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Abstract— The paper focuses on fault-tolerant 2D mesh-connected multicomputers, which can proceed operating 

even if some of their units and/or links are faulty, and more particularly, on the routing environment of the 

multicomputers capable of transferring packets between healthy processor units along the paths containing faulty 

components. A novel approach to the fault-tolerant packet routing is presented making it possible to increase the 

packet delivery probability by expanding the XY-routing scheme. The proposed approach is capable of recovering 

corrupted routing direction data contained in the address section of a packet by using the majority operator applied 

to the current direction IDs generated at the current and the two preceding hops on the route. Our simulation study 

shows that the successful routing probability increases at least by 40% with the new scheme; yet, it grows on as the 

route length increases compared to the XY-routing with no routing data recovery. 
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I. INTRODUCTION 

Mesh-connected networks are used widely in modern commercial and experimental 

multicomputers and multiprocessors, including system-on-a-chip multiprocessors [1] and [2]. 

The performance of such parallel systems depends critically on the efficiency of the packet 

routing (transfer) procedure employed because interprocessor communication takes place in 

the many routines invoked while parallel applications are running on a multicomputer. Packet 

transfer is organized in a sequence of hops. At each hop, a packet is processed by the 

corresponding processor unit and then relayed to a given direct neighbor according to the 

route-selection algorithm implemented. For example, if the XY-routing scheme is used, a 

packet needs to make a number of hops along the X axis until it reaches the destination 

column; then, it travels along the Y axis to the destination processor. 

For fault-tolerant multicomputers, which can continue to operate correctly after losing some 

of their basic components (units, links) and are the focus of the present paper, a fault-tolerant 

routing procedure is assumed to be employed. Fault-tolerant routing has been a research focus 

for the past four decades; and many solutions have been suggested. Existing routing 

algorithms and schemes rely on specific faulty unit/link/region detection and identification 

methods combined with a set of fault bypass rules [3]-[16]. The key differences among 

various routing algorithms are associated with the topology of the communication network, 

types of faults treated, and implementation level (software, hardware, or hybrid). Some 

routing schemes are applicable to a number of topologies and take into account different types 

of faults (separate unit faults, link faults, faulty regions of a specific form, e.g., convex or 

concave). Most commonly, fault-tolerant routing algorithms assume that if there is a fault in a 

unit, the unit is considered non-healthy as a whole. This means that no packets should be 

routed along any path including this unit. In practice, this routing limitation may be a bit too 

stringent. For example, a faulty unit’s communication hardware may still be healthy; and 

packets may travel through this unit with no data loss or corruption. By contrast, the 
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communication hardware of a healthy unit may add errors to packet transfer because of 

undetected local faults, so packets may be delivered to wrong destination processors.  

In the present paper, we propose a new approach to fault-tolerant routing; the approach might 

be considered as an addition to existing routing schemes applicable to a number of network 

topologies. Its key idea is that at each hop, the output channel (direction) to transfer a packet 

is determined by applying the majority operator to the three direction IDs, one of which is 

produced by the current unit according to the route selection algorithm and the other two are 

read from the address section of the packet. As a result, if one direction ID is invalid, the 

majority-operator-based scheme generates a correct direction ID to route the packet. The 

direction IDs read from the packed address section are assumed to be determined by the two 

predecessors when the packet passes through these units. We compare our scheme to the XY-

routing with no routing data recovery to demonstrate the successful routing probability 

increase using a number of simulation studies. 

II. BASIC PRINCIPLES AND ASSUMPTIONS 

Our approach has no specific requirements for route selection, but in this paper, we illustrate 

how it works assuming the XY-routing algorithm is used. We consider XY-routing for an 

eight-direct-neighbor mesh system (see Fig.1), which is denser than the four-direct-neighbor 

meshes employed typically and provides a greater number of redundant paths to the 

destination. 

 

 
Fig. 1. Eight-direct-neighbor mesh topology under consideration 

 

The proposed fault-tolerant routing scheme is based on the following generic principles. First, 

each processor unit determines the transfer directions for the next hops (i
th
, (i+1)

th
, and (i+2)

th
 

hops) and saves the resulting direction IDs for the (i+1)
th
 and the (i+2)

th
 hops to the packet 

destination field. Second, each processor unit calculates the packet transfer direction ID by 

applying the majority operator to the next direction ID provided by the current processor and 

the two direction IDs determined previously at the preceding hops ((i-1)
th
 and (i-2)

th
 hops), 

and read from the packet destination field. 
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Using the above principles, we formulated packet destination field manipulation rules that 

make it possible to recover valid direction IDs while routing packets in a communication 

network containing faulty nodes or regions. 

Let i be the current routing hop for a packet, and im  denote the current processing unit 

containing the packet. Let j

ic  be the packet direction ID for processor unit im  calculated 

previously by processor unit
jm ,  2, 1,j i i i   . Thus, the actual packet direction ID ic  is 

determined according to the following formula: 

 2 1# , ,i i i

i i i ic c c c 
                                                                                                       

(1)
 

 

where the symbol # stands for the majority operator; and it is supposed initially that 

1 0 1

1 1 1c c c   , 
0 1

2 2c c . The # operator is defined according to the following rule: 

 # , ,x y z xy xz yz  
 

 

with x, y and z standing for arbitrary binary variables. Based on the above assumptions, the 

packed address field needs to include the following 5 subfields: 

2 1 1. . . .  
C C C DA SA  

 

where DA and SA are the destination and source address subfields, respectively (SA is 

optionally based on the routing mechanism utilized); 2
C  and 1

C  are the i
th
 hop direction ID 

subfields, whose content is calculated by processors 2im   and 1im  , respectively; and 1
C  

stands for the (i+1)
th
 hop direction ID subfield, determined by processor 1im  . Note that 

subfields 2
C  and 1

C  contain IDs 
2i

ic 
 and 

1i

ic 
, respectively, and are used to produce ID 

ic  according to (1). Subfield 1
C  contains ID 

1

1

i

ic 

 , which is supposed to be used at the (i 

+1)
th
 hop to calculate ID 1ic   according to (1). 

So long as a packet keeps traveling along a given route, subfields 2 1 1. .  
C C C  are modified 

at the start of each hop (i, 2i  ) according to the following replacement rule: 

2 1

1

1

1

2

;

;

.

i

i

i

i

c

c

 









 







C C

C

C
                                                                                                                        

(2)

 
 

If 1i  , the above rule (2) transforms to 

2 1

2

1 1

2

1 1

3

;

;

.

c

c

c







 




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C

C

C
                                                                                                                         

(3)
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Fig. 2 shows the formulated routing control principles and rules (2), (3), given an arbitrary 

route for a packet to move along to the destination. The circles denote the processing units 

belonging to the route; and the arrows denote the routing direction.  

im 1im  2im 1im 2im 

ic 1ic  2ic 1ic 2ic 

 2 1# , ,i i i

i i i ic c c c 

2i

ic  1i

ic  1

1

i

ic 



3

1

i

ic 



2

1

i

ic 



2i

ic  1

1
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ic 

 1

i

ic  2

i

ic 

 
Fig. 2. Packet address field modification according to rules (2) and (3) 

III. ROUTING CONTROL ALGORITHM 

In Fig. 3, the parallel routing control algorithm that implements the above principles and rules 

(2) and (3) is presented. In the flowchart shown in Fig. 2, packet fields are denoted by a bold 

text. Additionally, the following identifiers are used. The backward arrows «←» denote the 

assignment operator; BR stands for the buffer employed to temporarily store processed and 

routed packets; DA is the packet destination address; BR[x] denotes the contents of field x of 

a packet stored in BR; CA is the current processor address; A(x) denotes the address part of a 

packet routed; S stands for the set of packets arriving at the current processor inputs; and  ic

is the value transferred to channel ic . 

BEGIN

END
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Fig. 3. Routing control algorithm 
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The algorithm shown in Fig. 3 is generic. Therefore, arbitrary packet ordering and selection 

algorithms may be used. The route selection algorithm itself may be arbitrary. The selection 

of a packet out of set S is done according to a given algorithm . The selection of a route for 

the packet is done according to a predefined routing function . Note that function  is used 

to determine the output directions for the current (see statement 5) and the next two routing 

hops (see statements 7 and 8).  

In Table 1, an extended version of the XY routing scheme is presented to recover route data 

according to the proposed routing control algorithm (note that we assume an 8-direct-

neighbor mesh-connected network). 

The second column of the table contains all possible relations between destination address 

X.Y  read from the corresponding field of the packet being processed and the current 

processor unit address X1.Y1. The rest of the table determines how a packet should be routed 

at the current hop ( 1s  , value 
i

ic ) and the following two hops ( 2s  , value 1

i

ic  ; 3s  , value 

2

i

ic  ). In the same fashion, it is possible to extend other routing schemes. To use Table 1 in the 

routing process, one should consider that the order in which 
i

ic , 1

i

ic  , and 2

i

ic   are calculated 

according to the algorithm shown in Fig. 3 is significant. 

 

TABLE 1 

THE EXTENDED VERSION OF THE XY ROUTING SCHEME 

No. 
Relations Between Destination Address X.Y  and 

Current Processor Address X1.Y1 

Packet transfer direction ( s ) 

 1 i

is c
 

 12 i

is c 
 

 23 i

is c 
 

1    X X1 -1 , Y Y1 -1s s   
    

2    X X1 -1 , Y Y1 -1s s   
    

3    X X1 -1 , Y Y1 -1s s   
    

4    X X1 -1 , Y Y1 -1s s   
    

5  X X1 -1 , Y Y1s  
 

      

6  X X1 -1 , Y Y1 1s   
      

7  X X1 -1 , Y Y1 1s   
      

8  X X1 -1 , Y Y1 2s   
     

9  X X1 -1 , Y Y1 2s   
     

10  X X1 -1 , Y Y1s  
 

      

11  X X1 -1 , Y Y1 1s   
      

12  X X1 -1 , Y Y1 1s   
      

13  X X1 -1 , Y Y1 2s   
     

14  X X1 -1 , Y Y1 2s   
     

15  X X1, Y Y1 -1s  
       

16  X X1, Y Y1 -1s  
       

17 X X1, Y Y1 
 

- - - 
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IV. SAMPLE HARDWARE-LEVEL IMPLEMENTATION 

In Fig. 4, the structure of a communication unit of an n-direct-neighbor network is 

diagrammed by implementing the proposed routing control algorithm. 

 

...

...

...

...

CAA

CBUF0

CBUF1

CBUF2

CBUFn

...

MX0

MX1

MX2

MXn

CR0

...

CR1

CR2

CRn

MU0

MU1

MU2

MUn

...

... RM

IN0

IN1

IN2

INn

OUT0

OUT1

OUT2

OUTn

AM0 AM1 AM2 AMn...

...

CA

CPG

CBUF0-CBUFn

CR0-CRn

CAA

RM

 
Fig. 4. Structure of a communication unit that implements the proposed routing control algorithm 

 

The proposed structure consists of a set of input buffers CBUF0-CBUFn, register matrix RM, 

packet allocation analyzer CAA, current processor address generator CA, route selection units 

CR0-CRn, a set of output multiplexers MX0-MXn, packet address modification units AM0-

AMn, a set of majority units MU0-MUn, and a clock pulse generator CPG. 

The operation of the above unit as part of a communication network may be represented as 

follows. Packets eventually arrive at the inputs IN0-INn of the current unit (note that IN0 

connects the unit to the processor core; and the inputs IN1-INn are used to communicate with 

the neighbor communication units). Having arrived at the input INi, a packet is written to the 

buffer CBUFi; and the packets written to the buffers CBUF0-CBUFn are then read in groups 

according to algorithm . When a packet is fetched from the corresponding buffer, address 

fields are extracted to be transformed according to statements 3 and 4 of the algorithm 

shown in Fig. 3. At the same time, route selectors CR0-CRn produce routing direction IDs 
i

ic  

according to statement 5 of the algorithm.  

Then, selectors CR0-CRn generate pairs of values 1 2,i i

i ic c   according to statements 7 and 8 of 

the routing control algorithm; they as well generate the majority units MU0-MUn issue 

routing direction IDs ic  according to statement 6 (also see (1)). The process goes on; and 

units AM0-AMn modify the address fields of the packets being processed in accordance with 

statements 9-11 of the algorithm (see rule (2)). Immediately after the modifications are 

complete, the packets are transferred to the register matrix RM (rows of the matrix are 

selected based on the values of ic ). Then, CAA starts analyzing the packet allocation before it 

determines the order in which the packets should be transmitted to the outputs OUT0-OUTn. 

As soon as the transmission is complete, the packets are removed from the corresponding 

buffers CBUF0-CBUFn. Then, the next set of packets are processed and routed. 
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V. SUCCESSFUL ROUTING PROBABILITY EVALUATION 

In the present section, we evaluate the magnitude of increase in the probability of successful 

routing when applying the proposed routing control technique. We assume that the errors that 

make routing directions wrong are independent of each other; and the probability that such an 

error occurs at a given hop is: 

  tP t e 
 

 

where  denotes the rate parameter of the error distribution function (average number of 

errors per unit time). 

For a given route including h hops ( 1h  ), if no specific fault-tolerant routing control is 

utilized, the probability of unsuccessful routing at a given moment t is 

0 1 hQ p                                                                                                                             
(4)

 
 

where p is the probability that the communication unit circuitry is healthy. 

If the fault-tolerant routing control scheme is introduced, the above probability becomes 

 
 2

2 2 3

# 1 3 2
h

Q p p p
 

  
                                                                                                 

(5)
 

 

where  a  denotes a function such as  a a   if 0a   and   0a   if 0a  . Formula (5) 

represents the case when the majority scheme that implements (1) is considered healthy. 

Given the probability 0p  that the majority scheme is healthy, (4) transforms to 

  
 2

2 2 3 2 3

# 0 01 3 2 3 2
h

Q p p p p p
 

    
                                                                  

(6)
 

 

Dividing (4) by (6), we can evaluate the relative increase in the successful routing probability 

achieved by employing the proposed routing control technique compared to the XY-routing as 

  
 

0

2
2 2 3 2 3

#
0 0

1

1 3 2 3 2

h

h

Q p
Q

Q p p p p p



 

   
 




                                                       

(7)

 
 

In Fig. 5, the Q  versus h graphs presented were calculated using (7) for several predefined 

values of p with 3h   and 0 0,99p   (note that with 3h  , we obtain 1Q  ).  

Fig. 5 demonstrates that the proposed approach is more efficient for longer routes ( 4h   and 

higher) and higher probability values p.  

To validate our theoretical results, we performed a simulation to investigate the operation of a 

communication unit that can implement the proposed routing control scheme as part of a 

mesh-connected communication network. We used a well-known Q-chart model to represent 

the behavior of a unit in the simulation study and ran a number of experiments in the Visual 

Q-chart Simulator environment developed by Zotov (South-West State University, Russian 

Federation). The developed Q-chart model is the graph shown in Fig. 6. 
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Hop Count 

Fig. 5. Successful routing probability increase Q  versus hop count h graphs for different values of p (subject to

3h  , 
0 0,99p  ) 

 

 

 
Fig. 6. Q-chart model representing a unit that implements the proposed routing control algorithm 

 

The operation and functions of the Q-chart elements are as follows. CellGen_i_j is a generator 

that simulates the arrival of packets issued by the ij
th
 processor core. FaultGen_i_j is also a 

generator; and it simulates the fault flow for the ij
th
 unit. If a fault occurs, then queue 

FaultQue_i_j becomes non-empty, and its new state is taken into account by the random 

controller RoutCtrl_i_j, which executes the proposed routing control algorithm. If the 

occurred fault is fatal, queue FaultQue_i_j will always be non-empty, meaning that this unit is 

not healthy anymore. If the fault is simply a glitch, RoutCtrl_i_j opens gate FaultGat_i_j at a 

randomly picked moment, so queue FaultQue_i_j becomes empty (and the unit is assumed 

healthy again). A packet is considered to be processed and sent to its destination as soon as it 

is held by device FinalDev_i_j. If packet transfer is not possible because of invalid routing 

data, which cannot be recovered by the routing control algorithm, the packet is sent to queue 

S
u

cc
es

sf
u

l 
R

o
u
ti

n
g

 P
ro

b
ab

il
it

y
 I

n
cr

ea
se

 (
ti

m
es

) 



110                              © 2017 Jordan Journal of Electrical Engineering. All rights reserved - Volume 3, Number 2 

FatalQue_i_j via gate Gat_i_j_9. The total count of all packets contained in queues 

FatalQue_i_j across the mesh gives us the number of packets lost. 

Our study shows that the hardware redundancy of a unit that supports the proposed routing 

control scheme is less than 15%. This does not depend on the mesh size and grows slightly as 

the number of direct neighbors n (mesh connectivity) increases. Thus, system scalability is 

not affected. 

VI. CONCLUSION 

In the present paper, we proposed a new approach to fault-tolerant packet routing in mesh-

connected multicomputer systems. The proposed approach makes it possible to recover the 

corrupted routing data contained in the address section of a packet by using transfer direction 

IDs produced by the majority operator applied to the current direction IDs generated at the 

current and the two preceding hops on the route. Our evaluation and simulation results show a 

significant increase in successful routing probability attainable with the new scheme, which 

grows considerably as the average packet route length increases. We found that the hardware 

redundancy of a unit implementing the proposed routing control scheme is as low as 15%. 
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