made based on the 
majority operator rule. With this approach, the successful fault detection probability increases 
by 10% and even more. The main drawback of this approach is that testing units are used 
inefficiently, e.g., a testing unit does nothing and simply spins half a time period until a 
response token from its tested neighbor arrives. Thus, the problem is to find a solution to 
improve the utilization of testing units across the multiprocessor mesh and to make an 
additional increase in the successful fault detection probability. 
In the present paper, we propose an extended version of the mutual inter-unit test technique 
presented in [18], which we refer to as the multiplexed mutual inter-unit test method. Our 
main contribution is that we increase the utilization of testing hardware by allowing each test 
unit of each processor node to check its two neighbors (not necessarily direct neighbors), and 
split the checking time period into two phases. During the first phase, neighbor A is tested 
while neighbor B is expected to send a test response. During the second phase, neighbor B is 
checked while neighbor A is expected to provide a test response. Thus, we eliminate the idle 
time period when a test unit spins until it receives a response from the tested neighbor; 
therefore, testing hardware is used more efficiently. With our approach, the number of testing 
neighbors at each processing node is doubled compared to that in [18], making it possible to 
significantly increase the successful fault detection probability. One must mention that 
doubling the number of testing neighbors at each processor node does not lead to hardware 
doubled because each test unit is used in a time division manner. 
In the following sections, we formally state the multiplexed mutual inter-unit test approach 
for a d-dimensional mesh-connected many-core multiprocessor for concurrently detecting 
faulty/defective nodes across the mesh. A parallel test algorithm is presented based on the 
proposed methodology. The successful fault detection probability is evaluated to demonstrate 
that the proposed approach provides increased testability compared to the mutual inter-unit 
test technique and self-checking. 

II. MULTIPLEXED MUTUAL INTER-UNIT SELF-TEST IDEA 

The key idea of the multiplexed mutual inter-unit test is that each processor node of the 
multiprocessor is occasionally checked by a subset of its neighbors, not necessarily direct 
neighbors (which we call "testing neighbors"); and is additionally self-checked using the same 
test algorithm. At the same time, the processor node tests another subset of its neighbors, not 
necessarily direct neighbors (so-called "tested neighbors"). The final faulty/healthy decision 
for each processor is made based on the majority operator result obtained from the partial 
results returned by the testing neighbors and the self-checking hardware. 
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The set of testing neighbors for each processing node is formed depending on the number of 
dimensions (d) of the multiprocessor topology. Its cardinality plus 1 (to take into account that 
each node is self-checked) must be odd, so that the majority operator is applicable for 
producing the final faulty/healthy decision. If a processor node is assumed to be faulty, its 
status tag (which can be either faulty or healthy) is immediately transmitted to all of its direct 
neighbors, so that they stop relaying packets to the faulty node and use alternative paths 
according to the fault-tolerant routing algorithm implemented. The faulty processor node is 
said to be isolated from the rest of the mesh in such a case. Depending on the fault-tolerant 
strategy adopted, faulty nodes may be replaced by spare units, thus retaining the 
multiprocessor performance. They can also be logically "thrown away" with no further 
replacement, so that the many-core system performance will gracefully degrade. 
The multiplexed mutual inter-unit test mechanism may be considered as an advanced form of 
neighbor- and self-checking because the test hardware itself is also tested online. For example, 
if one of the testing processor nodes produces a wrong faulty/healthy decision, then the tested 
node (which is not actually faulty) will not necessarily be detected as faulty by mistake as the 
resulting faulty/healthy decision is formed by the majority operator applied to the set of 
partial fault detection tags. 

III. CONSTRUCTING TESTED AND TESTING NEIGHBOR SETS 

The formation of testing and tested neighbor sets is one of the main issues in the organization 
of the multiplexed mutual inter-unit test. In this section, we provide formal rules to define 
these sets for a many-core multiprocessor with an arbitrary dimension 2d ≥ . 
Let us first consider a 2-dimensional system. Let { }xyU u=  be the set of processor nodes, where 
x and y are coordinates (indexes) of a particular node in the mesh in the horizontal and 
vertical dimensions, respectively, 0 1x ,n= − , 0 1y ,m= − , with m and n representing the 
number of rows and columns of the mesh, respectively. Then, for a given arbitrary 

{ }0 1 1x , , ,n∈ −  and { }0 1 1y , , ,m= − , we can define the set of testing neighbors as 
follows: 

( )

( ) ( )

( )

( )( ) ( )( )( )

( )( ) ( )( )

( )( ) ( )( )( )

, 2 mod

1 mod , 1 mod

2 mod ,

1 sign 1 sign 1 2,

1 sign 1, 1 sign 1

, 1 sign 1 sign 1 2

,

,

,

,

,

x y m

x n y m

x n y

xy
x x x n y

x x n y y m

x y y y m

u

u

u
K u

u

u

+

+ +

+

+ − + − − −

+ − − + − −

+ − + − − −

 
 
 
 
  =  
 
 
 
 
                                                                             

(1)

 
 

Taking into account that node xyu  is also self-checked, the set of processors that make the 

final faulty/healthy decision is 

{ }xy xy xyK K u′ = ∪
                                                                                                          (2) 
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Fig. 1 illustrates rules (1) and (2) in detail. In this figure, the tiles correspond to the processing 
nodes; the testing neighbors are shown in gray. For the processing nodes located at the edges 
or one step next to at least one edge of the mesh, the testing processors are taken at the 
opposite edges of the mesh (the dashed tiles and arrows illustrate this situation). According to 
Fig. 1, the proposed approach requires that 5m ≥  and 5n ≥ . 

 

xyu xyu

n-1n-20

xyu
m-1

m-2

0

xyu
m-1

m-2

0

n-1n-20
 

Fig. 1. Formation of testing neighbor sets in a 2-dimensional many-core multiprocessor 
 

The set xyC  of processor nodes tested by processor xyu , { }0 1 1x , , ,n∈ − and

{ }0 1 1y , , ,m= − , is formally the same as xyK . However, set xyC  is split into subsets 
1
xyC  

and 
2
xyC  which are to be checked during phase 1 and 2, respectively (this is why we call our 

method the multiplexed test): 

( )

( ) ( )

( )

2

1
1 1

2

x , y mod m

xy x mod n, y mod m

x mod n,y

u ,

C u ,

u

+

+ +

+

 
  =  
 
        

                                                                                      (3)

 

( )( ) ( )( )( )

( )( ) ( )( )

( )( ) ( )( )( )

1 sign 1 sign 1 2

2
1 sign 1 1 sign 1

1 sign 1 sign 1 2

x x x n ,y

xy x x n ,y y m

x,y y y m

u ,

C u ,

u

+ − + − − −

+ − − + − −

+ − + − − −

 
 
 =  
 
       

                                                                        (4)
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It is important to mention that for each node of 
1
xyC , there is a corresponding node in 

2
xyC . 

Thus, a one-to-one correspondence may be defined for each pair of sets 
1
xyC  and 

2
xyC : 

( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )( )

2 1 sign 1 sign 1 2

1 1 1 sign 1 1 sign 1

2 1 sign 1 sign 1 2

x , y mod m x x x n ,y

x mod n, y mod m x x n ,y y m

x mod n,y x ,y y y m

u u

u u

u u

+ + − + − − −

+ + + − − + − −

+ + − + − − −

 ↔
 
 ↔
 
 ↔
      

                                              (5)

 
 
Equation (5) in turn sets a mapping of tested neighbor pairs onto the individual test units of 

each node xyu . Fig. 2 illustrates the construction of a tested neighbor set and shows how 
correspondence (5) is applied. In this figure, the dots denote separate test units of the current 

node xyu . The dashed arrows show which neighbor nodes are checked by the corresponding 
test units; 1’s and 2’s represent the test phase numbers for these test units. According to Fig. 2, 

node xyu  includes 3 individual test units (3 dots): the uppermost one (upper left corner of tile 

xyu ) will check neighbors 2x ,yu −  and 2x ,yu + ; the middle one (the middle of tile xyu ) will check 

nodes 1 1x ,yu − −  and 1 1x ,yu + + ; and the lowermost one (lower right corner of tile xyu ) will check 

processors 2x ,yu −  and 2x ,yu + . 

To define sets 1 2 dx x xK  , 1 2

1
dx x xC  ,and 1 2

2
dx x xC   for a general case d-dimensional mesh, it is 

necessary to extend formulae (1)-(5) by adding extra properly indexed elements with all 
possible combinations of indices. The d-dimensional case formulae are not stated here for 
complexity reasons. 
One can prove that  

( )
1 2

2 1 1
dx x xK d d= − +                                                                                            (6) 

( )
1 2 1 2

1 2 1 3.
d dx x x x x xK K d d′ = + = − +                                                                   (7) 

 

1

2
1

12
2

2,x yu +

, 2x yu +

1, 1x yu + +

2,x yu −

, 2x yu −
1, 1x yu − − ,x yu

 
Fig. 2. Formation of a tested neighbor set in a 2-dimensional many-core multiprocessor 
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According to (7), ( )
1 2

1 mod 2
dx x xK = , each processor node has an odd number of testing 

processors (including itself),making it possible to apply the majority operator to produce the 
resulting faulty/healthy tag. The number of testing neighbors in 2-dimensional meshes is 

minimal: 7xyK ′ = . In a 3-dimensional array, each node has 15xyzK ′ =  testing nodes. This is 
more than twice that of the mutual inter-unit test method proposed in [18]. Therefore, we 
assume that testability increases (a proof is given below). 

IV. DETAILED DESCRIPTION OF THE TEST PROCEDURE 

The multiplexed mutual inter-unit test process can be represented in the form of a parallel 
algorithm with a set of threads ( )1 2 1 1, , , d dB B B − + , where thread iB  defines a test statement 

sequence performed by a particular test unit corresponding to tested neighbors 1 1 1
1 2
i i i

dx x xu
  and 

2 2 2
1 2
i i i

dx x xu
  (see Fig. 3). The algorithm applies to many-core mesh-connected systems with an 

arbitrary dimension 2d ≥ . 
The algorithm in Fig. 3 includes the main test loop while the current processor node (which is 

1 2 dx x xu  ) is considered healthy by its testing nodes, including itself (being healthy is 

indicated as 
1 2

1
dx x xϕ = ). Each loop is split into 2 phases (numbered as I and II in Fig. 3). 

During the first phase, a test signature ( )1 2 dx x xT k  is sent to all the tested neighbor nodes of 

1 2

1
dx x xC   (see statements 4 and 7, where ( )1 2 dx x xT T k← 

 and 1 1 1
1 2
i i i

dx x x
u T←

  show the test 
signature transmission via internal buffer T). At the same time, response signatures from all 

the tested nodes of 1 2

2
dx x xC   are received and compared to the expected response (see 

statements 9-12). The expected response ( )2 2 2
1 2

0 1i i i
dx x xR k −  is stored in internal buffer 0R , 

while the one provided by the tested neighbor is buffered in internal register 2R . If 0 2R R≠  

(condition 11). Statement 12 is executed; and tag 
1 2

2 2 2
1 2

d
i i i

d

x x x
x x x

ϕ 

  becomes zero. This means that 

the current node 1 2 dx x xu   assumes neighbor 2 2 2
1 2
i i i

dx x xu
  to be faulty. Otherwise, statement 12 

is skipped; and neighbor 2 2 2
1 2
i i i

dx x xu
  is still assumed to be healthy. 

During the second phase (which follows the barrier in the middle of branch iB ), the test 

signature ( )1 2 dx x xT k  is transferred to the tested processor nodes of 1 2

2
dx x xC   (see 

statement 13, where 2 2 2
1 2
i i i

dx x x
u T←

  show the test signature transmission from internal 

buffer T). Concurrently, response signatures are transmitted from the tested nodes of 

1 2

1
dx x xC   and then analyzed by the current processor node (see statements 16-19). The 

expected response ( )1 1 1
1 2

0

i i i
dx x xR k  is transferred to internal buffer 0R , while the response 

issued by the tested neighbor is latched in internal register 1R . If 0 1R R≠  (condition 18), 

then statement 19 follows; and tag 
1 2
1 1 1

1 2

d
i i i

d

x x x
x x x

ϕ 

  becomes clear. This means that the node 
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1 2 dx x xu   assumes neighbor 1 1 1
1 2
i i i

dx x xu
  to be faulty. Otherwise, statement 19 is not executed; 

and neighbor 1 1 1
1 2
i i i

dx x xu
  is still supposed to be healthy. 

 

BEGIN

END

1B iB ( )1 1d dB − +

0, 0ik s← ←

1 2 dx x xϕ 
0

1

( )1 2 dx x xT T k← 

1 1 1
1 2
i i i

dx x x
u T←

 1 0iτ ←

( ) max
1 1 11 modi i iτ ← τ + τ

1 0iτ = 0

( )1 1 1
1 2

1 i i i
dx x x

R
R k
←

 ( )1 1 1
1 2

0

0

i i i
dx x x

R
R k
←



0 1R R= 1

0

1 2
1 1 1

1 2
0d

i i i
d

x x x
x x x

ϕ ←



( )
1 2

max1 mod
dx x xk k k← + 

1

2

3

4

7 8

14

15

16 17

18

19

20

21

1

0is =

( )2 2 2
1 2

2
1

i i i
dx x x

R
R k
←

− ( )2 2 2
1 2

0

0 1i i i
dx x x

R
R k
←

−

0 2R R= 1

0

1 2
2 2 2

1 2
0d

i i i
d

x x x
x x x

ϕ ←



9 10

11

12

0

2 2 2
1 2
i i i

dx x x
u T←



13

11is←
5

6

II

I

 
Fig. 3. Flowchart of the multiplexed mutual inter-unit testing algorithm 
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Note that statements 8, 14, and 15 are necessary to count the time needed to form test 
response signatures by the tested processors (only phase 2 needs such a timer; owing to the 
use of barriers, it automatically applies to phase 1). 
In the algorithm shown in Fig. 3, much work is done in parallel making it possible to 
concurrently test processor nodes across the entire mesh. All the conditions and statements of 
the algorithm are simple enough to be implemented in hardware, which additionally 
contributes to the inter-unit test environment performance. 

V. COMPARING THE PROPOSED APPROACH TO THE MUTUAL INTER-UNIT TEST 
AND SELF-CHECKING 

The proposed approach is a good alternative to existing in-operation testing methods based on 
self-checking or neighbor-checking. It provides better multiprocessor testability, which we 
will demonstrate in the present section.  
Let ( )tπ  be the probability that a processor node of the multiprocessor is unambiguously 
detected as faulty by an individual test or a self-test unit. All possible situations when a node 
is unambiguously detected as faulty by its tested neighbors are considered. Let us first assume 

that 2d = . In this case 7xyK ′ = , i.e., each node is checked by 7 test units. The probability 
that all these 7 units assume the current node to be faulty is: 

( ) ( ) ( ) ( ) 07 77
7 1P t t t t= = −  π π π

         
                                                                   (8)

 
If there are 6 units out of 7 assuming the current node to be faulty, then the fault detection 
probability will be: 

( ) ( ) ( ) 166 6
7 7 1P t C t t= −  π π

                                                                                       
(9)

 

where 6
7

7!
6!(7 6)!

C =
−

 stands for the number of possible selections of 6 testing neighbors out 

of 7 testing units. It correctly reports that the current node is faulty. In general, it is known 

that 
!

!( )!
M
N

NC
M N M

=
− . 

In the same way, we can deduce formulae for the cases when there are 5 and 4 units out of 7 
indicating that the current node is faulty: 

( ) ( ) ( ) 255 5
7 7 1P t C t t= −  π π

                                                                                     
(10)

 

( ) ( ) ( ) 344 4
7 7 1P t C t t= −  π π

                                                                                    
(11)

 
If there are three or less units reporting that the current node is faulty, then we consider it 
healthy according to the majority operator rule. 
The sum of (8)-(11) gives us the following formula: 

( ) ( ) ( ) ( )
7 7 7

2 7 7
4 4

1
iii i

d
i i

P t P t C t t
−

=
= =

= = −  ∑ ∑ π π
    

                                              (12)
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Formula (12) makes it possible to evaluate the successful fault detection probability in a 2-
dimensional mesh multiprocessor. 

Let us now assume that 3d = . In this case 15xyK ′ = , each node is checked by 15 test units. 
The fault detection probability formulae can be deduced in the same way as (8)-(11): 

( ) ( ) ( ) ( ) 015 1515
15 1P t t t t= = −  π π π

                                                                      
(13)

 

( ) ( ) ( ) 11414 14
15 15 1P t C t t= −  π π

                                                                                 
(14)

 

( ) ( ) ( ) 21313 13
15 15 1P t C t t= −  π π

                                                                                 
(15)

 

( ) ( ) ( ) 31212 12
15 15 1P t C t t= −  π π

                                                                                 
(16)

 

( ) ( ) ( ) 41111 11
15 15 1P t C t t= −  π π

                                                                                 
(17)

 

( ) ( ) ( ) 51010 10
15 15 1P t C t t= −  π π

                                                                                 
(18)

 

( ) ( ) ( ) 699 9
15 15 1P t C t t= −  π π

                                                                                    
(19)

 

( ) ( ) ( ) 788 8
15 15 1P t C t t= −  π π

                                                                                    
(20)

 
Note that if there are 7 or less units reporting that the current node is faulty, then we again 
consider it healthy according to the majority operator rule. 
The sum of equations (13)-(20) gives us the following formula: 

( ) ( ) ( ) ( )
15 15 15

3 15 15
8 8

1
iii i

d
i i

P t P t C t t
−

=
= =

= = −  ∑ ∑ π π
  
                                             (21)

 
Formula (21) makes it possible to evaluate the successful fault detection probability in a 3-
dimensional mesh multiprocessor. 
In the same fashion, taking into account (7), we can deduce the following generic equation for 
a given arbitrary 2d ≥ : 

( ) ( ) ( ) ( ) ( )

( )

( )2 1 3
2 1 3

2 1 3
2 1 3

2

1
d d

d d iii
d d

d di

P t C t t
− +

− − +

− +
 − += 
 

= −  ∑ π π

    

                                 (22)

 

Using (22), it is possible to evaluate the probability ( )P t  that an arbitrary processor node is 
properly detected as faulty by itself and its tested neighbors in a multiprocessor of any 
dimension. 
Fig. 4 shows the ( )P t  versus ( )tπ  graphs for a fixed number of multiprocessor dimensions 

{ }2, 3, 4, 5, 6d ∈ , is obtained based on (22). 
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According to Fig. 4, it is evident that: 
• the probability ( )P t  grows significantly as the multiprocessor dimension d 

increases because the number of neighbors testing each processor node is 
proportional to 2d  ( ( )P t  grows faster than that in the mutual inter-unit test 
method [18] as a result of the presence of a multiplier "2" in (7)); 

• the probability ( )P t tends to "1" much faster than the probability ( )tπ  does; 

and the greater the value of ( )tπ , the faster ( )P t  tends to "1". In a 2-

dimensional multiprocessor, ( )P t  is equal to 0.87 when ( )tπ  is still as low as 

0.7, i.e., ( ) ( ) 1.24P t t ≈π ; in a 3-dimensional system, ( )P t  tends to 0.95 

while ( )tπ  remains as low as 0.7. The probability that a faulty node is 
properly detected becomes 1.36 times higher. 

 

 
Fig. 4. ( )P t  versus ( )tπ  graphs obtained for a fixed { }2, 3, 4, 5, 6d ∈  

 

One must mention that the proposed approach works well only if ( ) 0.5t >π . If ( ) 0.5t =π , 

then ( ) 0.5P t = . Therefore, the multiplexed mutual inter-unit test has no effect. If ( ) 0.5t <π , 

then ( )P t degrades with respect to ( )tπ . Thus, it is assumed that ( ) 0.5t >π . We suppose 
that a standalone test unit is capable of properly detecting faults in more than half of the cases. 
Based on (8), it is possible to compare the proposed approach to the mutual inter-unit test [18]. 
Let ( )0P t  be the successful fault detection probability provided by the mutual inter-unit test. 

Let us investigate the ( ) ( )0P t P t  versus ( )tπ  dependencies for a fixed 

{ }2, 3, 4, 5, 6, 7, 8, 9d ∈ . The ( ) ( )0P t P t  versus ( )tπ  graphs are shown in Fig. 5. 
The graphs of Fig. 5 demonstrate that the proposed approach provides better testability than 

the mutual inter-unit test method in low-dimensional multiprocessors (2 3d≤ ≤ ). ( ) ( )0P t P t  
reaches its maximum at ( )0.6 0.7t≤ ≤π . The maximum successful fault detection probability 
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increase takes place when ( ) 0.7t =π  and 2d = , with a value of approximately 11.5%. In a 3-

dimensional multiprocessor, ( ) ( )0P t P t  reaches its maximum at ( ) 0.6t =π  and exhibits a 
value of 10.9%. We must mention that the proposed approach becomes less efficient as the 

multiprocessor dimension d and the probability ( )tπ  increase. For example, if 4d =  and 
( ) 0.7t =π , the successful fault detection probability growth becomes as low as 5%; and if 
( ) 0.8t =π , it decreases to just 0.68%. When 5d ≥ , the proposed approach retains its 

efficiency in a narrow range of ( )tπ . For ( ) 0.7t ≥π , a maximum growth of only 2.5% is 
attained. 

 
Fig. 5. ( ) ( )0P t P t  versus ( )tπ  graphs for a fixed { }2, 3, 4, 5, 6, 7, 8, 9d ∈  

 
Using (8), one can compare the proposed approach to traditional self-checking by assuming 
that each node periodically performs a self-test with no communication with its peers. Under 
the assumption that a neighbor-test and a self-test are based on the same procedure, it is 

possible to allow ( )tπ  to be the successful fault detection probability provided by an 
individual test and a self-test unit of a processor node. Let us investigate the ( ) ( )P t tπ  

versus ( )tπ  dependencies for a fixed { }2, 3, 4, 5, 6, 7, 8, 9d ∈ . The ( ) ( )P t tπ  versus ( )tπ  
relationships are shown in Fig. 6. 
From the graph shown in Fig. 6, we can see that the proposed approach provides the lowest 
fault detection probability increase in the case of a 2-dimensional multiprocessor: given 

( ) 0.9t =π , then ( ) ( ) 1.108P t t ≈π ; if ( ) 0.8t =π , then ( ) ( ) 1.245P t t ≈π ; if ( ) 0.7t =π , 

then ( ) ( ) 1.357P t t ≈π ; if ( ) 0.6t =π , then ( ) ( ) 1.184P t t ≈π ; if ( ) 0.55t =π , then 

( ) ( ) 1.108P t t ≈π . The graph in Fig. 6 also shows that for a high ( )tπ  (i.e., ( ) 0.9t ≥π ),

( ) ( )P t tπ  becomes almost constant regardless of the value of d given. The closer ( )tπ  is 

to 1, the lower the increase in the successful fault detection probability. For ( ) 0.9t =π  and 
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2d > , we obtain ( ) ( ) 1.11P t t ≈π . Thus, we have an 11% testability growth. The 

proposed approach appears to be the most efficient when ( ) 0.6 0.7t ≈ ÷π . 
 

 
Fig. 6. ( ) ( )P t tπ  versus ( )tπ  graphs for a fixed { }2, 3, 4, 5, 6, 7, 8, 9d ∈  

 

Note that a decreasing ( )tπ  makes ( ) ( )P t tπ  grow; furthermore, the higher the value of d, 

the faster the growth. For example, if ( ) 0.8t =π  and 2d > , then ( ) ( ) 1.24P t t >π . Thus, 

the proposed approach is 24% better than self-checking. For ( ) 0.7t =π  and , we obtain 

( ) ( ) 1.4P t t >π , indicating a 40% increase. When ( ) 0.6t =π  and 5d > , we have

( ) ( ) 1.51P t t >π . Thus, our approach provides a 51% testability growth. 
In most cases, we can presume that the multiplexed mutual inter-unit test approach guarantees 
that the successful fault detection probability will increase by 11-25% compared to the self-
checking approach. Maximum growth is attained when ( ) 0.7t =π . Note that the mutual inter-
unit test [18] has a growth of 8-12% under the same assumptions. It appears to be1.37-2.083 
times less efficient. 

VI. CONCLUSION 

In the present paper, we proposed the multiplexed mutual inter-unit test approach to improve 
the testability of mesh-connected multicore and many-core multiprocessors by increasing the 
successful fault detection probability with respect to the mutual inter-unit test and traditional 
self-checking. We showed that our approach is applicable to multiprocessors of arbitrary 
dimensions; its effectiveness was demonstrated to be maximized when the number of 
dimensions was equal to 2 or 3, which matches the technological limitations of modern VLSI 
multiprocessors. The multiplexed mutual inter-unit test technique allows for online hardware-
level testing of all the processor nodes across the mesh in parallel, thus significantly 
contributing to the performance of the test environment. 
 

3d >
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