
JJEE Volume 3, Number 2, 2017
Pages 102-111

Jordan Journal of Electrical Engineering ISSN (Print): 2409-9600, ISSN (Online): 2409-9619

Corresponding author's e-mail: jamil.azzeh@bau.edu.jo

Fault-Tolerant Routing in Mesh-Connected Multicomputers based

on Majority-Operator-Produced Transfer Direction Identifiers

Jamil S. Al-Azzeh

Department of Computer Engineering, Al-Balqa’ Applied University, Amman, Jordan

e-mail: jamil.azzeh@bau.edu.jo

Received: February 8, 2017 Accepted: April 27, 2017

Abstract— The paper focuses on fault-tolerant 2D mesh-connected multicomputers, which can proceed operating

even if some of their units and/or links are faulty, and more particularly, on the routing environment of the

multicomputers capable of transferring packets between healthy processor units along the paths containing faulty

components. A novel approach to the fault-tolerant packet routing is presented making it possible to increase the

packet delivery probability by expanding the XY-routing scheme. The proposed approach is capable of recovering

corrupted routing direction data contained in the address section of a packet by using the majority operator applied

to the current direction IDs generated at the current and the two preceding hops on the route. Our simulation study

shows that the successful routing probability increases at least by 40% with the new scheme; yet, it grows on as the

route length increases compared to the XY-routing with no routing data recovery.

Keywords— Fault-tolerance, Mesh-connected multicomputers, Packet routing, Reliability.

I. INTRODUCTION

Mesh-connected networks are used widely in modern commercial and experimental

multicomputers and multiprocessors, including system-on-a-chip multiprocessors [1] and [2].

The performance of such parallel systems depends critically on the efficiency of the packet

routing (transfer) procedure employed because interprocessor communication takes place in

the many routines invoked while parallel applications are running on a multicomputer. Packet

transfer is organized in a sequence of hops. At each hop, a packet is processed by the

corresponding processor unit and then relayed to a given direct neighbor according to the

route-selection algorithm implemented. For example, if the XY-routing scheme is used, a

packet needs to make a number of hops along the X axis until it reaches the destination

column; then, it travels along the Y axis to the destination processor.

For fault-tolerant multicomputers, which can continue to operate correctly after losing some

of their basic components (units, links) and are the focus of the present paper, a fault-tolerant

routing procedure is assumed to be employed. Fault-tolerant routing has been a research focus

for the past four decades; and many solutions have been suggested. Existing routing

algorithms and schemes rely on specific faulty unit/link/region detection and identification

methods combined with a set of fault bypass rules [3]-[16]. The key differences among

various routing algorithms are associated with the topology of the communication network,

types of faults treated, and implementation level (software, hardware, or hybrid). Some

routing schemes are applicable to a number of topologies and take into account different types

of faults (separate unit faults, link faults, faulty regions of a specific form, e.g., convex or

concave). Most commonly, fault-tolerant routing algorithms assume that if there is a fault in a

unit, the unit is considered non-healthy as a whole. This means that no packets should be

routed along any path including this unit. In practice, this routing limitation may be a bit too

stringent. For example, a faulty unit’s communication hardware may still be healthy; and

packets may travel through this unit with no data loss or corruption. By contrast, the

mailto:jamil.azzeh@bau.edu.jo

© 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2 103

communication hardware of a healthy unit may add errors to packet transfer because of

undetected local faults, so packets may be delivered to wrong destination processors.

In the present paper, we propose a new approach to fault-tolerant routing; the approach might

be considered as an addition to existing routing schemes applicable to a number of network

topologies. Its key idea is that at each hop, the output channel (direction) to transfer a packet

is determined by applying the majority operator to the three direction IDs, one of which is

produced by the current unit according to the route selection algorithm and the other two are

read from the address section of the packet. As a result, if one direction ID is invalid, the

majority-operator-based scheme generates a correct direction ID to route the packet. The

direction IDs read from the packed address section are assumed to be determined by the two

predecessors when the packet passes through these units. We compare our scheme to the XY-

routing with no routing data recovery to demonstrate the successful routing probability

increase using a number of simulation studies.

II. BASIC PRINCIPLES AND ASSUMPTIONS

Our approach has no specific requirements for route selection, but in this paper, we illustrate

how it works assuming the XY-routing algorithm is used. We consider XY-routing for an

eight-direct-neighbor mesh system (see Fig.1), which is denser than the four-direct-neighbor

meshes employed typically and provides a greater number of redundant paths to the

destination.

Fig. 1. Eight-direct-neighbor mesh topology under consideration

The proposed fault-tolerant routing scheme is based on the following generic principles. First,

each processor unit determines the transfer directions for the next hops (i
th
, (i+1)

th
, and (i+2)

th

hops) and saves the resulting direction IDs for the (i+1)
th
 and the (i+2)

th
 hops to the packet

destination field. Second, each processor unit calculates the packet transfer direction ID by

applying the majority operator to the next direction ID provided by the current processor and

the two direction IDs determined previously at the preceding hops ((i-1)
th
 and (i-2)

th
 hops),

and read from the packet destination field.

104 © 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2

Using the above principles, we formulated packet destination field manipulation rules that

make it possible to recover valid direction IDs while routing packets in a communication

network containing faulty nodes or regions.

Let i be the current routing hop for a packet, and im denote the current processing unit

containing the packet. Let j

ic be the packet direction ID for processor unit im calculated

previously by processor unit
jm ,  2, 1,j i i i   . Thus, the actual packet direction ID ic is

determined according to the following formula:

 2 1# , ,i i i

i i i ic c c c 

(1)

where the symbol # stands for the majority operator; and it is supposed initially that

1 0 1

1 1 1c c c   ,
0 1

2 2c c . The # operator is defined according to the following rule:

 # , ,x y z xy xz yz  

with x, y and z standing for arbitrary binary variables. Based on the above assumptions, the

packed address field needs to include the following 5 subfields:

2 1 1. . . .  
C C C DA SA

where DA and SA are the destination and source address subfields, respectively (SA is

optionally based on the routing mechanism utilized); 2
C and 1

C are the i
th
 hop direction ID

subfields, whose content is calculated by processors 2im  and 1im  , respectively; and 1
C

stands for the (i+1)
th
 hop direction ID subfield, determined by processor 1im  . Note that

subfields 2
C and 1

C contain IDs
2i

ic 
 and

1i

ic 
, respectively, and are used to produce ID

ic according to (1). Subfield 1
C contains ID

1

1

i

ic 

 , which is supposed to be used at the (i

+1)
th
 hop to calculate ID 1ic  according to (1).

So long as a packet keeps traveling along a given route, subfields 2 1 1. .  
C C C are modified

at the start of each hop (i, 2i ) according to the following replacement rule:

2 1

1

1

1

2

;

;

.

i

i

i

i

c

c

 









 







C C

C

C

(2)

If 1i  , the above rule (2) transforms to

2 1

2

1 1

2

1 1

3

;

;

.

c

c

c







 







C

C

C

(3)

© 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2 105

Fig. 2 shows the formulated routing control principles and rules (2), (3), given an arbitrary

route for a packet to move along to the destination. The circles denote the processing units

belonging to the route; and the arrows denote the routing direction.

im 1im  2im 1im 2im 

ic 1ic  2ic 1ic 2ic 

 2 1# , ,i i i

i i i ic c c c 

2i

ic  1i

ic  1

1

i

ic 



3

1

i

ic 



2

1

i

ic 



2i

ic  1

1

i

ic 

 1

i

ic  2

i

ic 

Fig. 2. Packet address field modification according to rules (2) and (3)

III. ROUTING CONTROL ALGORITHM

In Fig. 3, the parallel routing control algorithm that implements the above principles and rules

(2) and (3) is presented. In the flowchart shown in Fig. 2, packet fields are denoted by a bold

text. Additionally, the following identifiers are used. The backward arrows «←» denote the

assignment operator; BR stands for the buffer employed to temporarily store processed and

routed packets; DA is the packet destination address; BR[x] denotes the contents of field x of

a packet stored in BR; CA is the current processor address; A(x) denotes the address part of a

packet routed; S stands for the set of packets arriving at the current processor inputs; and  ic

is the value transferred to channel ic .

BEGIN

END

  A SBR

1i

ic     
-1

BR C
2i

ic     
-2

BR C
  ,CA

i

ic





BR DA

 1 2# , ,i i i

i i i ic c c c 
  

1

,CA

i

ic


 

BR DA   
2

,CA

i

ic


 

BR DA

      
-2 +1

BR C BR C 1

i

ic 
   

-1
BR C 2

i

ic


   

1
BR C

 ic BR

1

2

3 4 5

6 7 8

9 10 11

12

13

Fig. 3. Routing control algorithm

106 © 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2

The algorithm shown in Fig. 3 is generic. Therefore, arbitrary packet ordering and selection

algorithms may be used. The route selection algorithm itself may be arbitrary. The selection

of a packet out of set S is done according to a given algorithm . The selection of a route for

the packet is done according to a predefined routing function . Note that function  is used

to determine the output directions for the current (see statement 5) and the next two routing

hops (see statements 7 and 8).

In Table 1, an extended version of the XY routing scheme is presented to recover route data

according to the proposed routing control algorithm (note that we assume an 8-direct-

neighbor mesh-connected network).

The second column of the table contains all possible relations between destination address

X.Y read from the corresponding field of the packet being processed and the current

processor unit address X1.Y1. The rest of the table determines how a packet should be routed

at the current hop (1s  , value
i

ic) and the following two hops (2s  , value 1

i

ic  ; 3s  , value

2

i

ic ). In the same fashion, it is possible to extend other routing schemes. To use Table 1 in the

routing process, one should consider that the order in which
i

ic , 1

i

ic  , and 2

i

ic  are calculated

according to the algorithm shown in Fig. 3 is significant.

TABLE 1

THE EXTENDED VERSION OF THE XY ROUTING SCHEME

No.
Relations Between Destination Address X.Y and

Current Processor Address X1.Y1

Packet transfer direction (s)

 1 i

is c

 12 i

is c 

 23 i

is c 

1    X X1 -1 , Y Y1 -1s s   

2    X X1 -1 , Y Y1 -1s s   

3    X X1 -1 , Y Y1 -1s s   

4    X X1 -1 , Y Y1 -1s s   

5  X X1 -1 , Y Y1s  

  

6  X X1 -1 , Y Y1 1s   
  

7  X X1 -1 , Y Y1 1s   
  

8  X X1 -1 , Y Y1 2s   
 

9  X X1 -1 , Y Y1 2s   
 

10  X X1 -1 , Y Y1s  

  

11  X X1 -1 , Y Y1 1s   
  

12  X X1 -1 , Y Y1 1s   
  

13  X X1 -1 , Y Y1 2s   
 

14  X X1 -1 , Y Y1 2s   
 

15  X X1, Y Y1 -1s  
   

16  X X1, Y Y1 -1s  
   

17 X X1, Y Y1 

- - -

© 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2 107

IV. SAMPLE HARDWARE-LEVEL IMPLEMENTATION

In Fig. 4, the structure of a communication unit of an n-direct-neighbor network is

diagrammed by implementing the proposed routing control algorithm.

...

...

...

...

CAA

CBUF0

CBUF1

CBUF2

CBUFn

...

MX0

MX1

MX2

MXn

CR0

...

CR1

CR2

CRn

MU0

MU1

MU2

MUn

...

... RM

IN0

IN1

IN2

INn

OUT0

OUT1

OUT2

OUTn

AM0 AM1 AM2 AMn...

...

CA

CPG

CBUF0-CBUFn

CR0-CRn

CAA

RM

Fig. 4. Structure of a communication unit that implements the proposed routing control algorithm

The proposed structure consists of a set of input buffers CBUF0-CBUFn, register matrix RM,

packet allocation analyzer CAA, current processor address generator CA, route selection units

CR0-CRn, a set of output multiplexers MX0-MXn, packet address modification units AM0-

AMn, a set of majority units MU0-MUn, and a clock pulse generator CPG.

The operation of the above unit as part of a communication network may be represented as

follows. Packets eventually arrive at the inputs IN0-INn of the current unit (note that IN0

connects the unit to the processor core; and the inputs IN1-INn are used to communicate with

the neighbor communication units). Having arrived at the input INi, a packet is written to the

buffer CBUFi; and the packets written to the buffers CBUF0-CBUFn are then read in groups

according to algorithm . When a packet is fetched from the corresponding buffer, address

fields are extracted to be transformed according to statements 3 and 4 of the algorithm

shown in Fig. 3. At the same time, route selectors CR0-CRn produce routing direction IDs
i

ic

according to statement 5 of the algorithm.

Then, selectors CR0-CRn generate pairs of values 1 2,i i

i ic c  according to statements 7 and 8 of

the routing control algorithm; they as well generate the majority units MU0-MUn issue

routing direction IDs ic according to statement 6 (also see (1)). The process goes on; and

units AM0-AMn modify the address fields of the packets being processed in accordance with

statements 9-11 of the algorithm (see rule (2)). Immediately after the modifications are

complete, the packets are transferred to the register matrix RM (rows of the matrix are

selected based on the values of ic). Then, CAA starts analyzing the packet allocation before it

determines the order in which the packets should be transmitted to the outputs OUT0-OUTn.

As soon as the transmission is complete, the packets are removed from the corresponding

buffers CBUF0-CBUFn. Then, the next set of packets are processed and routed.

108 © 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2

V. SUCCESSFUL ROUTING PROBABILITY EVALUATION

In the present section, we evaluate the magnitude of increase in the probability of successful

routing when applying the proposed routing control technique. We assume that the errors that

make routing directions wrong are independent of each other; and the probability that such an

error occurs at a given hop is:

  tP t e 

where  denotes the rate parameter of the error distribution function (average number of

errors per unit time).

For a given route including h hops (1h ), if no specific fault-tolerant routing control is

utilized, the probability of unsuccessful routing at a given moment t is

0 1 hQ p 
(4)

where p is the probability that the communication unit circuitry is healthy.

If the fault-tolerant routing control scheme is introduced, the above probability becomes

 
 2

2 2 3

1 3 2
h

Q p p p
 

  

(5)

where  a denotes a function such as  a a  if 0a  and   0a  if 0a  . Formula (5)

represents the case when the majority scheme that implements (1) is considered healthy.

Given the probability 0p that the majority scheme is healthy, (4) transforms to

  
 2

2 2 3 2 3

0 01 3 2 3 2
h

Q p p p p p
 

    
 

(6)

Dividing (4) by (6), we can evaluate the relative increase in the successful routing probability

achieved by employing the proposed routing control technique compared to the XY-routing as

  
 

0

2
2 2 3 2 3

#
0 0

1

1 3 2 3 2

h

h

Q p
Q

Q p p p p p



 

   
 




(7)

In Fig. 5, the Q versus h graphs presented were calculated using (7) for several predefined

values of p with 3h  and 0 0,99p  (note that with 3h  , we obtain 1Q ).

Fig. 5 demonstrates that the proposed approach is more efficient for longer routes (4h  and

higher) and higher probability values p.

To validate our theoretical results, we performed a simulation to investigate the operation of a

communication unit that can implement the proposed routing control scheme as part of a

mesh-connected communication network. We used a well-known Q-chart model to represent

the behavior of a unit in the simulation study and ran a number of experiments in the Visual

Q-chart Simulator environment developed by Zotov (South-West State University, Russian

Federation). The developed Q-chart model is the graph shown in Fig. 6.

© 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2 109

Hop Count

Fig. 5. Successful routing probability increase Q versus hop count h graphs for different values of p (subject to

3h  ,
0 0,99p )

Fig. 6. Q-chart model representing a unit that implements the proposed routing control algorithm

The operation and functions of the Q-chart elements are as follows. CellGen_i_j is a generator

that simulates the arrival of packets issued by the ij
th
 processor core. FaultGen_i_j is also a

generator; and it simulates the fault flow for the ij
th
 unit. If a fault occurs, then queue

FaultQue_i_j becomes non-empty, and its new state is taken into account by the random

controller RoutCtrl_i_j, which executes the proposed routing control algorithm. If the

occurred fault is fatal, queue FaultQue_i_j will always be non-empty, meaning that this unit is

not healthy anymore. If the fault is simply a glitch, RoutCtrl_i_j opens gate FaultGat_i_j at a

randomly picked moment, so queue FaultQue_i_j becomes empty (and the unit is assumed

healthy again). A packet is considered to be processed and sent to its destination as soon as it

is held by device FinalDev_i_j. If packet transfer is not possible because of invalid routing

data, which cannot be recovered by the routing control algorithm, the packet is sent to queue

S
u

cc
es

sf
u

l
R

o
u
ti

n
g

 P
ro

b
ab

il
it

y
 I

n
cr

ea
se

 (
ti

m
es

)

110 © 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2

FatalQue_i_j via gate Gat_i_j_9. The total count of all packets contained in queues

FatalQue_i_j across the mesh gives us the number of packets lost.

Our study shows that the hardware redundancy of a unit that supports the proposed routing

control scheme is less than 15%. This does not depend on the mesh size and grows slightly as

the number of direct neighbors n (mesh connectivity) increases. Thus, system scalability is

not affected.

VI. CONCLUSION

In the present paper, we proposed a new approach to fault-tolerant packet routing in mesh-

connected multicomputer systems. The proposed approach makes it possible to recover the

corrupted routing data contained in the address section of a packet by using transfer direction

IDs produced by the majority operator applied to the current direction IDs generated at the

current and the two preceding hops on the route. Our evaluation and simulation results show a

significant increase in successful routing probability attainable with the new scheme, which

grows considerably as the average packet route length increases. We found that the hardware

redundancy of a unit implementing the proposed routing control scheme is as low as 15%.

REFERENCES

[1] J. Al-Azzeh, M. Leonov, D. Skopin, E. Titenko, and I. Zotov, "The organization of built-in

hardware-level mutual self-test in mesh-connected VLSI multiprocessors," Information

Technology, vol. 3, no. 2, pp. 29-33, 2015.

[2] A. Tumanov, J. Wise, O. Mutlu, and G. Ganger, "Asymmetry-aware execution placement on

manycore chips," Proceedings of Systems for Future Multicore Architectures Workshop, pp. 1-6,

2013.

[3] J. Duato, "Theory of fault-tolerant routing in wormhole networks," Proceedings of Parallel and

Distributed Systems Conference, pp. 600-607, 1994.

[4] P. Sui and S. Wang, "An improved algorithm for fault-tolerant wormhole routing in meshes,"

IEEE Transactions on Computers, vol. 46, no. 9. pp. 1040-1042. 1997.

[5] S. Chalasani and R. Boppana, "Communication in multicomputers with nonconvex faults," IEEE

Transactions on Computers, vol. 46, no. 5. pp. 616-622. 1997.

[6] J. Al-Sadi, K. Day, and M. Ould-Khaoua, "Probability-based fault-tolerant routing in hypercubes,"

The Computer Journal, vol. 44, no. 5, pp. 368-373. 2001.

[7] D. Xiang and A. Chen, "Fault-tolerant routing in 2D tori or meshes using limited-global-safety

information," Proceedings of Parallel Processing Conference, pp. 231-238, 2002.

[8] G. Wang and J. Chen, "A new fault-tolerant routing scheme for 2-dimensional mesh networks,"

Proceedings of Parallel and Distributed Computing Conference, Applications and Technologies,

pp. 95-98, 2003.

[9] G. Wang, T. Li, and J. Chen, "A probabilistic approach to fault-tolerant routing algorithm on mesh

networks," Proceedings of Parallel and Distributed Systems Conference, pp. 577-584, 2004.

[10] C. Ho and L. Stockmeyer, "A new approach to fault-tolerant wormhole routing for mesh-

connected parallel computers," IEEE Transactions on Computers, vol. 53, no. 4. pp. 427-438. 2004.

© 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2 111

[11] D. Xiang, J. Sun, J. Wu, and K. Thulasiraman, "Fault-tolerant routing in meshes/tori using planarly

constructed fault blocks," Proceedings of Parallel Processing Conference, pp. 577-584, 2005.

[12] J. Wu and Z. Jiang, "On constructing the minimum orthogonal convex polygon for the fault-

tolerant routing in 2-D faulty meshes," IEEE Transactions on Reliability, vol. 54, no. 3, pp. 449-

458, 2005.

[13] M. Gomez, N. Nordbotten, J. Flich, P. Lopez, A. Robles, J. Duato, T. Skeie, and O. Lysne, "A

routing methodology for achieving fault tolerance in direct networks," IEEE Transactions on

Computers, vol. 55, no. 4, pp. 400-415, 2006.

[14] S. Khonsari, A. Dadlani, and A. Ould-Khaoua, "A probabilistic characterization of fault rings in

adaptively-routed mesh interconnection networks," Proceedings of Parallel Architectures,

Algorithms, and Networks Symposium, pp. 233-238, 2008.

[15] M. Kobayashi, T. Takabatake, T. Matsushima, and S. Hirasawa, "Probabilistic fault diagnosis and

its analysis in multicomputer systems," Proceedings of IEEE Systems, Man, and Cybernetics

Conference, pp. 1205-1211, 2011.

[16] Y. Nishiyama, Y. Hirai, and Y. Kaneko, "Fault-tolerant routing based on improved safety levels in

pancake graphs," Proceedings of Parallel and Distributed Computing, Applications and

Technologies Conference, pp. 76-81, 2014.

