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Abstract— Synchronization systems are widely employed to connect multi-motor electric drive systems. Its main 
goal is to equalize the speeds of motors at different loads. In the current work, a comparative study between the 
different approaches of such synchronization systems has been done. Different indicators of three traditional 
synchronization systems were studied, modeled, calculated and discussed. These indicators affect the stability of 
the system and the synchronization system accuracy of operations. The three studied synchronization systems are: 
electrical shaft system, electromagnetic shaft system, and a capacitor-electromagnetic shaft system. Simulation is 
carried out using Matlab/Simulink. Simulation results show the differences, similarities, advantages and 
disadvantages of each of the three approaches. Therefore, the results may help choose the most suitable system for 
a certain application. 
 
Keywords— Maximum synchronous angle, Maximum asynchronous torque, Maximum synchronous torque, 
Multi-motor synchronization, Stability indicators. 
 

I. INTRODUCTION 

The most widely used motors in industry are the induction motors [1]. Electric motor drive 
systems consume most of the electrical energy produced. In the industrial countries, electric 
motors absorb about 65% of the entire electrical energy available of which only about 8% is 
taken up by dc motors [2]. In [3], authors made a comparison between a conventional 
proportional integral controller and sliding mode controller used for variable speed control 
with an indirect field orientation control method of an induction motor. 
In general, synchronization systems are basically designed to adjust the speed of two or more 
induction motors with the existence of load differences allocated on their shafts. The main 
performance of synchronization systems is very much related to the synchronization 
capability: speed synchronization with maximum different loads on the motor shafts, and the 
required synchronization process time (recovery time). 
Traditional multi-motor synchronization techniques are discussed in many works [4]-[7]. In 
[5], the authors studied the synchronization of multi- dc motor systems in textile and paper 
mills using microcontroller. In [7], a robust control strategy for the dual-motor electric drive 
system is developed by incorporating second order sliding mode control techniques. 
Many industrial applications such as cranes, reel machines, and CNC (computer numerical 
control machines) [8], [9] have a multi-motor electric drive system. In such systems the 
driving motors drive loads simultaneously and, at the same time, stabilize their speeds. Good 
synchronization accuracy will improve the quality of the product [10], [11]. One of the 
synchronous control schemes used with multi-motor systems is cross-coupled control method 
[12], [13]. 
The most popular traditional synchronization systems are the synchronization systems with 
auxiliary machines, electrical shaft and electromagnetic shaft [3], [14]-[17]. Applications of 
synchronization control systems may be found in paper machines, offset printing and many 
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other different drives [18]-[20]. Different electromechanical motion systems, including crane 
applications were studied and investigated by several researchers [21]-[25]. 
The electrical shaft system consists mainly of two identical three - phase wound rotor type 
induction motors connected together by common additional external resistors in the rotor 
circuits, where the electromotive forces generated in these coils are moved towards the 
additional resistor as shown in Fig. 1 [8]. 

 

 
Fig. 1. Diagram of electrical shaft system 

 

Additional resistors in the rotor common circuit play the most important role in the 
determination of the synchronous capability and recovery time of the system [14]. 
Synchronization systems with capacitor-electromagnetic shafts are the most recent 
applications compared to other synchronization systems; each motor is connected to a 
wounded coil on the steel cylinder (inductive rheostat element) which is very similar to 
transformer connections, where the primary coils are connected to one motor and the 
secondary to the other. It represents a synchronous drive with an electromagnetic shaft system 
and replaces an inductive rheostat element with a capacitor-inductive rheostat element, as 
shown in Fig. 2. The comprehensive analysis, modulation, and investigation of all above 
mentioned synchronization systems can be found in [1]-[7], and [13]-[19]. 
As mentioned, the synchronous process depends on the synchronization capability of the 
system [4]-[7], [14]-[17]; therefore, stability indicators of synchronization systems depend on 
parameters connected with the synchronous capability such as: maximum synchronous angle, 
maximum asynchronous torque, maximum synchronous torque and minimum required load. 
Relations and calculations of all stability indicators are found in [18]. 

 

 
Fig. 2. Diagram of electromagnetic shaft system 
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In this work, modulation, calculation and investigation will be for low (slip< 0.2), medium 
(0.5< slip< 0.2), and high (slip> 0.5) load applications using two identical three phase wound 
rotor induction motors: 5hp, 50Hz, 4pole, 380 Line voltage with ideal selected (rated and 
additional) parameters in each system [14]-[16]. The parameters of the motor under 
investigation are given in the appendix. 
There are some parameters or indicators for each of the studied systems. This affects the 
stability of the system and the synchronization system accuracy of the operation. The main 
indicators are: maximum synchronous angle, maximum synchronous torque, minimum load, 
and maximum asynchronous torque. In this work, these indicators are studied for the three 
mentioned synchronization systems. 

II. ELECTROMAGNETIC INDUCED TORQUES OF SYNCHRONIZATION SYSTEM 

In electrical, electromagnetic and capacitor-electromagnetic shaft synchronization systems, 
the general form of steady state torque equations can be written as [8], [9]: 
 

(1) 
 

(2) 
where 
A, B and D are constants; 
α is the angular position between the rotor and the stator windings; 
T1 and T2 are the induced torque of the first and the second motors. 
In electrical shaft systems, constants A, B and D are found: 
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In electromagnetic shaft system, constants A, B and D may be found as: 
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In capacitor-electromagnetic shaft, constants A, B and D may be found as: 
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where 
R2, XK- rotor resistance and inductive reactance (XK=X1+X'2), 
E2- induced phase voltage in the rotor, 
RM, XM- resistance and inductive reactance of magnetization branch of inductive rheostat 
element, 
RO, XO- resistance and inductive reactance of inductive rheostat element, 
S- Slip. 

III. MAXIMUM SYNCHRONOUS ANGLE  

Maximum synchronous angle is the maximum phase angle between the internally induced 
voltages of the two rotor windings. It indicates the maximum load ability deference. The 
practically maximum synchronous angle for all synchronization systems can be found as 
follows: 

B

D
arctgmax

                                                                                                           
(12)
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