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Abstract— This study examines the degradation of known positioning data in Ultra-Wideband (UWB) Real-
Time Location Systems (RTLS) under Non-Line-of-Sight (NLOS) conditions, which are frequently encountered
in indoor environments (e.g., walls, metal cabinets, shelves). The Decawave DW1000, which uses Two-Way
Ranging (TWR), demonstrates reliable performance in Line-of-Sight (LOS) conditions, but in NLOS conditions,
multipath causes significant deviation and dispersion. To mitigate these effects, we propose an IMU-assisted
fusion approach that integrates a 6-axis Inertial Measurement Unit (IMU) with the UWB pipeline. This approach
reduces the NLOS positioning error by up to 89.52% compared to the baseline using UWB alone. With the
proposed method, the Mahony filter is used with PID gains (K, K;) tuned for real-time response; accelerometer
cues detect and eliminate sudden jumps caused by multipath. The combined UWB-IMU measurements are then
processed by an Extended Kalman Filter (EKF), which explicitly models the temporal dynamics and
measurement uncertainty, yielding smoother and more reliable data. We evaluate the method under LOS and
NLOS conditions against a baseline system using only UWB; MATLAB-based analyses confirm the stated
improvement. These findings validate the effectiveness of IMU-assisted fusion for UWB-based RTLS in complex
indoor environments and present a practical method for high-accuracy positioning with modest computational
load and sensor complexity.

Keywords— Real-time location system; Inertial measurement unit; Ultra-Wideband; Two-way ranging
measurement; Extended kalman filter.

1. INTRODUCTION

Nowadays, various indoor RTLS solutions are offered using Radio Frequency
Identification (RFID), Bluetooth and UWB [1]. Many features of wireless technologies are
important to implement indoor positioning system in a specific application, see Fig. 1.
Examples of these are: modulation type used for data transmission, power consumption of the
system, channel capacity, transmission time and efficiency of the system. UWB-based
communication and positioning systems have become quite popular recently. It can provide
precise positioning down to centimeter level with its high multi-channel resolution [2]. In
addition, high-speed data transmission can be achieved thanks to UWB. Because the limited
channel capacity of narrow-band systems provides low signal quality. The system uses the
DWM1000 module [3]. In this study, an approach is proposed to solve the problems
encountered in NLOS situations in indoor UWB-based positioning systems. In particular, in the
TWR method applied with the DWM1000 module, signal deviations due to obstacles, sudden
jumps and inconsistencies in position data occur. In such cases, the integration of MEMS
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(Micro-Electro-Mechanical Systems) based IMU sensors into RTLS systems is increasingly used
in the literature in order to increase position accuracy. In particular, the MPU6050 is an IMU
sensor suitable for RTLS solutions that can be easily integrated into embedded systems with its
low-cost, compact structure. Using gyroscope and accelerometer data, attitude, heading, and
acceleration are estimated, and the plausibility of position measurements is assessed.

Indoor Positioning

Tecnologies
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e S . . Radio Frequney
Wircless Fidelity Bluctooth Low Energy Ultrawideband . .
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Fig. 1. Current technologies used in real-time positioning systems.

For this reason, the MPU6050-based IMU sensor has also been integrated into our system.
The aim is to obtain orientation information with gyroscope data obtained from the IMU, and
acceleration change information on the axes with accelerometer data. With this data, anomalies
and jumps in the position data obtained with UWB signals can be determined and filtered. In
addition, by combining these two data sources with the EKF algorithm, both the accuracy and
stability of the system have been increased. EKF provides state estimation in nonlinear systems,
especially allowing to combine the short-term sensitivity of IMU with the long-term accuracy
of UWB. The developed system has been simulated in MATLAB and tested in a closed and
obstructed environment with various motion scenarios. UWB data has been filtered using an
IMU sensor; both sensor fusion and error correction have been performed using EKF. The
results obtained show that position errors have been significantly reduced, especially in NLOS
conditions.

It has been shown that IMU data and UWB data have been combined within the
framework of sensor fusion and accuracy and stability have been achieved. For example; Feng
et al. (2020) combined IMU and UWB data using Kalman filter and achieved high-accuracy
indoor positioning [4]. Zhu et al.( 2023) presented a two-stage error correction and sensor fusion
model to increase positioning accuracy by considering the tight coupling of UWB and IMU data
[5]. Wei et al. (2025) proposed a multi-sensor fusion localization approach based on Gaussian-
Adaptive Unscented Kalman Filtering (Gauss-AUKF) to improve UWB/IMU integration
accuracy by mitigating range errors and minimizing filter divergence through adaptive noise
covariance updating [6]. Wang & Li et al. (2017) obtained more reliable indoor positioning
results by combining UWB and IMU data using Particle Filter [7]. Zhan et al. (2024) used
Unscented Kalman Filter (UKF) to provide a more linear and stable location estimation by
combining IMU and UWB data with sensor fusion [8]. These articles cover significant
developments in recent years regarding improving position accuracy through sensor fusion of
UWB and IMU data, particularly under NLOS conditions.

In this study, UWB technology, TWR method, MEMS sensor used and EKF are mentioned
under the title of Materials and Methods in Section 2. In Section 3, the proposed system and
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algorithm architecture, tests and results are explained. In the last section, the test results are
analyzed and suggestions are made for future studies.

2. MATERIALS AND METHODS

In our study, information about the technology used, position estimation method,
proposed IMU sensor and used filter is given under the following headings respectively.

21. UWB

UWB-based RTLS covers a very wide frequency band. RF signals in the 500 MHz band
range are used in these systems. UWB systems are based on the principle of pulse-based signal
transmission, which allows them to operate at very low power levels. UWB technology can be
widely used in indoor positioning applications, and the range frequency used is usually
between 3.1 GHz and 10.6 GHz [9]. High bandwidth can provide high data transfer speed and
high precision results even in environments with dense obstacles. High bandwidth also
provides high resilience to signal attenuation, resistance to noise, and greater accuracy in range
and geographic location determination [9]. UWB technology also has a high ability to pass
through obstacles such as walls, wood, and clothing, but liquids and metal materials still cause
signal loss. UWB-based RTLS can also be widely used for certain applications due to their
approach to spectrum sharing in fixed-band environments. UWB is used in many different
applications, from consumer electronics to medical electronic devices and industrial
automation [10]. UWB technology is also advantageous in this regard. In UWB RTLS, the
system consists of three units: Tags attached to the assets, Anchor that receives the wireless
signal, and a Gateway device that processes and transmits Tag locations [10].

22. TWR

The location finding methods commonly used in RTLS are presented in Fig. 2 below.
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Fig. 2. Location finding methods used in RTLS.

TWR is a positioning method that estimates the distance by measuring the time of flight
(ToF) between two wirelessly communicating devices [11]. This method is widely used
especially in UWB systems. TWR is a cost-effective and more practical method than TDOA
since it works without requiring time synchronization.



746 Jordan Journal of Electrical Engineering. Volume 11| Number 4

TWR is a two-way messaging method between a Tag (mobile device) and an Anchor
(fixed reference point). The process generally consists of 3 stages [11], see Fig. 3:

Poll (Request): Tag sends a message to the anchor.

Response: Anchor receives the message and sends a response after a certain processing

time.

Final: Tag receives the response and calculates the distance according to all time

measurements.

Fig. 3. Times between two devices for the TWR method [12].

TroundA =2x Tof + TreplyB (1)

TroundB =2x Tof (2)
1

Ttof = 4 (TroundA + TroundB - TreplyB) (3)

Here [12]:

Trounda : Total time from sending the first message to receiving the Anchor response,
measured by Tag (mobile device).

Troungs : Time from sending the response to receiving the last message, measured by
Anchor (fixed device).

Treplys : Processing time from the moment the Anchor device receives the incoming
message until it responds.

d : Calculated distance (in meters) :

d = cx Ty 4)

When a fast-messaging algorithm created in TWR, a precision of up to 10 cm can
achieved. A location finding method can be created with a simple algorithm such as
trilateration. Some disadvantages of this method are as follows: Two-way communication is
required to calculate the location. Timing problems may occur when there is a tag density.
Although it provides location accuracy performance of up to 10 cm in LOS situations, there is
a loss of performance due to signal reflections in NLOS situations. Again, due to two-way
communication, it may have a negative effect on power consumption, especially when used
with battery [13].

2.3. MEMS

The location accuracy of UWB can sometimes be affected by factors such as signal
reflection. At this point, sensors that provide motion and orientation data can complement
UWB data and enable more accurate and reliable location tracking. One such sensor is the
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MPU6050, which is low-cost and capable of providing high data accuracy. One of these sensors
is the low-cost and high-accuracy MPU6050. The MPU6050 is an integrated MEMS-based
motion detection sensor. This sensor includes a 3-axis accelerometer, a 3-axis gyroscope, and
a Digital Motion Processor™ (DMP) in a small box. It includes a 16-bit ADC (Analog to Digital
Converter) to digitize the accelerometer and gyroscope data [14, 15, 16], see Fig. 4.

Fig. 4. MPU-6050 3-axis accelerometer and gyroscope axis reference systems [17].

The MPU6050 is typically not used stand-alone; it performs best when fused with other
sensors. It can be used with RTLS like UWB and can filter out location jumps, especially in
NLOS situations [18].

24. EKF

EKF is a Bayesian method used to estimate nonlinear systems. The EKF estimates states
of nonlinear systems by linearizing the system and measurement models via Jacobians.
Therefore, it is similar to the working principle of the Kalman filter. The Kalman filter is not
exactly a classical filter, but rather works as an estimator [19, 20].

The main difference between EKF and the traditional Kalman Filter (KF) is how it
evaluates the system model. KF assumes that both the state transitions of the system and the
measurement processes are linear [21]. For truly linear systems, standard KF provides an
optimal and computationally simpler solution, usually measured in FLOPs (Floating Point
Operations). EKF is specifically designed for systems where one or both of these operations
are nonlinear. It does this by linearizing these nonlinear functions using Jacobian matrices
(derived from the Taylor series expansion) at each time step [22].

EKF works in two stages, like the classical Kalman filter: Prediction and update. EKF
consists of the following sequential steps [23]:

Rk/k-1 and Py ©)
§k+1|k = f(Ri/k,uk,0) (6)
P |k =AkPi/KAL+ Wi QWi @)
Ky = Pi/k-1Hx(HiPy/i—1Hg + Rk)_l ©)
Ri/k = Risk-1 + Kic[zi — hic(Riesi-1)] )

Py = (1 = KHi) Py s (10)

Explanations of the terms used: Xy/k—; : The predicted situation at time k (before
measurement), Xy x = Xi/k-1 ‘The updated status at time k (after measurement), Py ., : error
covariance (uncertainty) of Xy k_1, Py/x : error covariance of Xy x, uy : Input/command vector

(in our case, IMU measurements: acceleration, gyro), Ay : Jacobian (linearization) depending on
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the situation Wy, : Process noise input matrix, Qy : Process noise covariance, z :Measurement
taken at time k, Hy : Measure the Jacobian, Ry : Measurement noise covariance, Ky : is Kalman
gain.

The EKF gives an approximation of the optimum generated data. The nonlinear data of
the system dynamics are manipulated by a linearized method of the nonlinear system model
in the final state estimation. In order for this method to work, this linearization must be a good
approximation of the nonlinear model in all the uncertainties associated with the state
estimation. The process flow in these equations is given in the block diagram in Fig. 5 [24].

l

/ Measurement Update (Correct)

Update

~

/ Time Update (Predict) \
(1) Compute the Kalman Gain

(1) Get the situation. Estimated Tag

N -1
Noisy Tag K. = Pk/k—lHL'(HkPk/k—lH{ +Ry) Location

Location

Initial Estimate

-fk+1|l.-={(.v‘,‘,k.uk‘0)

2

T/ k-1 and Pr/k

Uy (2) Update Estimate with Measurement

(2) Generate error covariance,

P = - B = Ry + K [Zk - hi‘('%k/k-l)]
k+1|k=AgPie Al + Wi QWi

\ / (3) Update Error Covariance

K Pepye = (1= KeHi)Py ey /
J

Prediction
Fig. 5. Flowchart of Extended Kalman Filter.

3. INSTALLATION AND MEASUREMENT RESULTS

In the RTLS architecture we designed; 4 anchors are fixedly placed in the corners in a
25x25 m? area. A tag is placed on a moving object (human, robot, etc.). Communication
between the tag and the anchors is carried out via UWB. The TWR method is used in our
system. After the Tag receives the responses from the Anchors to the Poll and Final messages
with the TWR method, the location data is obtained by taking the Trilateration method in 3
dimensions, see Fig. 6.

UWB-TWR UWB-TWR
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Fig. 6. Designed RTLS architecture.
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Algorithm 1. IMU-assisted UWB position filtering

Input: MPU6050 (ay, ay, 8z, 8x, 8y> 82), UWB TWR location (X, Y) at time k, thresholds: d;os =

0.25 m, dgee =15 m/s?, sample time A,.

Output: Filtered position (X}, Yi) and orientation (roll, pitch, yaw). Logs saved.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32: Save {ik, YK, ay, dy, az, roll, pitch, yaw} to record

Update state buffers: Xy < Xj41; Yi < Yk+1; ax(k) < ay(k+1); ay(k) « ay(k+1)

return Xk, ?k, roll, pitch, yaw

33:
34:

// Sensor read

Wake MPU6050 (PWR_MGMT_1 « 0), then read ay, ay, 8, 8x, 8y, 82
Read UWB preliminary location (Xj+1, Yr+1)

// Orientation (Mahony, compact)

Normalize accel; compute v from q; e «—a x v

Apply feedback (K, Kj) to gyro; integrate quaternion with Ag; normalize
Compute Euler: roll, pitch, yaw

// Acceleration deltas for gating

AAy — ay(k+1) — ay(k)
AAy «—ay(k+1) —ay(k)
// X-axis decision
if [Xg41 = Xg| > dpes then
if | AA, | > dgc then
Xk — Xk+1
else
Xy — X
end if
else
Xk — Xg+1
end if
// Y-axis decision
if |Yepq =Yg | > dpos then
if | AAy | > dgcc then
?k — Y41
else
Yic — Yi
end if
else
?k‘— Yiet1
end if
// Logging

proposed IMU sensor and used filter is given under the following headings respectively.

3.1.

In our study, information about the technology used, position estimation method,

IMU Sensor Algorithm



750 Jordan Journal of Electrical Engineering. Volume 11| Number 4

The algorithm designed to obtain accelerometer and gyroscope data obtained using the
MPU6050 IMU sensor is provided below.

Algorithm 2. Mahony-based attitude estimation (MPU-6050)
Input: Raw accelerometer Ay, = [ay, ay, a,], raw gyroscope Gy, = [gx, 8y, 8], sample time A

Output: Quaternion q = [q0, q1, g2, q3] and Euler angles (roll, pitch, yaw).
: //Requirements & wake-up

: 12C write PWR_MGMT_1 <0

i Ayyz, Gyy, will be read each cycle

: //Read & calibration

: read ay, ay, a,, read gy, 8y, ;.

i Agyz— (Axyz— Acal[0.-2]) x Acq[3..5]

: nyz = (nyz_ Goff[o‘-z]) X 8scale

: //Gravity from q and from accelerometer

O © NI O O B WO N -

: Anorm < sqrt(ay? +ay? + a,?); if aperm = 0 then skip

10: aye— ay/ Anorm 3y 3y / Anorms 8z 3z / Anorm

11: vy =ql xq3 - q0x g2

12: v, =q0xql +q2xq3

13:v,=q0xq0-0.5+g3xq3

14: / /Error (cross product e = a X v)

15: e,=ayx v, —a, x vy

16:ey=a, x vy —ay x v,

17: e,= ay x vy —ay X Vg

18: / /Feedback (K, = 25, K; = 0.01)

19: i, +=K; x e, x A,

20:iy+= K x ey x A

21:i,+=K; x e, x A

22: gy —gxtiy By— 8y Tiy 8811,

23: gy —gx t Ky xey gy — gyt Kyxey g, —g,+Kyxe,

24: / /Quaternion update (integrate gyro)

25:9001a <= 90; qloiq <= q1; 920104 <92 9301093

26: 90 <= q001g + 0.5 x (=q1lo1a X 8x = 9201d X 8y ~ q301d X 8z) X A¢
27:ql <= qlgia + 0.5 x (4001 X 8x * A201d X 82~ 9301d X 8y) X A¢
28:q2 <= q2019 + 0.5 x (90014 X 8y ~ qlo1a X 821 q301aX 8x) X A¢
29:q3 <= q301a + 0.5x (90014 X 82+ qloia X 8y ~ d2o1a X 8x) X At
30: //Normalize quaternion

31: Temp=1.0 / sqrt(q0 x q0 + q1 x q1 + q2x g2 + g3 x g3)

32: q0 <= g0 X Temp; ql < q1 X Temp; 92 < 92 X Temp; 93 < q3 X Temp
33: //Euler angles

34: roll =atan2(q0 x q1+q2x q3, 0.5—(q12+q22))

35: pitch = asin(2.0 x (0 x q2—q1 x q3))

36: yaw = —atan2(qlx q2+q0 x q3, 0.5—-(q22+q3?))

37: return q, roll, pitch, yaw

The skip detector combines an IMU-supported validation with a kinematic gate on inter-
frame displacement. The displacement threshold,
Apgate = VmaxAt + 240, (11)
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Here, At is the TWR period (500 ms), vy, is the expected maximum tag velocity in our
experiments, g, is the LOS range standard deviation converted to position, and z, =3 (99.7%
coverage area). For our At and motion regime, this yields a 4pgq¢e value in the 0.22-0.31 m
band; the smallest value that (i) preserves > %99 of LOS samples and (ii) maximizes NLOS
induced skip rejection in a delayed run has been determined to be Ap = 0.25 m. The
acceleration value is obtained using the gravitational acceleration value and the accelerometer
magnitude (Mahony orientation): Aa=lla, —gll is tracked, and we express this as Aa;=Aa/ g, in
g units; here g, = 9.80665 m/s?. Based on the results we obtained in the tests, during the jump
movement, the 99.9th percentile of Aa, remained below 1.12-1.33 g; therefore, we set the
detection threshold as Aa, = 1.53 g (equivalent to 15 m/s?). This prevents false positive results
while also allowing us to capture the sharp increases typical of multipath induced outliers.
EKF covariances are adjusted using consistency-focused search (NIS matching + innovation
whitening) within the range Q€[0.005,0.05], R€[5,15]; the selected Q=0.02, R=8 provided the
best balance between accuracy and innovation consistency.

3.2. EKF Algorithm

The algorithm required to use EKF in the designed system is below.
Algorithm 3. 3D Kalman filter update

Input: state x = [x[0], x[1], x[2]], covariance P (3x3), process noise Q (3x3), measurement z = [Xinput, Yinputs

Zinput], Measurement noise R (3%3).

Output: P, and updated (Xinput, Yinputs Zinput)-

: // Step 1: Prioritization (prediction)

: fori=0.2do
Xpreali] < x[i]

end for

: fori=0.2do

forj=0.2do
Pyrealillj] — PIillj] + QIl[]

end for

N A L T

end for

10: // Step 2: Calculating Kalman Gain (H =1, element-wise)
11: fori=0..2 do

12: forj=0.2do

13: KIi][j] < Pprealilljl / (Porealillj] + RI1[T )
14: end for

15: end for

16: // Step 3: Measurement update

17: Y[O] < Xinput ~ Xpred[O]

18: y[1] < Vinput = Xpreal[1]

19: Y[2]  Zinput = Xpreal2]

20: fori=0..2 do

21: x[i] < Xpreali] + K[J[i] x y[i]

22: end for

23: fori=0..2do

24: forj=0.2do

25: P[lfj] < (@ — K[[j]) x Pprealil[j]

26: end for

27: end for

28: / / Step 4: Save filtered results
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29 Xinput<— x[0]; Yinput < x[1]; Zinput < x[2]
30: return P/ Xinput/ Yinput/ Zinput

3.3. System Installation

In the test scenario, numerous columns and metal obstacles (metal shelves, ventilation
pipes) were used in the test environment to simulate NLOS conditions. Four anchors were
placed at the corners of the test environment. Tests were conducted using one Tag along the
specified route. In the tests, the Tag's TWR communication time was set to 500 ms. As shown
in Fig. 7, route number 1 was followed from the lower left corner. The route passed around
the wall columns and through the intermediate areas. The wall columns were intended to
create an NLOS effect on the UWB signals. The route was completed at the top left corner.
Then, starting from the top left corner, route 2 was followed and completed upon returning to
the starting point. In this test scenario, sudden maneuvers were performed around the
columns, and the goal was to obtain position jumps caused by signal reflections.

2
"Amhoﬂ Anchor2
1

2

R |

Ll

Colon
1
2
fancners Anhor D E

Fig. 7. The environment and test scenario created in the office for RTLS tests for the NLOS condition.

As a result of the tests conducted, as seen in Fig. 8(a), without the use of any filter
algorithm, position jumps of approximately 210 cm occurred due to wall columns, wooden
and metal shelves. Signal reflections occurred during sudden turning movements around wall
columns and shelves. Errors in the position data are clearly visible in Fig. 8(a). Examining
Fig. 8(b), we can see that the EKF applied to the system has a positive effect on the position
data results. Nevertheless, errors reaching 55-60 cm occurred in the position data results
obtained around wall columns and shelves. As seen in Fig. 8(c), there have been noticeable
improvements in system performance with the IMU sensor algorithm we proposed for the
system. Position errors caused by the effects of NLOS conditions have been reduced to an
average of 22 cm. For the area defined for the LOS condition, a route has been determined as
shown in Fig. 9, taking into account the area where movement can be performed.

As a result of the tests conducted, as shown in Fig. 10, the position data outputs of the
system equipped with the IMU + EKEF filter algorithm are more stable. Additionally, the
position data shifts are less compared to a scenario without a filter. In the last scenario, the Tag
is stationary and the location data obtained from the Tag for 4.5 - 5 minutes is created.

As seen in Fig. 11 for the test conducted in this scenario; when the EKF + IMU sensor
algorithm was included, the location data was obtained with almost 20 cm precision.
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However, in the absence of any filter, location data was obtained in the range of 20 - 60 cm

circle diameter.
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Fig. 8. Scenario test results for the NLOS environment: a) When there is no filter algorithm; b) When only EKF is

in the system; ¢) When EKF + IMU sensor is included in the system.
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Fig. 9. Environment and test scenario created in the office for RTLS tests for the LOS condition.
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a) b)
Fig. 10. Scenario test results for the LOS environment: a) The situation without any filter algorithm; b) The result
obtained when the EKF + IMU sensor is included in the system.

For time alignment, if the estimated position p,=[x;, y;] and the actual position p; =
[xf, y] are at the same time;
Error magnitude per sample:

er = llpe — P;”z = \/(xt - x)%+ (e — ¥)? (12)

1
RMSE = |(2) £f_ye? (13)

(14)

% Improvement = 100 x (1 _M)

RMSEpgseline

60 cm diameter

¢ 20 cm diameter 20 cm diameter

Fig. 11. Location data obtained when the tag is not moving (stationary): a) The situation when there is no filter
algorithm; b) The result obtained when only EKF + IMU is in the system.

Table 1. Evaluation of location data obtained under different conditions and test scenarios.

. Baseline RMSE Proposed RMSE % Improvement
Scenario
[em] [em] (RMSE)
NLOS 210 22 89.52
LOS 20 11 45
Sudden
Direction 180 26 85.56
Changes
Statlc. "l."ag 25 3 68
Condition

In addition to UWB data, the method we propose, which utilizes IMU sensor fusion and
EKF, has reduced positioning error to approximately 22 cm under NLOS conditions. In
contrast, Fan Jiang et al. (2024) reported an average error of 30 cm using UWB TWR + IMU
sensor fusion [24].

Under LOS conditions, the proposed method, with the integration of IMU data, achieved
an average positioning error of 11 cm. Zhu et al. (2023) reported a maximum positioning
deviation of 23 cm, indicating a relatively higher variance in the accuracy of their system under
comparable conditions [25].

4. CONCLUSIONS
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In this study, TWR measurements are combined with MPU6050 inertial data. A
lightweight, real-time hybrid UWB-IMU system is proposed using an EKF specifically
designed to process NLOS-derived data. Compared to the baseline model using only UWB,
this approach provides consistent gains in LOS/NLOS and static/ dynamic trials. It improved
position data by 89.52% while maintaining real-time operation on embedded hardware.

This study was conducted in a single enclosed space with a limited area of 25 x 25 m?
and a fixed connection geometry; the results may not be directly transferable to larger or
structurally different areas. However, by increasing the number of anchor points and placing
the anchors according to the orthogonal array architecture, similar performance can be
achieved in larger areas as well. A single tag and a fixed number of anchors were used in the
experiments; multi-tag interference, congestion, and timing were not investigated. The EKF
and threshold parameters were tuned for this specific area, and cross-area generalization was
not evaluated. The analysis is partially based on offline MATLAB tools. Finally, the system
targets 2D TWR, as measurements were taken while keeping the tag height (z-axis) constant.

Additionally, IMU drift, particularly gyro drift, can gradually affect orientation; in this
work, Mahony filtering and motion-based filtering methods were used instead of open-loop
drift conditions, which may allow for future drift-improved EKFs and zero-velocity updates.
UWB-IMU synchronization was achieved using software time stamps and interpolation;
residual vibration can affect fast motion and can be reduced using hardware time stamping or
open time shift estimation.

For future work, 3D positioning tests with a non-fixed z-axis tag are planned. These tests
aim to extend the system to support multiple Tags and Link Points in broader application
areas. Furthermore, system performance is environment-dependent; materials, layout, and
antenna placement shape NLOS. System performance can be further improved by
incorporating machine learning-based signal classification techniques. For practical use in
industrial and robotic applications, further optimization is foreseeable in terms of energy
efficiency, system latency, and real-time decision-making performance.
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