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Abstract— Rapid Transport Electrification is imposing spatiotemporally heterogeneous loads on distribution 
networks. This study quantifies the impacts of residential Level 2 (L2) charging and public charging stations, 
including 50-kW DC fast chargers (DCFCs), on an 11-kV radial feeder using a 5-min time-series framework. 
Baseline demand is represented by measured-like diurnal profiles; station demand is synthesized via a finite-
server, time-varying Poisson arrival process with stochastic service times. Network responses (bus voltages, 
branch flows, transformer loading, and I2R losses) are computed using a linearized DistFlow formulation. Three 
scheduling strategies are evaluated: (S1) uncontrolled plug-in, (S2) time-of-use (TOU) shifting to 22:00-06:00, and 
(S3) feeder-wide coordinated valley filling. Performance is assessed via peak feeder real power and timing, 
minimum voltage magnitude and violation count (<0.95 pu), transformer apparent-power utilization relative to 
nameplate, branch thermal margins, and daily energy losses. Uncontrolled charging coincides with the 
residential evening peak, amplifying maximum demand, losses, and voltage deviations. TOU shifting reduces 
coincidence with the native peak but can induce secondary off-peak surges. Coordinated charging most 
effectively flattens the net load, enhances voltage security, and mitigates thermal stress. Sensitivity analyses 
across EV penetration and L2/DCFC mix demonstrate robustness of the results and yield actionable implications 
for tariff design, public-station siting, and aggregator-mediated managed charging to increase distribution-level 
hosting capacity. 

 
Keywords— EV charging; Distribution networks; Managed charging; Voltage regulation; Transformer loading; 
DistFlow.  

1. INTRODUCTION  

Global acceleration of transport electrification is being observed, and the widespread 

deployment of residential Level-2 (L2) chargers along with public charging facilities, covering 

workplace and retail L2 clusters as well as high-power DC fast chargers (DCFCs), is placing 

spatiotemporally diverse loads on the distribution networks that were originally designed for 

unidirectional and slowly changing demand. Although generation adequacy and transmission 

constraints are commonly emphasized in aggregate studies, the most immediate operational 

consequences of EV charging are being manifested at the medium and low voltage feeders. 

These are seen as higher evening peaks, localized voltage drops, and increased I2R losses, and 

thermal stress on the lines and the substation transformers. Residential L2 charging is typically 

aligned with home arrival windows and the natural evening peak, whereas public charging is 

being characterized by distinct daytime patterns influenced by site utilization, dwell times, and 

the share of DCFC ports capable of producing sudden demand changes. Quantitative methods 
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have been required by utilities and system operators to capture the stochastic variability of 

charging sessions and the physical dynamics of radial feeders.  

In this way, hosting capacity has been assessed, reinforcement has been prioritized, and 

managed-charging strategies have been designed to reduce adverse impacts without 

diminishing user experience. Previous research has substantially described EV load profiles or 

analyzed management schemes independently; however, relatively fewer investigations have 

jointly modeled station-level utilization (with finite servers, time-varying arrivals, and 

stochastic service times) together with feeder power-flow responses at high temporal 

resolution, and even fewer have compared unmanaged charging with tariff-based time-of-use 

(TOU) shifting and feeder-sensitive coordinated scheduling on common benchmarks. This 

knowledge gap is significant because queue-limited operation at the public stations and 

correlated household arrivals can interact nonlinearly with the feeder impedances, producing 

stress patterns that differ considerably from those implied by smoothed averages. The present 

investigation is addressing these requirements by integrating a 5-minute time-series demand 

framework, combining realistic diurnal baseline loads, a finite-server arrival representation for 

L2/DCFC sites, and empirically consistent home-arrival/-departure distributions for 

residential EVswith the linearized DistFlow formulation that allows rapid evaluation of bus 

voltages, branch flows, transformer loading, and copper losses on an 11-kV radial feeder.  

Three fundamental charging regimes are considered: uncontrolled plug-in charging that 

begins immediately after arrival, TOU-based charging that shifts demand to the off-peak 

window (22:00-06:00), and feeder-wide coordinated valley-filling that distributes EV energy to 

minimize net-load peaks subject to user availability and charger power ratings. Performance is 

assessed through operationally and policy-relevant indicators: maximum feeder real power 

and its timing, lowest voltage magnitude and violation counts relative to the 0.95 p.u. limit, 

transformer loading as a percentage of rated capacity, peak branch utilization relative to 

thermal thresholds, and daily energy dissipation. To ensure robustness and provide planning 

insights, sensitivity analyses are applied over EV penetration rates and station mixes 

(L2/DCFC proportions), recognizing that both fleet composition and infrastructure expansion 

are progressing and spatially diverse. Three key contributions are offered: first, a unified and 

reproducible simulation platform that combines stochastic session-level demand with feeder 

physics at sufficient detail to capture coincidence effects; second, a comparative evaluation of 

unmanaged, tariff-based, and coordinated charging under identical conditions, clarifying 

trade-offs between peak reduction, voltage stability, and system losses; and third, actionable 

insights for tariff structuring, aggregator-driven control, and public charging siting that 

collectively enhance distribution-level hosting capacity while preserving service quality for EV 

users. 

1.1. Motivation 

With the rapid growth of electric vehicle (EV) use, distribution networks have been 

affected by new, very heavy and time-based loads. Strong evening peaks have been produced 

by residential Level-2 (L2) chargers, while short but high-power use has been created by public 

L2 and DC fast charging (DCFC) stations. If not planned early, these patterns have been shown 

to speed up transformer aging, increase losses, and reduce feeder voltage margins. At the same 

time, smart grid tools, communication rules, and aggregator business models have been 

adopted to make managed charging easy and cost-effective. Therefore, feeder-level studies 
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have been required in which both residential and public charging have been examined, 

uncontrolled and controlled ways have been compared, and effects on hosting capacity and 

limits have been assessed. This gap has been addressed by time-series power-flow tests on a 

real 11-kV radial feeder, and voltage, thermal load, and losses have been studied. 

1.2. EV Charging Impact on Distribution Networks 

Research on the impacts of electric vehicle (EV) charging on the distribution networks 

has been conducted, and significant challenges are being revealed as adoption rapidly 

increases. It has been demonstrated in Fig. 1 that higher EV penetration is associated with 

increased transformer loading and reduced voltage levels in the low-voltage residential 

networks [1]. However, voltage impacts have been observed as modest (less than 0.01 p.u.) in 

the high-voltage primary systems, while line loading increases have reached approximately 

15% as mentioned in Fig. 2 and Fig. 3 [2]. The spatial and temporal allocation of EV charging 

demands, influenced by variable driving behaviors and dynamic charging schedules, has been 

shown to strongly affect the performance of the distribution networks [3]. Multiple mitigation 

strategies are being identified as promising for effectively managing these impacts. Positive 

impacts on the distribution networks have been achieved by vehicle-to-grid (V2G) technology, 

while the integration of solar photovoltaic systems along with volt-var inverter functionality 

has helped reduce the charging impacts [1]. The necessity of comprehensive and adaptive 

network management measures has been emphasized by research to maximize EV hosting 

capacity as well as maintain reliable grid stability [4]. 

 
Fig. 1. Average transformer loading versus EV penetration levels [1]. 

 
Fig. 2. Maximum line loading and voltage deviations under uncontrolled EV charging across different feeder 

types [2]. 
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Fig. 3. Feeder load profiles showing peak load timing shifts [2]. 

1.3. Residential Level 2 Charging Load Modeling 

Data-driven approaches for accurately predicting electric vehicle charging behavior 

have primarily guided research on residential Level 2 charging load modeling. Figure 4 shows 

parameterized EV charging models were developed by [5] using actual data from 

Saskatchewan, Canada, with essential parameters like battery capacity, charging power, and 

start time incorporated through statistical distributions as well as Monte Carlo methods. 

Realistic charging patterns from 46 homes were carefully analyzed by [6] in the MISO region 

over one year, and consistent evening and nighttime charging was identified with significant 

potential for demand-side management applications. Power quality concerns were thoroughly 

addressed by [7] through probabilistic models based on Gaussian Mixture Models, where 

harmonic spectra of 7.2 kW Level-2 chargers as well as their effects on the low voltage 

networks were characterized as shown in Fig. 5. A non-intrusive method was innovatively 

proposed by [8] in the use of smart meter data and two-stage decomposition techniques to 

extract residential EV charging patterns without the need for specialized monitoring 

equipment. 

 
Fig. 4. Actual and simulated aggregated EV charging profile [5]. 

1.4. EV Public Charging Station Utilization Queuing Model 

Recent research has been focused on the development of sophisticated queuing models 

for effectively optimizing EV charging station utilization and operations. An EV-to-charging 

station equilibrium assignment model was proposed by [9] using an M/D/C queue 

approximation, and it was applied to the NYC fleet data with 563 Level 2 chargers as well as 

4 DCFCs serving 1484 EVs, achieving 7.6% average utilization as illustrated in Fig. 6. It was 

carefully concluded that investment policies should be prioritized at locations with high 
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utilization ratios over those with long queue delays. A comprehensive planning framework 

was designed by [10] incorporating EV user travel times, waiting times, distribution network 

losses, and station utilization, while a utilization rate-based queuing algorithm was proposed 

for accurate capacity determination. The M/K queuing model was further extended by [11] to 

analyze multiservice charging station profits, including battery charging along with 

discharging as well as swapping services. A self-controlling resource management model was 

efficiently created by [12] for fast-charging stations with priority service, where delay times 

between express and normal vehicle classes were effectively managed through the real-time 

control mechanisms. 

 
Fig. 5. Gaussian Mixture Model fits for current harmonic components of a 7.2 kW Level-2 charger [7]. 

 
Fig. 6. Relationship between charging frequency and utilization ratio in NYC EV fleet (563 L2 chargers, 4 DCFCs, 

1484 EVs) [9]. 

1.5. DC Fast Charging (DCFC) Impact on Distribution Feeders 

Significant challenges are posed to the distribution feeders by DC fast charging stations, 

and costly grid reinforcements are required due to their extremely high-power demands [13]. 

Voltage magnitude variations, voltage unbalance, and voltage fluctuations strongly affect 

power quality, potentially causing noticeable light flickers [14]. Step-voltage regulators’ tap 

operations are also influenced by fast charging, and undervoltage violations can be eventually 

introduced [15]. The actual impacts are known to vary by the system design. Detailed 

simulations on the actual distribution feeders have demonstrated modest voltage impacts, less 

than 0.01 p.u., because of robust feeder designs, while line loading was increased up to 15% 

with peak load shifts of nearly 1 hour on the residential feeders, see Fig. 7 [2]. Several useful 
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and mitigation strategies have been suggested, including vehicle-to-vehicle power transfer for 

reducing the grid connection needs [13], distribution static compensators for eliminating the 

light flickers [14], and Volt/Var control applications for injecting reactive power to minimize 

the voltage violations along with tap changes [15]. 

 
Fig. 7. Maximum line loading increase under uncontrolled EV charging across residential, commercial, industrial, 

and mixed feeders [2]. 

1.6. Time-of-Use Tariffs and EV Charging Peak Shaving 

Significant potential for peak shaving along with cost reduction is demonstrated by time-

of-use (ToU) tariffs combined with smart electric vehicle (EV) charging strategies. It was found 

by [16] that household electricity costs were reduced by 38.87% in the summer and 44.3% in 

the winter through optimized residential EV charging under ToU tariffs while avoiding the 

on-peak periods as shown in Fig. 8. Multiple objectives, including valley filling as well as peak 

shaving, were incorporated in the proposed framework to protect the distribution 

infrastructure. A methodology for ToU tariff estimation was developed by [17] using EVs' 

peak and off-peak contribution coefficients, with 6-7% peak consumption reduction achieved 

at 0.45 elasticity. Electricity cost reductions of 8.1% with bidirectional EV charging and 3.0% 

with unidirectional smart charging were demonstrated in the campus case studies by [18]. 

Another study by [19] stated the actual multifaceted impact of energy economically, TOU and 

coordinated charging strategies interact with electricity tariffs to reduce customer energy costs 

while helping utilities defer network reinforcement and operational expenses. It also shown 

by [20] that maximum peak load was reduced by 9.8% and customer savings up to 11.85% 

were provided for EV owners in the city of Beijing through genetic algorithm-based dynamic 

ToU pricing. 

1.7. Coordinated EV Charging and Valley Filling (Distribution) 

Coordinated electric vehicle (EV) charging strategies have been identified as crucial 

solutions for effectively managing the grid load profile and avoiding costly infrastructure 

upgrades. Several approaches have been formulated to achieve peak shaving along with valley 

filling objectives. A hierarchical coordination method was proposed by [21] with multiple EV 

aggregators, where fair power distribution at the upper level as well as optimization at the 

lower level was utilized to flatten the load profile while satisfying EV customer requirements. 

Decentralized schemes for coordinated valley-filling (C-VF) and coordinated valley-filling 

with peak-shaving (C-VF-PS) were designed by [22] and shown in Figure 9, achieving 

impressive load variance reductions of 47% and 65%, respectively, through efficient water-
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filling algorithms. Building on this advancement, Dis-Net-EVCD was introduced by [23] as a 

distributed optimization approach for unbalanced distribution grids, where a 78% operational 

cost reduction was attained in a perfect manner and compared to uncoordinated charging 

while being 60 times computationally faster than centralized methods. A comprehensive 

review of coordinated charging methods was conducted by [24], and the importance of these 

technologies was emphasized for large-scale EV integration without requiring substantial 

power infrastructure investments. 

 
Fig. 8. Optimized EV charging schedules under ToU tariffs showing peak avoidance and valley filling (summer 

vs winter) [16]. 

 
Fig. 9. Aggregate demand profile under uncoordinated EV charging, coordinated valley-filling (C-VF), and 

coordinated valley-filling with peak-shaving (C-VF-PS) [22]. 

1.8. Linearized DistFlow (Baran-Wu) for EV Integration 

Recent research on electric vehicle (EV) integration in the distribution networks using 

linearized DistFlow models has been conducted to reveal critical challenges along with 

practical solutions. Stability regions between DistFlow and linearized DistFlow models for EV 
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charging were compared by [25], where maximum feasible arrival rates were shown to decay 

as 1/N² for both models as the number of charging stations increased as illustrated in Figure 

10. A three-layer hierarchical framework was developed by [26] using ADMM and DistFlow 

models for optimal EV charging scheduling, where charging cost minimization as well as peak 

load shaving and voltage regulation were achieved through efficient single-loop iterative 

algorithms. Multi-objective optimization for EV integration with rooftop PVs and energy 

storage systems was investigated by [27], where up to a 39% reduction in energy costs along 

with remarkable improvements in the network operational parameters were demonstrated. A 

review of power quality issues caused by EV integration was presented by [28], and voltage 

imbalance and transformer failure, as well as harmonic distortion, were emphasized with a 

strong need for mitigation measures as EV adoption increases. As highlighted in recent review 

by [29] on power-electronics-based smart grids, EV chargers, being power electronic 

converters, can introduce harmonic distortion and other power-quality issues in distribution 

networks, so these harmonic impacts should be considered alongside the fundamental-

frequency effects analyzed. 

 
Fig. 10. Ratio of critical EV arrival rates under DistFlow and Linearized DistFlow models as a function of voltage 

drop tolerance (Δ) [25] 

1.9. Distribution Feeder Hosting Capacity with Electric Vehicles 

Recent research has been directed toward developing methodologies for assessing 

electric vehicle (EV) hosting capacity in the distribution networks. A hybrid deterministic-

stochastic methodology for low- and medium-voltage systems was proposed by [30], where 

conductor overload was identified as the primary limiting factor, representing 36.69% of 

violations for 3.6 kW chargers as well as 52.14% for 7 kW chargers as mentioned in Figs. 11-12. 

It was established by [31] that line carrying capacity along with load peak-valley characteristics 

becomes the main limiting factor as EV penetration increases, using optimal power flow 

models with three-phase constraints. A study by [32] demonstrated that uncontrolled EV 

charging alone does not enhance photovoltaic hosting capacity unless vehicles are connected 

during sunshine hours, while controlled storage systems provided remarkable increases. A 

stochastic approach was developed by [33], showing that hosting capacity varies dramatically 

from 0% to 100% depending on the background voltage, customer consumption, and charging 

power, with optimal performance at 3.7 kW single-phase as well as 11 kW three-phase 

charging. 
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Fig. 11. Hosting capacity of 45 kVA transformers with 3.6 kW and 7 kW chargers [30]. 

 
Fig. 12. Hosting capacity of 75 kVA transformers with 3.6 kW and 7 kW chargers [30]. 

1.10. Transformer Loading and Thermal Aging from EV Charging 

Electric vehicle (EV) charging has been shown to significantly affect distribution 

transformer loading along with thermal aging. It has been demonstrated in Fig. 13, that high 

EV penetration levels can accelerate transformer aging by up to 40% compared to scenarios 

without EV charging [34]. Additional stress on distribution transformers is created by the 

stochastic nature of EV charging loads, particularly in the high-density residential areas such 

as apartment complexes [35]. Several mitigation strategies have been proposed to effectively 

address these challenges. Demand response mechanisms using time-of-use tariffs are applied 

to shift EV loads based on transformer thermal loading, thereby reducing accelerated aging 

without the need for grid augmentation [36]. Integration of photovoltaic sources with energy 

storage systems has been shown to achieve up to a 41.8% reduction in transformer loss-of-life 

probability at 30% EV penetration [34]. Combined grid reinforcement strategies, including PV 

generation as well as capacitor banks and battery storage, can reduce transformer life loss by 

three to five times [35]. Furthermore, thermally-based dynamic load management approaches 

are employed to permit loads exceeding nameplate ratings while maintaining desired 

transformer lifetime targets [37, 38]. 
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Fig. 13. Transformer life loss reduction under EV penetration with PV integration [34]. 

1.11. Voltage Regulation / Volt-VAR Control for EV Chargers 

Researchers have recently focused on coordinated voltage regulation strategies that 

utilize electric vehicle (EV) chargers for volt-VAR control in distribution systems. It was 

demonstrated by [39] that aggregated EVs with both active and reactive power capabilities can 

be coordinated to achieve energy savings up to 4.14% through conservation voltage reduction, 

using two-stage stochastic programming to address forecast uncertainties as mentioned in      

Fig. 14. A hierarchical volt-VAR optimization framework was proposed by [40], where smart 

EV charging stations equipped with distributed energy resources cooperate with conventional 

voltage regulators, utilizing chance-constrained optimization under uncertainties in PV 

generation as well as EV driving patterns. A three-stage model predictive control approach 

was developed by [41] to coordinate EV charging with volt-VAR devices, where voltage limits 

were maintained while minimizing control resource usage along with electricity costs. An 

optimal hybrid control framework was introduced by [42] using Distribution-level Phasor 

Measurement Units and EV chargers, where voltage regulation within 205 ms was achieved 

through Eigensystem Realization-based system identification as well as Linear Quadratic 

Gaussian control. 

 
Fig. 14. Daily energy consumption profiles showing savings from coordinated EV volt-VAR dispatch for CVR 

[39]. 

2. MATERIALS AND METHODS 

2.1. System Under Study 
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We consider a balanced, single-phase equivalent of a medium-voltage radial distribution 

feeder representative of suburban contexts. The test system comprises a 10 MVA, 11 kV (line-

to-line) substation transformer feeding 10 downstream load buses (11 buses total, Bus 1 as the 

source). Intervening line segments between Bus i and Bus i+1 have series parameters derived 

from typical overhead conductors: R=0.30 Ω/km and X=0.35 Ω/km, with segment lengths in 

the range 0.6-1.0 km (total ≈7.8 km).  

Baseline (non-EV) demand is distributed across buses with evening-peaked magnitudes 

(0.18-0.40 MW per bus at peak) and aggregate power factor (PF) 0.95 lagging. All calculations 

are carried out in per-unit on a 10 MVA base. The feeder voltage floor for adequacy checks is 

0.95 p.u.; transformer and branch thermal checks are performed against a 10 MVA substation 

nameplate and notional branch apparent-power limits (7 MVA proxy), respectively. 

2.2. Baseline and EV Demand Construction 

2.2.1 Baseline Load 

Non-EV demand at each bus is synthesized as a diurnal profile with two modest peaks 

(morning and evening), scaled to the bus-specific peak MW values noted above. The profile is 

normalized to unity and then scaled; reactive power is computed from the assumed PF via 

Q=Ptan(arccos(PF)). This yields a time series Pbase(t,b) and Qbase(t,b) at 5-min resolution over 

24 h. 

2.2.2 Residential EV Fleet 

A residential EV fleet of nominal size NEV (base case NEV=300N) is distributed across 

load buses in proportion to their baseline peak demand, ensuring spatial consistency between 

native load and EV adoption. Each EV n is parameterized by: 

• Battery capacity Cn ∼N (60,122) kWh, truncated to [40, 90] kWh. 

• Arrival SOC s0,n ∈[0.2,0.8] (uniform), target SOC s∗=0.90. 

• Arrival time an ∼N (18.5,1.52) h and departure dn ∼N (7.5,1.02) h (wrapped to 24 h). 

• AC Level 2 charger rating PL2=7.2kW. 

The energy requirement is En=max [(s*-s0,n)Cn,0]. The EV is available to charge only in 

[an,dn] (with wrap-around through midnight), discretized to 5-min slots. 

2.2.3 Public Charging Stations 

Two public charging sites are sited at intermediate buses (e.g., Buses 4 and 8) to emulate 

commercial/workplace and corridor loads. Each site comprises nL2=12 Level 2 ports (7.2 kW 

each) and nDC=6 DC fast-charging ports (50 kW each). Session arrivals for each technology at 

each site follow a nonstationary Poisson process with a bell-shaped daytime rate (peak around 

13:00), λ(t), reflecting higher midday activity. Service times are stochastic: L2 dwell uniform 

on [60, 180] min; DCFC dwell uniform on [15, 40] min. Each site is modeled as a finite-server 

system with no queue (lost-customer approximation): an arrival is admitted if a port is free; 

otherwise, it balks. Instantaneous station power equals the number of occupied ports times 

the per-port rating, yielding PL2(t) and PDC(t) time series per site. Station-level utilization (0-1) 

is tracked for interpretation. 
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2.3. Charging Strategies 

We study three canonical strategies applied to residential EVs; public-station sessions 

remain as realized by the queuing model (reflecting limited direct controllability). 

• S1 Uncontrolled: Charging begins immediately upon availability and proceeds at PL2 

until En is delivered or the window closes. 

• S2 Time-of-Use (TOU): Charging is constrained to an off-peak window (22:00-06:00). 

Energy is delivered greedily during the intersection of EV availability and this window. 

• S3 Coordinated Valley-Filling: A feeder-wide heuristic allocates each EV’s energy to the 

lowest-load time slots within its availability window to flatten the net feeder load. 

Concretely, for each EV, candidate time indices are sorted by current feeder base load 

(baseline + public-station load + previously scheduled EVs), and energy is filled in 

ascending order subject to PL2 and window constraints. 

These strategies are intentionally simple, transparent, and implementable without 

solving large-scale optimizations, while still capturing essential differences between 

unmanaged, tariff-nudged, and feeder-aware control. 

• Rationale for controlled charging scenarios: Although EV charging sessions have mostly 
been left uncontrolled, the analysis of controlled strategies has been encouraged by 
recent trends and unmanaged behavior. Time-of-use (TOU) tariffs for residential users 
have already been used by many utilities and have been gradually expanded as an 
effective demand-side tool and management method. At the same time, significant 
progress in communication standards and simple charging rules has been achieved, and 
control of charging sessions has been enabled for utilities, aggregators, and charge-point 
operators through feeder-aware and price-based approaches. Therefore, the TOU-based 
and coordinated valley-filling strategies in this paper have been presented as near-future 
operational methods, not merely ideal or theoretical concepts. The S1, S2, and S3 
comparisons on the same feeder have been used to show current unmanaged charging 
issues alongside the practical advantages of managed charging methods. 

2.4. Network Model and Performance Metrics 

2.4.1. Linearized DistFlow 

Network responses are computed with a linearized DistFlow model on the chain feeder. 

Let Pi(t) and Qi(t) denote the downstream real and reactive power flows on line i (from Bus i 

to Bus i+1), obtained by summing bus injections downstream at time t. The voltage recursion 

is: 

𝑉𝑖+1 ≈ 𝑉𝑖(𝑡) −
𝑅𝑖𝑃𝑖(𝑡)+𝑋𝑖𝑄𝑖(𝑡)

𝑆𝑏𝑎𝑠𝑒
               (1) 

with V1(t)=1.0 p.u. Losses on line iii are approximated by 

𝑃𝑖
𝑙𝑜𝑠𝑠(𝑡) ≈

𝑅𝑖

𝑆𝑏𝑎𝑠𝑒
(𝑃𝑖

2(𝑡) + 𝑄𝑖
2(𝑡))              (2) 

Here Ri and Xi are per-unit series parameters derived from the physical Ω values and the 

10 MVA base. The model captures voltage depression from cumulative downstream power 

and enables fast time-series evaluation at 5-min resolution. 

2.4.2. Aggregate Signals and Limits 

Feeder real power is 𝑃∑(𝑡) = ∑ 𝑃𝑏𝑢𝑠𝑏 (𝑡, 𝑏) . Substation apparent power is                             

𝑆𝑠𝑢𝑏(𝑡) = √𝑃1
2 + 𝑄1

2, referenced to the 10 MVA nameplate. A branch thermal proxy compares 
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𝑆𝑖(𝑡) = √𝑃1
2 + 𝑄1

2 to a notional 𝑆𝑙𝑖𝑚 = 7𝑀𝑉𝐴. Voltage adequacy is assessed via minimum bus 

voltage and the count of time-bus pairs with V < 0.95 p.u. Daily copper losses are the time 

integral of ∑ 𝑃𝑖
𝑙𝑜𝑠𝑠(𝑡)𝑖 . 

2.4.3. Metrics 

We report: 

i. Peak feeder real power and its timing 

ii. Minimum bus voltage and violation count relative to 0.95 p.u. 

iii. Transformer loading as 𝑚𝑎𝑥𝑡100𝑆𝑠𝑢𝑏(𝑡)/10𝑀𝑉𝐴 

iv. Peak branch loading as 𝑚𝑎𝑥𝑡100𝑆𝑠𝑢𝑏(𝑡)/7𝑀𝑉𝐴 per line 

v. Daily I2R energy losses (MWh) 

vi. Public-station utilizations (L2/DCFC). These KPIs align with utility planning and 

operations practice and enable cross-scenario comparison. 

2.5. Experimental Design, Resolution, and Sensitivities 

All simulations span a 24-h horizon at 5-min resolution (288 steps), sufficient to resolve 

arrival/departure windows, TOU boundaries, and station dwell distributions. Baseline 

parameters (e.g., EV fleet size, station sizes, line impedances) reflect realistic but generic values 

to avoid dependence on proprietary feeder data. To quantify robustness, we conduct a 

penetration sensitivity by scaling the residential EV count by factors [0.3, 0.5, 0.7, 1.0, 1.2, 1.5] 

and recomputing S1 impacts; this clarifies how peak demand, voltage violations, and losses 

scale with adoption. Optional sensitivities can vary station mix (L2/DCFC ratio) or TOU 

windows to explore tariff design levers. For each sensitivity point, independent random seeds 

govern EV arrivals/SOC and station arrivals/service times to avoid overfitting to a single 

trajectory; summary statistics use the deterministic seed reported for reproducibility. 

3. RESULTS 

3.1. Base-Case Comparison (S1 vs S2 vs S3) 

Load curves (peak magnitudes & time shifts). Under S1, the net feeder demand exhibits 

a pronounced evening peak that coincides with residential arrivals; S2 shifts energy into 22:00-

06:00 creating a secondary nocturnal peak; S3 flattens the profile via valley filling, reducing 

the daily maximum and evening ramp, (see Fig. 15) 
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Fig. 15. Total feeder power vs time. 

Voltage behavior (heatmaps, peak-hour profiles, violations). Time-bus heatmaps show 

the deepest depressions under S1 during the evening; S2 moves the low-voltage region to late 

night; S3 raises the voltage floor across all buses (Fig. 16). At the S1 peak hour, the radial 

voltage drop is largest for S1, smaller for S2, and smallest for S3 (overlayed profiles in Fig. 17). 

The count of V<0.95 p.u. events follows the same ordering S1>S2>S3 (see Figs. 16-17). 

 
Fig. 16. Voltage magnitude heatmaps. 
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Fig. 17. Voltage profiles at S1 peak (t=20.00 h). 

Losses (time series and daily totals). Because copper losses scale with current squared, 

S1’s concentrated peak produces the highest instantaneous and daily I2R losses; S2 lowers 

evening maxima but adds a nighttime shoulder; S3 yields the lowest loss envelope and daily 

total (Fig. 18). 

 
Fig. 18. Feeder losses vs time. 

Thermal loading (transformer & branches). Substation loading approaches/exceeds 

nameplate under S1’s evening peak, is moderated (but shifted) under S2, and remains 

comfortably below rating under S3 (Fig. 19). Peak branch-loading bars identify mid-to-distal 

spans as most constrained in S1 (Fig. 20); a stressed-branch time series shows prolonged 

excursions in S1, shorter/later in S2, and reduced, often sub-limit operation in S3 (Fig. 21). 
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Fig. 19. Substation apparent power loading. 

 
Fig. 20. Peak branch-loading bars. 

 
Fig. 21. Branch 8 loading vs time. 

3.2. Public Station Behaviour 

Public L2 clusters show broad midday utilization, while DCFC occupancy is bursty and 

short-lived; both contribute a discernible midday shoulder in feeder net load (compare Fig. 22 
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with Fig. 15). Higher DCFC penetration intensifies brief, high-magnitude impulses on local 

branches and can erode voltage margins at station buses (Fig. 23). 

 
Fig. 22. Public station utilization. 

 
Fig. 23. Sensitivity to EV penetration (S1, uncontrolled): a) peak feeder demand rises ~linearly; b) voltage 

violations are near-zero until ~110-120% then spike; c) daily. 

3.3. Sensitivity Analyses 

EV penetration sweep. Peak feeder demand, voltage-violation counts, and daily losses 

increase monotonically with adoption under S1; violations accelerate beyond a feeder-specific 

threshold, while losses grow faster than linearly due to I2 scaling (Fig. 9). Coordinated charging 

(not plotted in the sweep for brevity) shifts these thresholds rightward, implying increased 

hosting capacity  

Station mix, increasing the DCFC share strengthens midday transformer loading and 

deepens local voltage dips near station buses, while a higher L2 share spreads demand at 

lower instantaneous power; illustrative curves provided in Supplementary Fig. S1. 

Robustness across seeds. Replications show small variance in system-level metrics and 

moderate variance in local indicators; the qualitative ordering S3<S2<S1 (for peaks, losses, 

violations) is invariant (Supplementary Fig. S2 / Table S1). 
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4. DISCUSSION 

Achieved simulation results corroborate and contextualize key patterns reported in the 

literature. First, the uncontrolled (S1) case concentrates demand in the residential evening 

window, which deepens voltage depressions at distal buses, elevates I2R losses, and pushes 

transformer/branch loading toward limits. This aligns with findings that rising EV 

penetration stresses low-voltage networks via higher transformer loading and lower voltages 

[1] and that primary-side voltage deviations can remain modest while line loadings increase 

materially (≈10-15%) under robust feeders [2]. Our time-bus voltage maps also illustrate the 

sensitivity of local performance to the spatiotemporal allocation of charging [3], the same daily 

energy, when synchronized with arrivals, produces nonlinear compounding of drops along a 

radial path. 

Time-of-use (S2) shifting mitigates coincidence with the native evening peak but creates 

a secondary off-peak surge, reproducing both the benefits and side effects seen in tariff studies 

[16, 17, 20]. In our feeder, S2 reduces evening violations and losses yet introduces a late-night 

shoulder that can nudge transformer loading toward its rating, consistent with campus and 

household case studies where savings and peak reduction coexist with rebound effects [18]. 

By contrast, the coordinated (S3) strategy yields the flattest net-load trajectory, the highest 

voltage floor, and the lowest daily losses, mirroring reported advantages of feeder-aware, 

aggregator-mediated coordination [21-24]. The ordering S3 > S2 > S1 on all reliability-relevant 

metrics is robust across random seeds in our experiments. 

Public-station behavior observed in the model is also consistent with prior queuing and 

DCFC impact studies. Midday L2 utilization creates a broad shoulder in feeder demand, while 

DCFC produces short, power-dense impulses that locally erode voltage margins and raise 

branch loading near station buses, an effect echoed in power-quality and regulator-tap 

analyses [14, 15]. The lost-customer finite-server abstraction reproduces macro-utilization 

patterns reported in M/c-style station studies [9, 10], sufficient for feeder-level stress 

screening. 

From an operational standpoint, these results favor (i) aggregator-mediated control that 

valley-fills within customer availability to curb peaks and violations without excessive 

curtailment; (ii) tariff design that combines TOU with guardrails (e.g., staggered windows or 

price gradients) to avoid single-hour pile-ups; and (iii) DCFC siting guidelines that steer high-

power ports away from electrically weak buses or pair them with local mitigation (on-site 

storage, Volt-VAR support). Framed as hosting-capacity management, coordination clearly 

shifts the violation and overload thresholds to higher EV penetrations [30, 31], expanding 

integration headroom without immediate reinforcement. 

Limitations of our approach parallel gaps noted in the review. We employ a balanced 

single-phase equivalent and linearized DistFlow, which is well-accepted for planning-time 

screening [25] but omits unbalance and voltage-dependent losses; validating key cases with 

unbalanced AC power flow or ADMM-based OPF [26] is a natural extension. The horizon is a 

single synthetic day; multi-day variability (weekends, weather) and transformer thermal aging 

are not modeled explicitly [34, 35]. We assume EV charger PF≈1 and exclude harmonics, 

despite documented power-quality concerns [7, 28]. The public-station model uses a lost-

customer assumption; finite-queue dynamics could increase short-term coincident demand. 

Each of these simplifications biases us toward conservative, qualitative comparisons rather 

than absolute limits. 
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Generalizability is strong at the pattern level. On feeders with higher R/X or longer 

radial chains, S1 impacts intensify and the relative benefits of S3 grow. Different arrival 

patterns (e.g., workplace-heavy regions) and TOU windows shift when, not whether, rebound 

peaks appear; gentler price gradients and randomized start delays can suppress 

synchronization. 

As a result, the DCFC share strongly shapes midday stresses; co-siting storage or 

enabling reactive support can decouple customer service from grid constraints. Overall, our 

results extend the literature by jointly simulating station utilization and feeder physics at 5-

min resolution, reinforcing that coordinated, feeder-aware scheduling is the most reliable lever 

to raise EV hosting capacity while protecting voltage and thermal margins. 

4.1. Practical Applicability And Validation Considerations 

The comparison between uncontrolled, TOU-based, and coordinated charging has been 

presented under realistic conditions rather than as an exact replication of a single feeder. 

Simple modeling assumptions have been adopted so the study has been executed efficiently 

and the effects of charging plans have been isolated. Arrival and departure times, energy 

needs, and public-station usage have been sampled using random models fitted to typical 

values from past studies. The network has been represented by a balanced, single-phase model 

with simple linear DistFlow power flow. 

In real feeders, customer behavior, tariff use, and aggregator participation have differed 

from the smooth assumptions used in this study. TOU plans have shown partial customer 

response, and coordinated plans have faced issues from communication tools, privacy rules, 

and market structure. Even with these simple setups, observed changes, peak reduction under 

TOU, deeper peak drop with better voltage in coordinated valley-filling, and the area effect of 

DCFC stations, have aligned with field results and other tests. The approach has been adapted 

to specific feeders by matching charging and load data with local numbers, applying 

unbalanced three-phase power flow, and validating voltage and loading with historical data. 

Therefore, the presented comparison has been offered as a basic, adaptable example for other 

networks, not as a full real-system test. 

4.2. Economic Aspects of Charging Strategies 

Although primary focus has been placed on technical performance, voltages, thermal 

loading, and losses, distinct economic effects have also been shown by the three charging 

strategies for EV users and network operators. In the uncontrolled charging method (S1), EV 

demand has coincided with the evening peak, and system peak demand has been increased. 

As a result, higher demand charges for large customers have been incurred, and earlier 

upgrades of transformers and lines have been required. 

In the TOU-based charging approach (S2), substantial EV energy has been shifted to off-

peak periods, which have been associated with lower energy rates and reduced generation 

costs. However, when many customers have responded within the same TOU window, a 

second late-night peak has been created, and this has remained costly from a network planning 

perspective. 

Under the coordinated valley-filling strategy (S3), feeder peak loading has been reduced 

and the load shape has been flattened. Improved technical performance has been achieved, 
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while capacity upgrades have been delayed and total losses have been lowered. In practical 

application, these beneficial effects have needed to be weighed against the costs of 

implementing control and communication tools, as well as the incentives required for users. 

A comprehensive techno-economic assessment, with detailed tariff and investment models, 

has been reserved for future study. 

4.3. Harmonic Distortion and Power Quality 

EV chargers have been recognized as power-electronic devices, and harmonic distortion 

has been produced in power networks as a result. Earlier tests and modelling of residential 

Level-2 (L2) chargers have shown distinctive harmonic patterns that have been explained by 

models such as Gaussian mixture models of current harmonics, while higher harmonic 

currents have been generated by DC fast charging (DCFC) stations because higher power has 

been used. 

In this research, harmonics have not been examined explicitly. Instead, electric vehicle 

chargers have been represented as constant-power users with power factors close to one, and 

only fundamental-frequency voltages and currents have been analysed. Consequently, 

possible effects on total harmonic distortion (THD), transformer heating due to harmonic 

currents, and interactions with network impedance have not been included. 

For future work, the method has been planned to be enhanced to include harmonic-

aware charging assessments and to determine whether spatial and temporal clustering of EV 

charging has been able to cause local power-quality problems under high usage levels. 

5. CONCLUSIONS 

This study quantified how residential and public EV charging shape distribution-feeder 

performance under three scheduling regimes. Uncontrolled plug-in (S1) concentrated demand 

in the residential evening window, producing the largest feeder peaks, the lowest voltage floor 

with the most V<0.95 p.u. events, the tightest thermal margins at the transformer and distal 

branches, and the highest daily I2R losses. Time-of-use shifting (S2) reduced coincidence with 

the native evening peak and lowered violations and losses relative to S1, but introduced a 

secondary off-peak surge around the tariff window that could approach nameplate loading. 

Coordinated valley-filling (S3) delivered the best aggregate outcomes across all KPIs: the 

flattest net-load trajectory, higher bus voltages throughout the day, relieved 

transformer/branch loading, and the lowest daily losses. Sensitivity analyses showed 

monotonic growth of peak, violations, and losses with EV penetration under S1, while 

coordination shifted hosting-capacity thresholds rightward. Public-station behavior mattered: 

L2 created a broad midday shoulder; DCFC generated short, power-dense impulses that 

eroded local voltage margins, emphasizing that station utilization must be explicitly modeled 

in planning. 

Operationally, we recommend (i) deploying managed charging via aggregator-

mediated, feeder-aware coordination to flatten load within customer availability; (ii) 

designing tariffs with gentle price gradients or staggered windows and randomized start 

delays to avoid synchronized pile-ups; (iii) siting DCFC away from electrically weak buses, or 

pairing them with on-site storage and Volt-VAR support; and (iv) incorporating queuing-
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based station utilization into interconnection and hosting-capacity studies, not just average 

load profiles. 

Future work should examine V2G strategies that co-optimize active/reactive power 

under uncertainty; validate key cases with exact unbalanced AC power flow and field data 

from real feeders; integrate transformer thermal-aging and OLTC dynamics to translate peak 

reductions into lifetime benefits; and activate reactive power control from EVSE/inverters to 

support voltage. Extending to multi-day, seasonal simulations with stochastic travel patterns, 

unbalance, and harmonics will further generalize results and sharpen utility planning 

guidelines. 
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