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Abstract— This study examines the degradation of known positioning data in Ultra-Wideband (UWB) Real-
Time Location Systems (RTLS) under Non-Line-of-Sight (NLOS) conditions, which are frequently encountered 
in indoor environments (e.g., walls, metal cabinets, shelves). The Decawave DW1000, which uses Two-Way 
Ranging (TWR), demonstrates reliable performance in Line-of-Sight (LOS) conditions, but in NLOS conditions, 
multipath causes significant deviation and dispersion. To mitigate these effects, we propose an IMU-assisted 
fusion approach that integrates a 6-axis Inertial Measurement Unit (IMU) with the UWB pipeline. This approach 
reduces the NLOS positioning error by up to 89.52% compared to the baseline using UWB alone. With the 
proposed method, the Mahony filter is used with PID gains (K𝑝, K𝑖) tuned for real-time response; accelerometer 

cues detect and eliminate sudden jumps caused by multipath. The combined UWB-IMU measurements are then 
processed by an Extended Kalman Filter (EKF), which explicitly models the temporal dynamics and 
measurement uncertainty, yielding smoother and more reliable data. We evaluate the method under LOS and 
NLOS conditions against a baseline system using only UWB; MATLAB-based analyses confirm the stated 
improvement. These findings validate the effectiveness of IMU-assisted fusion for UWB-based RTLS in complex 
indoor environments and present a practical method for high-accuracy positioning with modest computational 
load and sensor complexity. 

 
Keywords— Real-time location system; Inertial measurement unit; Ultra-Wideband; Two-way ranging 
measurement; Extended kalman filter.   
     

1. INTRODUCTION  

Nowadays, various indoor RTLS solutions are offered using Radio Frequency 

Identification (RFID), Bluetooth and UWB [1]. Many features of wireless technologies are 

important to implement indoor positioning system in a specific application, see Fig. 1. 

Examples of these are: modulation type used for data transmission, power consumption of the 

system, channel capacity, transmission time and efficiency of the system. UWB-based 

communication and positioning systems have become quite popular recently. It can provide 

precise positioning down to centimeter level with its high multi-channel resolution [2]. In 

addition, high-speed data transmission can be achieved thanks to UWB. Because the limited 

channel capacity of narrow-band systems provides low signal quality. The system uses the 

DWM1000 module [3].  In this study, an approach is proposed to solve the problems 

encountered in NLOS situations in indoor UWB-based positioning systems. In particular, in the 

TWR method applied with the DWM1000 module, signal deviations due to obstacles, sudden 

jumps and inconsistencies in position data occur. In such cases, the integration of MEMS 

https://doi.org/
mailto:ramazankavak@ogr.iuc.edu.tr
https://orcid.org/0009-0007-2582-2763
https://orcid.org/0000-0002-8113-0514


744   Jordan Journal of Electrical Engineering. Volume 11| Number 4  

 

 

 

(Micro-Electro-Mechanical Systems) based IMU sensors into RTLS systems is increasingly used 

in the literature in order to increase position accuracy. In particular, the MPU6050 is an IMU 

sensor suitable for RTLS solutions that can be easily integrated into embedded systems with its 

low-cost, compact structure. Using gyroscope and accelerometer data, attitude, heading, and 

acceleration are estimated, and the plausibility of position measurements is assessed. 

 

 
Fig. 1. Current technologies used in real-time positioning systems. 

For this reason, the MPU6050-based IMU sensor has also been integrated into our system. 

The aim is to obtain orientation information with gyroscope data obtained from the IMU, and 

acceleration change information on the axes with accelerometer data. With this data, anomalies 

and jumps in the position data obtained with UWB signals can be determined and filtered. In 

addition, by combining these two data sources with the EKF algorithm, both the accuracy and 

stability of the system have been increased. EKF provides state estimation in nonlinear systems, 

especially allowing to combine the short-term sensitivity of IMU with the long-term accuracy 

of UWB. The developed system has been simulated in MATLAB and tested in a closed and 

obstructed environment with various motion scenarios. UWB data has been filtered using an 

IMU sensor; both sensor fusion and error correction have been performed using EKF. The 

results obtained show that position errors have been significantly reduced, especially in NLOS 

conditions. 

It has been shown that IMU data and UWB data have been combined within the 

framework of sensor fusion and accuracy and stability have been achieved. For example; Feng 

et al. (2020) combined IMU and UWB data using Kalman filter and achieved high-accuracy 

indoor positioning [4]. Zhu et al.( 2023) presented a two-stage error correction and sensor fusion 

model to increase positioning accuracy by considering the tight coupling of UWB and IMU data 

[5]. Wei et al. (2025) proposed a multi-sensor fusion localization approach based on Gaussian-

Adaptive Unscented Kalman Filtering (Gauss-AUKF) to improve UWB/IMU integration 

accuracy by mitigating range errors and minimizing filter divergence through adaptive noise 

covariance updating [6]. Wang & Li et al. (2017) obtained more reliable indoor positioning 

results by combining UWB and IMU data using Particle Filter [7]. Zhan et al. (2024) used 

Unscented Kalman Filter (UKF) to provide a more linear and stable location estimation by 

combining IMU and UWB data with sensor fusion [8]. These articles cover significant 

developments in recent years regarding improving position accuracy through sensor fusion of 

UWB and IMU data, particularly under NLOS conditions. 

In this study, UWB technology, TWR method, MEMS sensor used and EKF are mentioned 

under the title of Materials and Methods in Section 2. In Section 3, the proposed system and 
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algorithm architecture, tests and results are explained. In the last section, the test results are 

analyzed and suggestions are made for future studies. 

2. MATERIALS AND METHODS 

In our study, information about the technology used, position estimation method, 

proposed IMU sensor and used filter is given under the following headings respectively. 

2.1. UWB 

UWB-based RTLS covers a very wide frequency band. RF signals in the 500 MHz band 

range are used in these systems. UWB systems are based on the principle of pulse-based signal 

transmission, which allows them to operate at very low power levels. UWB technology can be 

widely used in indoor positioning applications, and the range frequency used is usually 

between 3.1 GHz and 10.6 GHz [9]. High bandwidth can provide high data transfer speed and 

high precision results even in environments with dense obstacles. High bandwidth also 

provides high resilience to signal attenuation, resistance to noise, and greater accuracy in range 

and geographic location determination [9]. UWB technology also has a high ability to pass 

through obstacles such as walls, wood, and clothing, but liquids and metal materials still cause 

signal loss. UWB-based RTLS can also be widely used for certain applications due to their 

approach to spectrum sharing in fixed-band environments. UWB is used in many different 

applications, from consumer electronics to medical electronic devices and industrial 

automation [10]. UWB technology is also advantageous in this regard. In UWB RTLS, the 

system consists of three units: Tags attached to the assets, Anchor that receives the wireless 

signal, and a Gateway device that processes and transmits Tag locations [10]. 

2.2. TWR  

The location finding methods commonly used in RTLS are presented in Fig. 2 below. 

 
Fig. 2. Location finding methods used in RTLS. 

TWR is a positioning method that estimates the distance by measuring the time of flight 

(ToF) between two wirelessly communicating devices [11]. This method is widely used 

especially in UWB systems. TWR is a cost-effective and more practical method than TDOA 

since it works without requiring time synchronization. 
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TWR is a two-way messaging method between a Tag (mobile device) and an Anchor 

(fixed reference point). The process generally consists of 3 stages [11], see Fig. 3: 

Poll (Request): Tag sends a message to the anchor. 

 Response: Anchor receives the message and sends a response after a certain processing 

time. 

 Final: Tag receives the response and calculates the distance according to all time 

measurements. 

 
Fig. 3. Times between two devices for the TWR method [12]. 

 

TroundA = 2 x Tof + TreplyB    (1) 

TroundB = 2 x Tof    (2) 

Ttof =
1

4
(TroundA + TroundB − TreplyB)   (3) 

Here [12]: 

TroundA : Total time from sending the first message to receiving the Anchor response, 

measured by Tag (mobile device). 

TroundB : Time from sending the response to receiving the last message, measured by 

Anchor (fixed device). 

TreplyB  : Processing time from the moment the Anchor device receives the incoming 

message until it responds. 

d : Calculated distance (in meters) : 

d = c x Tof     (4) 

When a fast-messaging algorithm created in TWR, a precision of up to 10 cm can 

achieved. A location finding method can be created with a simple algorithm such as 

trilateration. Some disadvantages of this method are as follows: Two-way communication is 

required to calculate the location. Timing problems may occur when there is a tag density. 

Although it provides location accuracy performance of up to 10 cm in LOS situations, there is 

a loss of performance due to signal reflections in NLOS situations. Again, due to two-way 

communication, it may have a negative effect on power consumption, especially when used 

with battery [13]. 

2.3. MEMS  

The location accuracy of UWB can sometimes be affected by factors such as signal 

reflection. At this point, sensors that provide motion and orientation data can complement 

UWB data and enable more accurate and reliable location tracking. One such sensor is the 
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MPU6050, which is low-cost and capable of providing high data accuracy. One of these sensors 

is the low-cost and high-accuracy MPU6050. The MPU6050 is an integrated MEMS-based 

motion detection sensor. This sensor includes a 3-axis accelerometer, a 3-axis gyroscope, and 

a Digital Motion Processor™ (DMP) in a small box. It includes a 16-bit ADC (Analog to Digital 

Converter) to digitize the accelerometer and gyroscope data [14, 15, 16], see Fig. 4. 

 
Fig. 4. MPU-6050 3-axis accelerometer and gyroscope axis reference systems [17]. 

The MPU6050 is typically not used stand-alone; it performs best when fused with other 

sensors. It can be used with RTLS like UWB and can filter out location jumps, especially in 

NLOS situations [18]. 

2.4. EKF 

EKF is a Bayesian method used to estimate nonlinear systems. The EKF estimates states 

of nonlinear systems by linearizing the system and measurement models via Jacobians. 

Therefore, it is similar to the working principle of the Kalman filter. The Kalman filter is not 

exactly a classical filter, but rather works as an estimator [19, 20]. 

The main difference between EKF and the traditional Kalman Filter (KF) is how it 

evaluates the system model. KF assumes that both the state transitions of the system and the 

measurement processes are linear [21]. For truly linear systems, standard KF provides an 

optimal and computationally simpler solution, usually measured in FLOPs (Floating Point 

Operations). EKF is specifically designed for systems where one or both of these operations 

are nonlinear. It does this by linearizing these nonlinear functions using Jacobian matrices 

(derived from the Taylor series expansion) at each time step [22]. 

EKF works in two stages, like the classical Kalman filter: Prediction and update. EKF 

consists of the following sequential steps [23]: 

x̂k/ k−1    and  Pk    (5) 

x̂k+1|k  = f(x̂k/k,uk,0)                                                             (6) 

Pk+1|k =AkPk/kAk
T+WkQkWk

T                             (7) 

Kk = Pk/k−1Hk(HkPk/k−1Hk
T + Rk)

−1
   (8) 

x̂k/k = x̂k/k−1 + Kk[zk − hk(x̂k/k−1)]   (9) 

Pk/k = (1 − KkHk)Pk/k−1     (10) 

Explanations of the terms used: x̂k/k−1 ∶ The predicted situation at time k (before 

measurement), x̂k/k = x̂k/k−1 :The updated status at time k (after measurement), Pk/k−1 ∶ error 

covariance (uncertainty) of x̂k/k−1, Pk/k : error covariance of x̂k/k, uk ∶ Input/command vector 

(in our case, IMU measurements: acceleration, gyro), Ak ∶ Jacobian (linearization) depending on 
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the situation Wk ∶ Process noise input matrix, Qk : Process noise covariance, zk ∶Measurement 

taken at time k, Hk ∶ Measure the Jacobian, Rk ∶ Measurement noise covariance, Kk ∶  is Kalman 

gain. 

The EKF gives an approximation of the optimum generated data. The nonlinear data of 

the system dynamics are manipulated by a linearized method of the nonlinear system model 

in the final state estimation. In order for this method to work, this linearization must be a good 

approximation of the nonlinear model in all the uncertainties associated with the state 

estimation. The process flow in these equations is given in the block diagram in Fig. 5 [24]. 

 
Fig. 5.  Flowchart of Extended Kalman Filter. 

3. INSTALLATION AND MEASUREMENT RESULTS 

In the RTLS architecture we designed; 4 anchors are fixedly placed in the corners in a 

25x25 m2 area. A tag is placed on a moving object (human, robot, etc.). Communication 

between the tag and the anchors is carried out via UWB. The TWR method is used in our 

system. After the Tag receives the responses from the Anchors to the Poll and Final messages 

with the TWR method, the location data is obtained by taking the Trilateration method in 3 

dimensions, see Fig. 6. 

 

 



Jordan Journal of Electrical Engineering. Volume 11| Number 4   749 

 

 

Fig. 6. Designed RTLS architecture. 

 

Algorithm 1. IMU–assisted UWB position filtering  

Input: MPU6050 (ax, ay, az, gx, gy, gz), UWB TWR location (X𝑘, Y𝑘) at time k, thresholds: d𝑝𝑜𝑠 = 

0.25 m, d𝑎𝑐𝑐 = 15 m/s2, sample time Δt. 

Output: Filtered position (X̂k, Ŷk) and orientation (roll, pitch, yaw). Logs saved. 

1:  // Sensor read 

2:  Wake MPU6050 (PWR_MGMT_1 ← 0), then read ax, ay, az, gx, gy, gz 

3:  Read UWB preliminary location (X𝑘+1, Y𝑘+1) 

4:  // Orientation (Mahony, compact) 

5:  Normalize accel; compute v from q; e ← a × v 

6:  Apply feedback (Kp, Ki) to gyro; integrate quaternion with Δt; normalize 

7:  Compute Euler: roll, pitch, yaw 

8:  // Acceleration deltas for gating 

9:  ΔA𝑥 ← ax(k+1) − ax(k) 

10: ΔA𝑦 ← ay(k+1) − ay(k) 

11: // X-axis decision 

12: if |X𝑘+1 − X𝑘| > d𝑝𝑜𝑠 then 

13:     if | ΔA𝑥 | > d𝑎𝑐𝑐 then 

14:         X̂k ← X𝑘+1  

15:     else 

16:         X̂k ← X𝑘                  

17:     end if 

18: else 

19:     X̂k ← X𝑘+1  

20: end if 

21: // Y-axis decision 

22: if |Y𝑘+1 − Y𝑘| > d𝑝𝑜𝑠 then 

23:     if | ΔA𝑦 | >  d𝑎𝑐𝑐  then 

24:         Ŷk ← Y𝑘+1  

25:     else 

26:         Ŷk ← 𝑌𝑘                   

27:     end if 

28: else 

29:     Ŷk← Y𝑘+1  

30: end if  

31: // Logging 

32: Save {X̂k, Ŷk, ax, ay, az, roll, pitch, yaw} to record 

33: Update state buffers: X𝑘 ← X𝑘+1; 𝑌𝑘 ← Ŷk+1; ax(k) ← ax(k+1); ay(k) ← ay(k+1) 

34: return X̂k, Ŷk, roll, pitch, yaw 

In our study, information about the technology used, position estimation method, 

proposed IMU sensor and used filter is given under the following headings respectively. 

3.1. IMU Sensor Algorithm  
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The algorithm designed to obtain accelerometer and gyroscope data obtained using the 

MPU6050 IMU sensor is provided below. 

 
 

Algorithm 2. Mahony-based attitude estimation (MPU-6050) 

Input:  Raw accelerometer Axyz = [ax, ay, az], raw gyroscope Gxyz = [gx, gy, gz], sample time Δt 

Output: Quaternion q = [q0, q1, q2, q3] and Euler angles (roll, pitch, yaw). 

1:  //Requirements & wake-up 

2:  I2C write PWR_MGMT_1 ← 0 

3:  Axyz, Gxyz will be read each cycle 

4:  //Read & calibration 

5:  read ax, ay, az,  read gx, gy, gz, 

6:  Axyz← (Axyz− Acal[0..2]) x Acal[3..5] 

7:  Gxyz ← (Gxyz− Goff[0..2]) x gscale 

8:  //Gravity from q and from accelerometer 

9:  anorm ← sqrt(ax
2 + ay

2 + az
2);  if anorm = 0 then skip 

10: ax← ax/ anorm;  ay  ← ay / anorm;  az ← az / anorm 

11: vx = q1 x q3 − q0 x q2 

12: vy = q0 x q1 + q2 x q3 

13: vz = q0 x q0 − 0.5 + q3 x q3 

14: //Error (cross product e = a × v) 

15: ex= ay x vz − az x vy 

16: ey= az x vx − ax x vz 

17: ez= ax x vy − ay x vx 

18: //Feedback (Kp = 25, Ki = 0.01) 

19: ix+= Ki x ex x Δt 

20: iy+= Ki x ey x Δt 

21: iz+= Ki x ez x Δt 

22: gx ← gx + ix;   gy← gy + iy;   gz← gz+ iz 

23: gx ← gx + Kp x ex;  gy ← gy+ Kp x ey;  gz ← gz+ Kp x ez 

24: //Quaternion update (integrate gyro) 

25: q0old ← q0;  q1old ← q1;  q2old ← q2;  q3old← q3 

26: q0 ← q0old + 0.5 x (−q1old x gx − q2old x gy  − q3old x gz) x Δt 

27: q1 ← q1old + 0.5 x (q0old  x gx + q2old x gz− q3old x gy) x Δt 

28: q2 ← q2old + 0.5 x (q0old x gy − q1old x gz+ q3oldx gx) x Δt 

29: q3 ← q3old + 0.5 x (q0old x gz+ q1old x gy − q2old x gx) x Δt 

30: //Normalize quaternion 

31: Temp= 1.0 / sqrt(q0 x q0 + q1 x q1 + q2 x q2 + q3 x q3) 

32: q0 ← q0 x Temp;  q1 ← q1 x Temp;  q2 ← q2 x Temp;  q3 ← q3 x Temp 

33: //Euler angles 

34: roll  = atan2(q0 x q1+q2 x q3 , 0.5−(q12+q22)) 

35: pitch = asin(2.0 x (q0 x q2−q1 x q3)) 

36: yaw   = −atan2(q1x q2+q0 x q3 , 0.5−(q22+q32)) 

37: return q, roll, pitch, yaw 

The skip detector combines an IMU-supported validation with a kinematic gate on inter-

frame displacement. The displacement threshold, 

𝛥𝑝𝑔𝑎𝑡𝑒 =  𝑣𝑚𝑎𝑥𝛥𝑡 + 𝑧𝛼𝜎𝑟         (11) 
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Here, Δt is the TWR period (500 ms), 𝑣𝑚𝑎𝑥 is the expected maximum tag velocity in our 

experiments, 𝜎𝑟 is the LOS range standard deviation converted to position, and 𝑧𝛼 = 3 (99.7% 

coverage area). For our Δt and motion regime, this yields a 𝛥𝑝𝑔𝑎𝑡𝑒 value in the 0.22–0.31 m 

band; the smallest value that (i) preserves > %99 of LOS samples and (ii) maximizes NLOS 

induced skip rejection in a delayed run has been determined to be Δp = 0.25 m. The 

acceleration value is obtained using the gravitational acceleration value and the accelerometer 

magnitude (Mahony orientation): Δa=∥𝑎𝑏−g∥ is tracked, and we express this as Δ𝑎𝑔=Δa/𝑔0 in 

g units; here 𝑔0 = 9.80665 m/s². Based on the results we obtained in the tests, during the jump 

movement, the 99.9th percentile of Δ𝑎𝑔 remained below 1.12–1.33 g; therefore, we set the 

detection threshold as Δ𝑎𝑔 = 1.53 g (equivalent to 15 m/s2). This prevents false positive results 

while also allowing us to capture the sharp increases typical of multipath induced outliers. 

EKF covariances are adjusted using consistency-focused search (NIS matching + innovation 

whitening) within the range Q∈[0.005,0.05], R∈[5,15]; the selected Q=0.02, R=8 provided the 

best balance between accuracy and innovation consistency. 

3.2. EKF Algorithm  

The algorithm required to use EKF in the designed system is below. 
Algorithm 3. 3D Kalman filter update  

Input: state x = [x[0], x[1], x[2]], covariance P (3×3), process noise Q (3×3), measurement z = [xinput, yinput, 

zinput], measurement noise R (3×3). 

Output: P, and updated (xinput, yinput, zinput). 

1:  // Step 1: Prioritization (prediction) 

2:  for i = 0..2 do 

3:      xpred[i] ← x[i] 

4:  end for 

5:  for i = 0..2 do 

6:      for j = 0..2 do 

7:          Ppred[i][j] ← P[i][j] + Q[i][j] 

8:      end for 

9:  end for 

10: // Step 2: Calculating Kalman Gain (H = I, element-wise) 

11: for i = 0..2 do 

12:     for j = 0..2 do 

13:         K[i][j] ← Ppred[i][j] / (Ppred[i][j] + R[i][j] ) 

14:     end for 

15: end for 

16: // Step 3: Measurement update 

17: y[0] ← xinput − xpred[0] 

18: y[1] ← yinput − xpred[1] 

19: y[2] ← zinput − xpred[2] 

20: for i = 0..2 do 

21:     x[i] ← xpred[i] + K[i][i] x y[i] 

22: end for 

23: for i = 0..2 do 

24:     for j = 0..2 do 

25:         P[i][j] ← (1 − K[i][j]) x Ppred[i][j] 

26:     end for 

27: end for 

28: // Step 4: Save filtered results 
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29: xinput← x[0];  yinput ← x[1];  zinput ← x[2] 

30: return P, xinput, yinput, zinput 

3.3. System Installation  

 

In the test scenario, numerous columns and metal obstacles (metal shelves, ventilation 

pipes) were used in the test environment to simulate NLOS conditions. Four anchors were 

placed at the corners of the test environment. Tests were conducted using one Tag along the 

specified route. In the tests, the Tag's TWR communication time was set to 500 ms. As shown 

in Fig. 7, route number 1 was followed from the lower left corner. The route passed around 

the wall columns and through the intermediate areas. The wall columns were intended to 

create an NLOS effect on the UWB signals. The route was completed at the top left corner. 

Then, starting from the top left corner, route 2 was followed and completed upon returning to 

the starting point. In this test scenario, sudden maneuvers were performed around the 

columns, and the goal was to obtain position jumps caused by signal reflections. 

 

Fig. 7. The environment and test scenario created in the office for RTLS tests for the NLOS condition. 

As a result of the tests conducted, as seen in Fig. 8(a), without the use of any filter 

algorithm, position jumps of approximately 210 cm occurred due to wall columns, wooden 

and metal shelves. Signal reflections occurred during sudden turning movements around wall 

columns and shelves. Errors in the position data are clearly visible in Fig. 8(a). Examining                

Fig. 8(b), we can see that the EKF applied to the system has a positive effect on the position 

data results. Nevertheless, errors reaching 55-60 cm occurred in the position data results 

obtained around wall columns and shelves. As seen in Fig. 8(c), there have been noticeable 

improvements in system performance with the IMU sensor algorithm we proposed for the 

system. Position errors caused by the effects of NLOS conditions have been reduced to an 

average of 22 cm. For the area defined for the LOS condition, a route has been determined as 

shown in Fig. 9, taking into account the area where movement can be performed.  

As a result of the tests conducted, as shown in Fig. 10, the position data outputs of the 

system equipped with the IMU + EKF filter algorithm are more stable. Additionally, the 

position data shifts are less compared to a scenario without a filter. In the last scenario, the Tag 

is stationary and the location data obtained from the Tag for 4.5 - 5 minutes is created.  

As seen in Fig. 11 for the test conducted in this scenario; when the EKF + IMU sensor 

algorithm was included, the location data was obtained with almost 20 cm precision. 
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However, in the absence of any filter, location data was obtained in the range of 20 - 60 cm 

circle diameter. 

 
a)                                     b)                                                       

 
c) 

Fig. 8. Scenario test results for the NLOS environment: a) When there is no filter algorithm; b) When only EKF is 

in the system; c) When EKF + IMU sensor is included in the system. 

 

 
Fig. 9. Environment and test scenario created in the office for RTLS tests for the LOS condition. 
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   a)       b) 

Fig. 10. Scenario test results for the LOS environment: a) The situation without any filter algorithm; b) The result 

obtained when the EKF + IMU sensor is included in the system. 

 For time alignment, if the estimated position 𝑝𝑡=[𝑥𝑡 , 𝑦𝑡] and the actual position 𝑝𝑡
⋆ =

 [𝑥𝑡
⋆,  𝑦𝑡

⋆] are at the same time; 

 Error magnitude per sample: 

𝑒𝑡 =  ‖𝑝𝑡 − 𝑝𝑡
⋆‖2 =  √(𝑥𝑡 −  𝑥𝑡

⋆)2 +  (𝑦𝑡 −  𝑦𝑡
⋆)2       (12) 

𝑅𝑀𝑆𝐸 =  √(
1

𝑇
) 𝛴{𝑡=1}

𝑇 𝑒𝑡
2          (13) 

% 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  100 ×  (1 −
𝑅𝑀𝑆𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑅𝑀𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
)       (14) 

                               
a)              b) 

Fig. 11. Location data obtained when the tag is not moving (stationary): a) The situation when there is no filter 

algorithm; b) The result obtained when only EKF + IMU is in the system. 

Table 1. Evaluation of location data obtained under different conditions and test scenarios. 

Scenario 
Baseline RMSE 

[cm] 

Proposed RMSE 

[cm] 

% Improvement 

(RMSE) 

NLOS 210 22 89.52 

LOS 20 11 45 

Sudden 

Direction 

Changes 

180 26 85.56 

Static Tag 

Condition 
25 8 68 

  

In addition to UWB data, the method we propose, which utilizes IMU sensor fusion and 

EKF, has reduced positioning error to approximately 22 cm under NLOS conditions. In 

contrast, Fan Jiang et al. (2024) reported an average error of 30 cm using UWB TWR + IMU 

sensor fusion [24]. 

Under LOS conditions, the proposed method, with the integration of IMU data, achieved 

an average positioning error of 11 cm. Zhu et al. (2023) reported a maximum positioning 

deviation of 23 cm, indicating a relatively higher variance in the accuracy of their system under 

comparable conditions [25]. 

4. CONCLUSIONS 



Jordan Journal of Electrical Engineering. Volume 11| Number 4   755 

 

 

In this study, TWR measurements are combined with MPU6050 inertial data. A 

lightweight, real-time hybrid UWB–IMU system is proposed using an EKF specifically 

designed to process NLOS-derived data. Compared to the baseline model using only UWB, 

this approach provides consistent gains in LOS/NLOS and static/dynamic trials. It improved 

position data by 89.52% while maintaining real-time operation on embedded hardware. 

This study was conducted in a single enclosed space with a limited area of 25 × 25 m² 

and a fixed connection geometry; the results may not be directly transferable to larger or 

structurally different areas. However, by increasing the number of anchor points and placing 

the anchors according to the orthogonal array architecture, similar performance can be 

achieved in larger areas as well. A single tag and a fixed number of anchors were used in the 

experiments; multi-tag interference, congestion, and timing were not investigated. The EKF 

and threshold parameters were tuned for this specific area, and cross-area generalization was 

not evaluated. The analysis is partially based on offline MATLAB tools. Finally, the system 

targets 2D TWR, as measurements were taken while keeping the tag height (z-axis) constant. 

Additionally, IMU drift, particularly gyro drift, can gradually affect orientation; in this 

work, Mahony filtering and motion-based filtering methods were used instead of open-loop 

drift conditions, which may allow for future drift-improved EKFs and zero-velocity updates. 

UWB–IMU synchronization was achieved using software time stamps and interpolation; 

residual vibration can affect fast motion and can be reduced using hardware time stamping or 

open time shift estimation. 

For future work, 3D positioning tests with a non-fixed z-axis tag are planned. These tests 

aim to extend the system to support multiple Tags and Link Points in broader application 

areas. Furthermore, system performance is environment-dependent; materials, layout, and 

antenna placement shape NLOS. System performance can be further improved by 

incorporating machine learning-based signal classification techniques. For practical use in 

industrial and robotic applications, further optimization is foreseeable in terms of energy 

efficiency, system latency, and real-time decision-making performance. 
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