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Abstract— This paper considers the problem of oscillations in a synchronous generator connected to infinite bus 
through transmission lines. Two on-line control techniques, namely, artificial neural networks (ANN) and 
simulated annealing (SA) are utilized to cancel the oscillations in synchronous generators (SG). Simulation results 
of applying external disturbances to the synchronous generator controlled by the proposed simulated annealing 
controllers are compared to results obtained by using neural network controllers. These control schemes contribute 
to preventing system instability by suppressing the low-frequency oscillations arising from power grid fault 
disturbances. The proposed on-line SA and NN integrate a voltage regulator and a power system stabilizer to 
obtain near-optimal solutions of the problem through utilizing functions evaluation. They can be adopted to replace 
the conventional automatic voltage regulator (AVR) with power system stabilizer (PSS) of the generator. 
Simulation results show that algorithms can efficiently and effectively solve such optimization problems within 
short time. In addition, they are presented to demonstrate the effectiveness and advantage of the control system of 
synchronous generator (SG) in comparison with the conventional control scheme so as to allow the generator to 
operate closely to its steady state stability limits. 
 
Keywords— Excitation control, Neural networks, On-line control, Optimization, Simulated annealing, 
Synchronous generator. 
 

I. INTRODUCTION 

Successful operation of modern complex power system depends largely on the engineer’s 
ability to provide a reliable and uninterrupted service to the load, ideally with best quality. 
The load must be fed at a constant voltage; and frequency must be held within close 
tolerances so that the consumer's equipment may operate satisfactorily [1]. 
It is important to observe that change in the real output power of electric generators affect 
essentially, only the frequency; and change in the reactive power affect essentially, only the 
voltage in the system. These properties make it possible to divide the control of a power 
system into two separate control channels, the MEGAVAR voltage control channel and the 
MEGAWATT frequency control channel. According to this classification, a generator is 
equipped with two major controls. Automatic Voltage Regulator (AVR) maintains the 
generator voltage to a reference value; and a governor keeps the generator rotating speed or 
frequency constant. However, most electric power systems are equipped with (AVR) and 
(AGC) controls, but still they have spontaneous oscillations at very low frequencies in order 
of several cycles per minute. The low frequency oscillation is an unstable phenomenon. It 
belongs to the so-called small signal stability problem in power systems. Also, the system 
suffers from large oscillations due to transient changes, faults and other types of disturbances. 
A small signal (steady-state) stability problem arises when a generator or a group of 
generators in a power system is subjected to small and gradual changes in load. This leads to 
unbalance between the mechanical input and electrical output powers of the generator. 
Following a small disturbance, if system variables (frequency, power, and voltage) do not 
reach their steady-state values at specified levels and time, poorly damped or even unstable 
low frequency oscillations occur in these variables [2], [3]. 
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The requirement of a reliable power system is to operate the SG in a large area 
interconnection network. Effective control makes dynamic operations stable when there is a 
small variation or small oscillation in the network or in the excitation and governor control 
systems, as well as when it is subjected to large and sudden disturbance  [4]. This is called 
transient stability of synchronous machine. These disturbances, which include a fault, a 
heavily loaded line or a bruit of large load, may also cause instability. Permanent changes, 
such as load changes, usually alter the system at least temporarily so that the subsequent 
steady-state operation will be different from that prior to the disturbance [1], [5]. 
In this paper, neural networks with specialized learning and simulated annealing (SA) 
approaches for problem optimization control are presented. Artificial neural networks (ANNs) 
are adaptive non-linear maps that accept inputs from one finite dimensional space and 
produce outputs in another finite space. This inherent nonlinearity makes them very useful 
tools in complex, uncertain and dynamic environments [6], [7]. The power grid is highly 
complex, uncertain and dynamic in which ANNs have proved to be useful in providing 
effective control [8]. It has been reported that when using specialized learning, it is beneficial 
to implement off-line learning first. The first rough approximation of the desired control law 
is performed via direct learning [9]. In this paper, the neural controller would be capable for 
driving the system over the entire operating range without instability problems. After this has 
been done, it will be possible to implement the on-line specialized learning to improve the NN 
controller. ANNs have been used in a wide range of applications, such as modeling tools, for 
regression, classification, and system approximation [10], [11], [12]. They are also attractive 
nonlinear controllers due to their inherent nonlinearity, insensitivity to noise and robustness 
[13], [14]. Research on the use of ANNs for automatic voltage regulation has been explored 
using recurrent neural networks (RNN), which show a better performance than the 
conventional AVR with PSS [15], [16], [17]. Extensive work has also been done on the use of 
ANNs in adaptive critic design (ACD) used for synchronous generator voltage regulation. In 
our work, the NN controller is investigated using the specialized learning. In addition, the 
results of the implementation of NN controller and the on-line simulated annealing are 
presented and compared. Simulated Annealing (SA) is a well-known probabilistic meta-
heuristic; and it can be used to solve discrete and continuous optimization problems. The 
significant advantage of SA over other solution methods has made it a practical solution 
method for solving complex optimization problems. In this study, SA is used to minimize a 
prescribed objective function. It should be noted that on-line SA algorithm is run several 
times, before optimal control signals are obtained.  
In this paper, the on-line neuro-controller with specialized learning and SA are designed to 
replace the conventional AVR with PSS. Simulation results show that the performance of SA 
controllers based excitation system is superior to that of a conventional AVR and PSS 
excitation system. 

II. SYNCHRONOUS GENERATOR MODELING 

For any electric power system dynamic study, a proper mathematical model must be chosen. 
Yet, the selection of a power system model cannot be dissociated from the problem itself, or 
from the computational facilities and control techniques available. It is neither adequate nor 
practical to revise "universal models" for all power system dynamic problems [18]. 
When the power system stability problem was investigated using an ac calculating board 
years ago, the model of voltage behind reactance with a second-order torque equation was the 
best choice; the system was relatively small; and there were no other computational facilities 
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available. With modern digital computers, however, there is a tendency to over-represent an 
electric power system [1]. 
There are various kinds of power system dynamic problems: high-or low frequency 
oscillations, large or small (fast and slow varying) disturbances, and large or small electric 
power systems. However, there is only a limited number of system components that are 
essential to the dynamic study: the hydraulic and steam turbines, the synchronous generator, 
the governor, and the excitation system. For each of them, several basic models are 
recommended by the professional societies for the study of specific problems [19]. When 
studying the identification and control of synchronous machines, it is necessary to have a 
mathematical model for it. The model may be obtained in the form of a set of differential 
equations. The state space representation is the most suitable technique for digital computer 
applications in synchronous machine control. Such models can be obtained from the 
knowledge of the physical behavior of the system or from input-output data. 
A dynamic system consisting of a finite number of lumped elements may be described by 
ordinary differential equations in which time is the independent variable. By using vector 
matrix notation, nth order differential equation may be expressed as nth order vector-matrix of 
the first order differential equation. If n-element of the vector-matrix differential equation is a 
set of state variables, the vector-matrix differential equation will be called a state equation. 
[2]. It should be noted that the list of symbols of all parameters and variables of the adopted 
system is presented in Table A1. 
The nonlinear time-invariant system equations for the system are of form: 
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On this basis, (2), (3), (4) and (7) represent the four state equations of the synchronous 
machine; and flux linkage (ψ F ) is a state variable to obtain a simple formulation [2], [1]. 
Equations (5) and (6) represent the state equation of a second order exciter voltage regulator 
system. Therefore, the overall state-space equation will be: 
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Equation (10) shows the final state-space mathematical model obtained. It is a set of 
nonlinear-coupled first order differential equations.  
In this work, the system investigated has the parametric and initial values, which are given in 
Tables A2 and A3. These parametric and initial values adopted from [1] are presented in the 
Appendix. For simulation purposes, the SG system was simulated in C++ environment using 
numerical techniques based on the forth order Runge-Kutta method with time step size of 
0.05ms. 
The power system under study is tested for (10%) change in excitation to study the open loop 
performance (the system without controller). The deviations of output states ( δ∆ , ω∆ , V t

∆ ,

ψ∆ F , and V F
∆ ) are oscillated before reaching their steady-state values as shown in Fig. 1 

which shows that the system is stable but with significant amount of oscillations in the state 
variables. These oscillations are not acceptable in power system stability considerations; 
therefore, the stability of the system needs to be improved. 

III. NEURAL NETWORK FOR EXCITATION CONTROL OF SG 

The control of systems having complex, linear or non-linear dynamics using neural network-
based methods has become a topic of considerable importance in the research literature. The 
primary object of any controller is to provide an appropriate control signal to the system, so 
that a desired output is reached. Much development in designing modern as well as traditional 
controllers has already occurred; the same is not true for neural network (NN) based 
solutions. In traditional regulation structures of the excitation control of a synchronous 
generator, proportional integral derivative (PID) voltage controller is mainly adopted for an 
excitation current controller. The structure of the classical control system is presented in Fig. 
2. 
In particular, much is currently known about adaptive designs, optimal control systems, and 
multivariable analysis, but there are very few well established methodologies based on neural 
reasoning. Therefore, the development of NN-based controllers is still quite lagging behind 
the more traditional forms of control systems.  
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Fig. 1. SG variables without control due to a step (10%) change in the excitation 

 

 
Fig. 2. Structures of the classical excitation control 

 
In recent years, some advances in the area of NN have provided the potential for new 
approaches to tackle control problems for systems with complex linear or non-linear 
dynamics such as the synchronous generator control problem. The application of NN to 
dynamic systems control has been the subject of considerable research in recent years; some 
important contributions to this subject include Narendra et al. [7], Psaltis et al. [9] and 
Lightbody et al. [20] and [21]. In the field of power systems controls, the objective is to 
develop a neural network-based controller using off-line and/or on-line learning processes, so 
that the required responses can be achieved. 
In off-line learning, the NN controller takes as its inputs either the delayed values of the 
neural network's outputs (or the control signal) or the system output, or both. The network is 
trained to reproduce the given target (control signal). In this case, the difference between the 
NN output and the reference (target) is used for adjusting weights during training.  
The trained network should be able to produce the appropriate control signal, making the 
actual system output approach the reference one. This approach is suitable only when training 
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data is already available before learning starts. Psaltis et al. [9] called this kind of learning 
"general learning" since a general procedure is used for producing the target signal. 
On-line learning, on the other hand, is an iterative procedure, which attempts to minimize the 
error between the system output and the reference as training data becomes available. Here 
the neural network is trained to find the system input that drives the system output to reach 
the given target. This network can be specifically trained on-line to tune itself while 
performing the desired work. For successful and accurate learning of the NN, the input data 
must be rich enough to reveal all the important controlled parameters of the system [22], [23]. 
This kind of on-line learning is called "specialized learning" since the neural network 
controller is designed to operate in regions of specialization only. 
Specialized learning differs from the direct learning by the fact that the neural controller 
learns no longer from input/output pairs but from direct evaluation of the network accuracy. 
The difference between the actual and desired system’s output is used to change the weight of 
connection of the neural controller network. The controller learns continuously (on-line); and 
therefore, it is able to control dynamic systems with time varying characteristics. The 
evaluation of the error requires a prior knowledge of the beam system. The proposed system 
can be viewed as an additional, not modifiable, layer of the neural controller. Neural networks 
implicitly learn the inverse characteristics of the dynamics to generate the control signal u and 
to drive the system state sy . In this work, the back-propagation algorithm is used to train the 
multilayer perceptron. The back-propagation algorithm indicates that the squared error of the 
system output as the objective function to be minimized is defined by Rumelhart et al. [3]: 
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the orientation in which the control signal influences the outputs of the plants. Therefore, (14) 
will be written as:  
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For hidden units, we can use the standard rule as: 
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Actually, we evaluate the error jδ  using (16) by replacing the partial derivative with its signs.  

Basically, using NNs for excitation control of synchronous generator indicates that NN acts as 
the controller and replaces the conventional control algorithm. One of the most popular 
architectures of NN control is the multilayered neural network (MNN) trained with the back- 
propagation (BP) algorithm; a MNN will be used in our study; and a possible controller 
structure is shown in Fig. 3. 

 

 
Fig. 3. The NN adaptive control scheme 

 
In this section, some simulation results will be presented when using the specialized learning 
method for neural network. The first step in developing a NN controller is to establish a 
suitable architecture for the network; this means determining the number of layers and 
neurons in each layer. At present, there are no firm procedures or criteria for selecting this 
structure; the most commonly used approach for finding a suitable structure for the NN is 
quite time consuming, but it needs to be followed. Here we start training the NN with a small 
number of neurons and recording the resulting performance; if the performance is not 
sufficiently precise or accurate, the numbers of neurons are increased and the larger NN is 
trained again and assessed for accuracy. This process is repeated until the mean squared error 
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is acceptably small; or no significant improvement is noted as the NN is enlarged. To help in 
the selection process, the number of neurons in the second layer will be initially fixed; and the 
neurons in the first layer will be adjusted. After that, the number of neurons in the first layer 
will be fixed, and the neurons in the second layer will be adjusted. After much trails based on 
the above process, the final NN structure was, therefore, adopted with 6 inputs, 8 neurons in 
the first hidden layer (FHL), 4 neurons in the second hidden layer (SHL), and one neurons in 
the output layer. 
The steady state values of the neuro-controller's gains must be picked up and used as feedback 
gains in our system; thus, the neural controller will operate as a state feedback controller. The 
simulation results due to a step (10%) change in the excitation signal (Uex) of our system 
when the controller is turned on after starting is presented in Fig. 4. 
Fig. 4 shows the time-domain response of the system variables. The performance of the 
algorithm in the control process oscillation cancellation is significant, including all the system 
variables. Fig. 5 shows the time response of system states due to a step (10%) change in the 
excitation signal when the controller is turned on after 25s. On basis of Fig. 4, and Fig. 5, the 
efficiency of the neural controller reduces oscillations in synchronous generator systems. 

 

 
Fig. 4. System variables responses when the controller is turned on at starting 

 
Fig. 6 shows the average power spectral density of the system variables oscillations before 
and after cancellation. This is further evidenced in the corresponding frequency-domain 
description in Fig. 4, where a clear indication about the reduction in the oscillations for 
synchronous generator model can be observed. The absolute average attenuation is found to 
be approximately 78dB for load angle deviation, 67dB for speed deviation, 61dB for terminal 
voltage deviation, 60dB for field voltage deviation, and 27dB for flux linkage deviation. 
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Fig. 5. System variables responses when the controller is turned on after 25s from starting 

 
The major problem facing the power system stability is the existence of the random and 
unacceptable disturbances, which may cause damage to the system equipment, or instability 
to the system. To show the robustness of the presented control approach, the exponential 
disturbance, with constants c=2×106, and k=1.2, is assumed after 10 seconds when the 
controller is conducted in the control system. The form of the excitation signal disturbance is 
given as: 
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Fig. 7 demonstrates time response of the deviations of the system variables after the 
disturbance is injected into the system. The figure further shows that the neural controller is 
robust to disturbance since the system performance returns to steady-state values with 
acceptable overshoot and settling time. 

IV. SIMULATED ANNEALING FOR EXCITATION CONTROL OF SG 

Simulated annealing (SA), first proposed by Kirkpatrik et al. [24], is a method suitable for 
solving optimization problems of large scales. This algorithm, among few other heuristics, is 
suitable for complicated problems where global optimum is hidden among many local optima. 
The idea of the method is an analogy with the way molten metals cool and anneal. For a 
slowly cooling process, the system is able to find the minimum energy state. Slow cooling is 
essential for ensuring that a low energy state is achieved. This research tries to avoid local 
minima by jumping out of them early in the computation. Toward the end of the computation, 
when the temperature or probability of accepting a worse solution is nearly zero, it simply 
seeks the bottom of the local minimum. The chance of getting a good solution can be traded 
off with computation time by slowing down the cooling schedule. 
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Fig. 6. The average power spectral density of system variables before and after control 

 
The slower the cooling, the higher is the chance of finding the optimum solution; but the 
longer the run time is. Thus, an effective use of this technique depends on finding a cooling 
schedule that gets good enough solutions without taking too much time. A standard SA 
procedure begins by generating an initial solution at random. At initial stages, a small random 
change is made in the current solution. Then, the objective function value of new solutions is 
calculated and compared with that of current solutions. A move is made to the new solution if 
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it has a better value; or if the probability function is implemented in SA. The calculation of 
this probability relies on a temperature parameter T, which is referred to as temperature, since 
it plays the same role as the temperature in the physical annealing process. 
 

 
 
 

 
 
 

 
Fig. 7. Time response of system variables deviations when the system is subjected to external disturbance 

 
 

To avoid getting trapped at a local minimum point, the rate of reduction should be slow. In 
our problem, the following pseudo-code of standard SA algorithm has been used: 
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The annealing schedule of SA algorithm is composed of initial values of temperature, cooling 
schedule, number of iterations to be performed at each temperature and stopping criterion to 
terminate the algorithm. 
The choices of the initial temperature To, the number of iterations n before reducing the 
temperature, and the temperature reduction factor c play important roles in the successful 
convergence of the SA algorithm. For example, if the initial temperature To is too high, it 
requires a larger number of temperature reductions for convergence. On the other hand, if the 
initial temperature is chosen to be too low, the search process may be incomplete in the sense 
that it might fail to thoroughly investigate the design space and locate the global minimum 
before convergence. The temperature reduction factor c has a similar effect. Too large value 
of c (such as 0.8 or 0.9) requires too much computational effort for convergence. In addition, 
too small value of c (such as 0.1 or 0.2) may result in a faster reduction in temperature that 
might not permit a thorough exploration of the design space for locating the global minimum 
solution. Similarly, a large value of the number of iterations n will help achieve an 
equilibrium state at each temperature but will result in a larger computational effort. A 
smaller value of n, on the other hand, might result either in a premature convergence or 
convergence to a local minimum (due to inadequate exploration of the design space for the 
global minimum). Unfortunately, no unique set of values available for To, n, and c that will 
work well for every problem. However, certain guidelines can be given for selecting these 
values. The initial temperature To can be chosen as the average value of the objective function 
computed at a number of randomly selected points in the design space. The number of 
iterations n can be chosen between 50 and 100 based on the computing resources and the 
desired accuracy of solution. The temperature reduction factor c can be chosen between 0.4 
and 0.6 for a reasonable temperature reduction strategy (also termed the cooling schedule). 
Most features in simulated annealing are fixed by definition. The only feature which is 
variable during the calculation is the temperature. Therefore, one of the most important 
features of simulated annealing is the choice of the annealing schedule. Many attempts have 
been made to derive or suggest good schedules. Many researchers have taken advantage of 
the ease of coding and implementing SA, utilizing its ability to handle quite complex cost 
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functions and constraints. However, the long time of execution of standard Boltzmann-type 
SA has driven these projects to utilize a temperature schedule and satisfy the sufficiency 
conditions required to establish a true search. Our annealing procedure involves ‘melting’ the 
system at a high temperature, before repeatedly lowering the temperature by a factor using the 
Boltzmann algorithm, which is an exponential schedule form: 

))1((
1 exp kc

oi TT −
+ =                                                                                                            (19) 

 
where c is chosen to be 0.5; and To, the starting temperature of the control problem of SG, is 
selected to be equal 40000; ki is the "time" index of annealing which is taken as the time step 
size multiplied by the ith number of iteration where the total number of iteration is found to be 
200 for approximately 10s simulation. 
The objective function in this work (which is the aim of the minimization) is adopted to be the 
sum squared error of the six variables deviations of the SG. 
Response of all SG variables has been studied. We found that SA is works satisfactorily. Figs. 
8 and 9 show the responses when the controller is turned on immediately and after 25s from 
the starting time. Fig. 8 shows that the effect of the controller is effective after the first two 
seconds from starting. Fig. 10 illustrates the time response of the deviations of SG system 
variables after the disturbance is injected into the system, almost 10s from starting the 
simulation which is assumed to have the same form as represented by (18). This is an 
evidence of the robustness and effectiveness of SA to deal with problems caused by external 
disturbances. 

 
 

 
Fig. 8. SG variables deviation responses using SA when the controller is turned on at starting 
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Fig. 9. SG variables deviation responses using SA when the controller is turned on after 25s from starting 

 

 
Fig. 10. Controlled SG variables deviation responses using SA when subjected to a disturbance after 10s from 

starting 

V. CONCLUSIONS 

In this paper, simulations with on-line ANN and SA were carried out for solving the SG 
control problem. The results show that for different simulation environments, the responses of 
both controllers are stable. The ANN controller has been successfully used to construct a 
control law for reducing the oscillations within synchronous generators connected to an 
infinite bus through transmission lines. The neural controller is taught to the excitation control 
of the synchronous generator with the on-line learning being accomplished. In addition, the 
results of our study have indicated that neural controller is a potentially powerful method; and 
it had confirmed the robustness of the ANN when possesses the capabilities necessary for 
finding the best solution for controlling the oscillations in synchronous generators. In 
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addition, the potential of this controller was demonstrated through conducting the control 
process form starting and after a certain period of time. It demonstrated an excellent control 
action within the first three seconds.  
The SA controller was found to be an effective approach for solving this problem. It is 
relatively easy to comprehend because it is intuitive and involves only simple function of 
evaluations compared to the NN controller. The results obtained in this case show how 
quickly they respond and damp out oscillations in all SG system variables. The system 
reaches its steady state in about two seconds while the NN controller needs about 3s to 
accomplish the problem of cancellations. Like NN, SA gives the quality of the final solution 
that is not affected by the initial guesses, except that the computational effort may increase 
with worse starting designs. In addition, because of the discrete nature of the functional and 
constraint evaluations, the convergence or transition characteristics are not affected by the 
continuity or differentiability of the functions. 
Actually, one of the major problems faced when using this kind of solution is its enormous 
computational demands. Because the on-line ANN and SA should work during all the period, 
the execution time is more quite high. Here, SA controller implementation in the control 
process needs less execution time than that obtained for using ANN. Therefore, it was faster 
in dealing with the cancellation of oscillation as the results indicate. For applying such on-line 
controllers on real-time applications, more than one processor needs to be considered. The 
adaptation of parallel computing techniques to achieve real-time performances would be 
useful; and such implementation is left for future work. In view of the simulation results 
obtained, it can be concluded with some confidence that the ANN and SA control strategies 
offer a viable solution for excitation control of SG problems. 
 
APPENDIX 

TABLE A1 
LIST OF SYMBOLS OF ALL PARAMETERS AND VARIABLES OF THE ADOPTED SYSTEM 

Symbol Description Symbol Description 
i Armature current Xq q-axis synchronous reactance 

id 
d-axis component of armature 
current, A δ Torque angle, p.u. 

M Inertia constant Δ Deviation from initial value of a 
variable 

PD Damping power, W τ`do Open circuit time constant of field, s 
Pe Electrical output power, W τe Exciter time constant 
Pm Mechanical input power, W Xi Input signal 

Td Damping torque, N.m τs 
Voltage control feedback loop time 
constant 

Te Electrical torque, N.m ψd d-axis flux linkage, wbt 
Tm Mechanical torque, N.m ψF Field flux linkage, wbt 
Vd d-axis component of Vt ψq q-axis flux linkage, wbt 
VF Field voltage ω Rotor speed, rad/s 
Vo Infinite bus voltage ωd Damped frequency of oscillation 
Vq q-axis component of Vt X Transmission line reactance 
Vt Generator terminal voltage, V Xd d-axis synchronous reactance 
Vtˆ Estimated terminal voltage Xd` d-axis transient reactance 

ωn 
Natural frequency of oscillation, 
rad/s ωo Synchronous speed, 314.15 rad/s 

AGC Automatic Generator control AVR Automatic Voltage Regulator 
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TABLE A2 

SYSTEM PARAMETERS VALUES (P.U.), EXCEPT AS INDICATED 

System Parameters Per Unit Value 
x 0.71417 
Xd 1 
Xd

’ 0.27 
Xq 0.6 
τ`do 9s 
M 0.1534 
D 0.537 
Ge 10 
Gs 7 
τe 1s 
τs 0.5s 

 
TABLE A3 

INITIAL VARIABLES OF THE SG SYSTEM 
SG System Variables Per Unit Value 

Po 0.735 
Qo 0.034 
vto 1.05 
ido 0.286 
iqo 0.64 
vdo 0.384 
vo 1.058 
ΨFo 9.491 
δo 0.887 
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