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Abstract— Rapid Transport Electrification is imposing spatiotemporally heterogeneous loads on distribution
networks. This study quantifies the impacts of residential Level 2 (L2) charging and public charging stations,
including 50-kW DC fast chargers (DCFCs), on an 11-kV radial feeder using a 5-min time-series framework.
Baseline demand is represented by measured-like diurnal profiles; station demand is synthesized via a finite-
server, time-varying Poisson arrival process with stochastic service times. Network responses (bus voltages,
branch flows, transformer loading, and I2R losses) are computed using a linearized DistFlow formulation. Three
scheduling strategies are evaluated: (S1) uncontrolled plug-in, (52) time-of-use (TOU) shifting to 22:00-06:00, and
(S3) feeder-wide coordinated valley filling. Performance is assessed via peak feeder real power and timing,
minimum voltage magnitude and violation count (<0.95 pu), transformer apparent-power utilization relative to
nameplate, branch thermal margins, and daily energy losses. Uncontrolled charging coincides with the
residential evening peak, amplifying maximum demand, losses, and voltage deviations. TOU shifting reduces
coincidence with the native peak but can induce secondary off-peak surges. Coordinated charging most
effectively flattens the net load, enhances voltage security, and mitigates thermal stress. Sensitivity analyses
across EV penetration and L2/DCFC mix demonstrate robustness of the results and yield actionable implications
for tariff design, public-station siting, and aggregator-mediated managed charging to increase distribution-level
hosting capacity.

Keywords— EV charging; Distribution networks; Managed charging; Voltage regulation; Transformer loading;
DistFlow.

1. INTRODUCTION

Global acceleration of transport electrification is being observed, and the widespread
deployment of residential Level-2 (L2) chargers along with public charging facilities, covering
workplace and retail L2 clusters as well as high-power DC fast chargers (DCFCs), is placing
spatiotemporally diverse loads on the distribution networks that were originally designed for
unidirectional and slowly changing demand. Although generation adequacy and transmission
constraints are commonly emphasized in aggregate studies, the most immediate operational
consequences of EV charging are being manifested at the medium and low voltage feeders.
These are seen as higher evening peaks, localized voltage drops, and increased I2R losses, and
thermal stress on the lines and the substation transformers. Residential L2 charging is typically
aligned with home arrival windows and the natural evening peak, whereas public charging is
being characterized by distinct daytime patterns influenced by site utilization, dwell times, and
the share of DCFC ports capable of producing sudden demand changes. Quantitative methods
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have been required by utilities and system operators to capture the stochastic variability of
charging sessions and the physical dynamics of radial feeders.

In this way, hosting capacity has been assessed, reinforcement has been prioritized, and
managed-charging strategies have been designed to reduce adverse impacts without
diminishing user experience. Previous research has substantially described EV load profiles or
analyzed management schemes independently; however, relatively fewer investigations have
jointly modeled station-level utilization (with finite servers, time-varying arrivals, and
stochastic service times) together with feeder power-flow responses at high temporal
resolution, and even fewer have compared unmanaged charging with tariff-based time-of-use
(TOU) shifting and feeder-sensitive coordinated scheduling on common benchmarks. This
knowledge gap is significant because queue-limited operation at the public stations and
correlated household arrivals can interact nonlinearly with the feeder impedances, producing
stress patterns that differ considerably from those implied by smoothed averages. The present
investigation is addressing these requirements by integrating a 5-minute time-series demand
framework, combining realistic diurnal baseline loads, a finite-server arrival representation for
L2/DCFC sites, and empirically consistent home-arrival/-departure distributions for
residential EVswith the linearized DistFlow formulation that allows rapid evaluation of bus
voltages, branch flows, transformer loading, and copper losses on an 11-kV radial feeder.

Three fundamental charging regimes are considered: uncontrolled plug-in charging that
begins immediately after arrival, TOU-based charging that shifts demand to the off-peak
window (22:00-06:00), and feeder-wide coordinated valley-filling that distributes EV energy to
minimize net-load peaks subject to user availability and charger power ratings. Performance is
assessed through operationally and policy-relevant indicators: maximum feeder real power
and its timing, lowest voltage magnitude and violation counts relative to the 0.95 p.u. limit,
transformer loading as a percentage of rated capacity, peak branch utilization relative to
thermal thresholds, and daily energy dissipation. To ensure robustness and provide planning
insights, sensitivity analyses are applied over EV penetration rates and station mixes
(L2/DCEC proportions), recognizing that both fleet composition and infrastructure expansion
are progressing and spatially diverse. Three key contributions are offered: first, a unified and
reproducible simulation platform that combines stochastic session-level demand with feeder
physics at sufficient detail to capture coincidence effects; second, a comparative evaluation of
unmanaged, tariff-based, and coordinated charging under identical conditions, clarifying
trade-offs between peak reduction, voltage stability, and system losses; and third, actionable
insights for tariff structuring, aggregator-driven control, and public charging siting that
collectively enhance distribution-level hosting capacity while preserving service quality for EV
users.

1.1. Motivation

With the rapid growth of electric vehicle (EV) use, distribution networks have been
affected by new, very heavy and time-based loads. Strong evening peaks have been produced
by residential Level-2 (L2) chargers, while short but high-power use has been created by public
L2 and DC fast charging (DCFC) stations. If not planned early, these patterns have been shown
to speed up transformer aging, increase losses, and reduce feeder voltage margins. At the same
time, smart grid tools, communication rules, and aggregator business models have been
adopted to make managed charging easy and cost-effective. Therefore, feeder-level studies
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have been required in which both residential and public charging have been examined,
uncontrolled and controlled ways have been compared, and effects on hosting capacity and
limits have been assessed. This gap has been addressed by time-series power-flow tests on a
real 11-kV radial feeder, and voltage, thermal load, and losses have been studied.

1.2. EV Charging Impact on Distribution Networks

Research on the impacts of electric vehicle (EV) charging on the distribution networks
has been conducted, and significant challenges are being revealed as adoption rapidly
increases. It has been demonstrated in Fig. 1 that higher EV penetration is associated with
increased transformer loading and reduced voltage levels in the low-voltage residential
networks [1]. However, voltage impacts have been observed as modest (less than 0.01 p.u.) in
the high-voltage primary systems, while line loading increases have reached approximately
15% as mentioned in Fig. 2 and Fig. 3 [2]. The spatial and temporal allocation of EV charging
demands, influenced by variable driving behaviors and dynamic charging schedules, has been
shown to strongly affect the performance of the distribution networks [3]. Multiple mitigation
strategies are being identified as promising for effectively managing these impacts. Positive
impacts on the distribution networks have been achieved by vehicle-to-grid (V2G) technology,
while the integration of solar photovoltaic systems along with volt-var inverter functionality
has helped reduce the charging impacts [1]. The necessity of comprehensive and adaptive
network management measures has been emphasized by research to maximize EV hosting
capacity as well as maintain reliable grid stability [4].
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Fig. 1. Average transformer loading versus EV penetration levels [1].
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Fig. 2. Maximum line loading and voltage deviations under uncontrolled EV charging across different feeder

types [2].
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Fig. 3. Feeder load profiles showing peak load timing shifts [2].

1.3. Residential Level 2 Charging Load Modeling

Data-driven approaches for accurately predicting electric vehicle charging behavior
have primarily guided research on residential Level 2 charging load modeling. Figure 4 shows
parameterized EV charging models were developed by [5] using actual data from
Saskatchewan, Canada, with essential parameters like battery capacity, charging power, and
start time incorporated through statistical distributions as well as Monte Carlo methods.
Realistic charging patterns from 46 homes were carefully analyzed by [6] in the MISO region
over one year, and consistent evening and nighttime charging was identified with significant
potential for demand-side management applications. Power quality concerns were thoroughly
addressed by [7] through probabilistic models based on Gaussian Mixture Models, where
harmonic spectra of 7.2 kW Level-2 chargers as well as their effects on the low voltage
networks were characterized as shown in Fig. 5. A non-intrusive method was innovatively
proposed by [8] in the use of smart meter data and two-stage decomposition techniques to
extract residential EV charging patterns without the need for specialized monitoring

equipment.
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Fig. 4. Actual and simulated aggregated EV charging profile [5].

1.4. EV Public Charging Station Utilization Queuing Model

Recent research has been focused on the development of sophisticated queuing models
for effectively optimizing EV charging station utilization and operations. An EV-to-charging
station equilibrium assignment model was proposed by [9] using an M/D/C queue
approximation, and it was applied to the NYC fleet data with 563 Level 2 chargers as well as
4 DCFCs serving 1484 EVs, achieving 7.6% average utilization as illustrated in Fig. 6. It was
carefully concluded that investment policies should be prioritized at locations with high
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utilization ratios over those with long queue delays. A comprehensive planning framework
was designed by [10] incorporating EV user travel times, waiting times, distribution network
losses, and station utilization, while a utilization rate-based queuing algorithm was proposed
for accurate capacity determination. The M/K queuing model was further extended by [11] to
analyze multiservice charging station profits, including battery charging along with
discharging as well as swapping services. A self-controlling resource management model was
efficiently created by [12] for fast-charging stations with priority service, where delay times
between express and normal vehicle classes were effectively managed through the real-time
control mechanisms.
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Fig. 5. Gaussian Mixture Model fits for current harmonic components of a 7.2 kW Level-2 charger [7].
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Fig. 6. Relationship between charging frequency and utilization ratio in NYC EV fleet (563 L2 chargers, 4 DCFCs,
1484 EVs) [9].

1.5. DC Fast Charging (DCFC) Impact on Distribution Feeders

Significant challenges are posed to the distribution feeders by DC fast charging stations,
and costly grid reinforcements are required due to their extremely high-power demands [13].
Voltage magnitude variations, voltage unbalance, and voltage fluctuations strongly affect
power quality, potentially causing noticeable light flickers [14]. Step-voltage regulators’” tap
operations are also influenced by fast charging, and undervoltage violations can be eventually
introduced [15]. The actual impacts are known to vary by the system design. Detailed
simulations on the actual distribution feeders have demonstrated modest voltage impacts, less
than 0.01 p.u., because of robust feeder designs, while line loading was increased up to 15%
with peak load shifts of nearly 1 hour on the residential feeders, see Fig. 7 [2]. Several useful
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and mitigation strategies have been suggested, including vehicle-to-vehicle power transfer for
reducing the grid connection needs [13], distribution static compensators for eliminating the
light flickers [14], and Volt/Var control applications for injecting reactive power to minimize
the voltage violations along with tap changes [15].
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Fig. 7. Maximum line loading increase under uncontrolled EV charging across residential, commercial, industrial,
and mixed feeders [2].

1.6. Time-of-Use Tariffs and EV Charging Peak Shaving

Significant potential for peak shaving along with cost reduction is demonstrated by time-
of-use (ToU) tariffs combined with smart electric vehicle (EV) charging strategies. It was found
by [16] that household electricity costs were reduced by 38.87% in the summer and 44.3% in
the winter through optimized residential EV charging under ToU tariffs while avoiding the
on-peak periods as shown in Fig. 8. Multiple objectives, including valley filling as well as peak
shaving, were incorporated in the proposed framework to protect the distribution
infrastructure. A methodology for ToU tariff estimation was developed by [17] using EVs'
peak and off-peak contribution coefficients, with 6-7% peak consumption reduction achieved
at 0.45 elasticity. Electricity cost reductions of 8.1% with bidirectional EV charging and 3.0%
with unidirectional smart charging were demonstrated in the campus case studies by [18].
Another study by [19] stated the actual multifaceted impact of energy economically, TOU and
coordinated charging strategies interact with electricity tariffs to reduce customer energy costs
while helping utilities defer network reinforcement and operational expenses. It also shown
by [20] that maximum peak load was reduced by 9.8% and customer savings up to 11.85%
were provided for EV owners in the city of Beijing through genetic algorithm-based dynamic
ToU pricing.

1.7. Coordinated EV Charging and Valley Filling (Distribution)

Coordinated electric vehicle (EV) charging strategies have been identified as crucial
solutions for effectively managing the grid load profile and avoiding costly infrastructure
upgrades. Several approaches have been formulated to achieve peak shaving along with valley
filling objectives. A hierarchical coordination method was proposed by [21] with multiple EV
aggregators, where fair power distribution at the upper level as well as optimization at the
lower level was utilized to flatten the load profile while satisfying EV customer requirements.
Decentralized schemes for coordinated valley-filling (C-VF) and coordinated valley-filling
with peak-shaving (C-VF-PS) were designed by [22] and shown in Figure 9, achieving
impressive load variance reductions of 47% and 65%, respectively, through efficient water-
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filling algorithms. Building on this advancement, Dis-Net-EVCD was introduced by [23] as a
distributed optimization approach for unbalanced distribution grids, where a 78% operational
cost reduction was attained in a perfect manner and compared to uncoordinated charging
while being 60 times computationally faster than centralized methods. A comprehensive
review of coordinated charging methods was conducted by [24], and the importance of these

technologies was emphasized for large-scale EV integration without requiring substantial
power infrastructure investments.
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1.8. Linearized DistFlow (Baran-Wu) for EV Integration

Recent research on electric vehicle (EV) integration in the distribution networks using
linearized DistFlow models has been conducted to reveal critical challenges along with
practical solutions. Stability regions between DistFlow and linearized DistFlow models for EV
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charging were compared by [25], where maximum feasible arrival rates were shown to decay
as 1/N? for both models as the number of charging stations increased as illustrated in Figure
10. A three-layer hierarchical framework was developed by [26] using ADMM and DistFlow
models for optimal EV charging scheduling, where charging cost minimization as well as peak
load shaving and voltage regulation were achieved through efficient single-loop iterative
algorithms. Multi-objective optimization for EV integration with rooftop PVs and energy
storage systems was investigated by [27], where up to a 39% reduction in energy costs along
with remarkable improvements in the network operational parameters were demonstrated. A
review of power quality issues caused by EV integration was presented by [28], and voltage
imbalance and transformer failure, as well as harmonic distortion, were emphasized with a
strong need for mitigation measures as EV adoption increases. As highlighted in recent review
by [29] on power-electronics-based smart grids, EV chargers, being power electronic
converters, can introduce harmonic distortion and other power-quality issues in distribution
networks, so these harmonic impacts should be considered alongside the fundamental-
frequency effects analyzed.
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1.9. Distribution Feeder Hosting Capacity with Electric Vehicles

Recent research has been directed toward developing methodologies for assessing
electric vehicle (EV) hosting capacity in the distribution networks. A hybrid deterministic-
stochastic methodology for low- and medium-voltage systems was proposed by [30], where
conductor overload was identified as the primary limiting factor, representing 36.69% of
violations for 3.6 kW chargers as well as 52.14% for 7 kW chargers as mentioned in Figs. 11-12.
It was established by [31] that line carrying capacity along with load peak-valley characteristics
becomes the main limiting factor as EV penetration increases, using optimal power flow
models with three-phase constraints. A study by [32] demonstrated that uncontrolled EV
charging alone does not enhance photovoltaic hosting capacity unless vehicles are connected
during sunshine hours, while controlled storage systems provided remarkable increases. A
stochastic approach was developed by [33], showing that hosting capacity varies dramatically
from 0% to 100% depending on the background voltage, customer consumption, and charging
power, with optimal performance at 3.7 kW single-phase as well as 11 kW three-phase
charging.
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1.10. Transformer Loading and Thermal Aging from EV Charging

Electric vehicle (EV) charging has been shown to significantly affect distribution
transformer loading along with thermal aging. It has been demonstrated in Fig. 13, that high
EV penetration levels can accelerate transformer aging by up to 40% compared to scenarios
without EV charging [34]. Additional stress on distribution transformers is created by the
stochastic nature of EV charging loads, particularly in the high-density residential areas such
as apartment complexes [35]. Several mitigation strategies have been proposed to effectively
address these challenges. Demand response mechanisms using time-of-use tariffs are applied
to shift EV loads based on transformer thermal loading, thereby reducing accelerated aging
without the need for grid augmentation [36]. Integration of photovoltaic sources with energy
storage systems has been shown to achieve up to a 41.8% reduction in transformer loss-of-life
probability at 30% EV penetration [34]. Combined grid reinforcement strategies, including PV
generation as well as capacitor banks and battery storage, can reduce transformer life loss by
three to five times [35]. Furthermore, thermally-based dynamic load management approaches
are employed to permit loads exceeding nameplate ratings while maintaining desired
transformer lifetime targets [37, 38].
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Fig. 13. Transformer life loss reduction under EV penetration with PV integration [34].

1.11. Voltage Regulation/ Volt-VAR Control for EV Chargers

Researchers have recently focused on coordinated voltage regulation strategies that
utilize electric vehicle (EV) chargers for volt-VAR control in distribution systems. It was
demonstrated by [39] that aggregated EVs with both active and reactive power capabilities can
be coordinated to achieve energy savings up to 4.14% through conservation voltage reduction,
using two-stage stochastic programming to address forecast uncertainties as mentioned in
Fig. 14. A hierarchical volt-VAR optimization framework was proposed by [40], where smart
EV charging stations equipped with distributed energy resources cooperate with conventional
voltage regulators, utilizing chance-constrained optimization under uncertainties in PV
generation as well as EV driving patterns. A three-stage model predictive control approach
was developed by [41] to coordinate EV charging with volt-VAR devices, where voltage limits
were maintained while minimizing control resource usage along with electricity costs. An
optimal hybrid control framework was introduced by [42] using Distribution-level Phasor
Measurement Units and EV chargers, where voltage regulation within 205 ms was achieved
through Eigensystem Realization-based system identification as well as Linear Quadratic
Gaussian control.
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Fig. 14. Daily energy consumption profiles showing savings from coordinated EV volt-VAR dispatch for CVR
[39].

2. MATERIALS AND METHODS

2.1. System Under Study
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We consider a balanced, single-phase equivalent of a medium-voltage radial distribution
feeder representative of suburban contexts. The test system comprises a 10 MVA, 11 kV (line-
to-line) substation transformer feeding 10 downstream load buses (11 buses total, Bus 1 as the
source). Intervening line segments between Bus i and Bus i+1 have series parameters derived
from typical overhead conductors: R=0.30 QQ/km and X=0.35 Q/km, with segment lengths in
the range 0.6-1.0 km (total ~7.8 km).

Baseline (non-EV) demand is distributed across buses with evening-peaked magnitudes
(0.18-0.40 MW per bus at peak) and aggregate power factor (PF) 0.95 lagging. All calculations
are carried out in per-unit on a 10 MVA base. The feeder voltage floor for adequacy checks is
0.95 p.u.; transformer and branch thermal checks are performed against a 10 MV A substation
nameplate and notional branch apparent-power limits (7 MVA proxy), respectively.

2.2. Baseline and EV Demand Construction
2.2.1 Baseline Load

Non-EV demand at each bus is synthesized as a diurnal profile with two modest peaks
(morning and evening), scaled to the bus-specific peak MW values noted above. The profile is
normalized to unity and then scaled; reactive power is computed from the assumed PF via
Q=Ptan(arccos(PF)). This yields a time series Ppase(t,b) and Qpase(t,b) at 5-min resolution over
24 h.

2.2.2 Residential EV Fleet

A residential EV fleet of nominal size NEV (base case NEV=300N) is distributed across
load buses in proportion to their baseline peak demand, ensuring spatial consistency between
native load and EV adoption. Each EV n is parameterized by:

e Battery capacity C,~N (60,122) kWh, truncated to [40, 90] kWh.

e Arrival SOC s €[0.2,0.8] (uniform), target SOC s+=0.90.

e Arrival time a, ~N (18.5,1.52) h and departure d, ~N (7.5,1.02) h (wrapped to 24 h).
e AC Level 2 charger rating PL2=7.2kW.

The energy requirement is E,.=max [(s™-S0,1)Cn,0]. The EV is available to charge only in
[an,dn] (with wrap-around through midnight), discretized to 5-min slots.

2.2.3  Public Charging Stations

Two public charging sites are sited at intermediate buses (e.g., Buses 4 and 8) to emulate
commercial/workplace and corridor loads. Each site comprises n12=12 Level 2 ports (7.2 kW
each) and npc=6 DC fast-charging ports (50 kW each). Session arrivals for each technology at
each site follow a nonstationary Poisson process with a bell-shaped daytime rate (peak around
13:00), A(t), reflecting higher midday activity. Service times are stochastic: L2 dwell uniform
on [60, 180] min; DCFC dwell uniform on [15, 40] min. Each site is modeled as a finite-server
system with no queue (lost-customer approximation): an arrival is admitted if a port is free;
otherwise, it balks. Instantaneous station power equals the number of occupied ports times
the per-port rating, yielding Pro(t) and Ppc(t) time series per site. Station-level utilization (0-1)
is tracked for interpretation.
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2.3. Charging Strategies

We study three canonical strategies applied to residential EVs; public-station sessions
remain as realized by the queuing model (reflecting limited direct controllability).
e S1 Uncontrolled: Charging begins immediately upon availability and proceeds at P12
until Enis delivered or the window closes.
e S2 Time-of-Use (TOU): Charging is constrained to an off-peak window (22:00-06:00).
Energy is delivered greedily during the intersection of EV availability and this window.
e S3 Coordinated Valley-Filling: A feeder-wide heuristic allocates each EV’s energy to the
lowest-load time slots within its availability window to flatten the net feeder load.
Concretely, for each EV, candidate time indices are sorted by current feeder base load
(baseline + public-station load + previously scheduled EVs), and energy is filled in
ascending order subject to PL12and window constraints.
These strategies are intentionally simple, transparent, and implementable without
solving large-scale optimizations, while still capturing essential differences between
unmanaged, tariff-nudged, and feeder-aware control.

e Rationale for controlled charging scenarios: Although EV charging sessions have mostly
been left uncontrolled, the analysis of controlled strategies has been encouraged by
recent trends and unmanaged behavior. Time-of-use (TOU) tariffs for residential users
have already been used by many utilities and have been gradually expanded as an
effective demand-side tool and management method. At the same time, significant
progress in communication standards and simple charging rules has been achieved, and
control of charging sessions has been enabled for utilities, aggregators, and charge-point
operators through feeder-aware and price-based approaches. Therefore, the TOU-based
and coordinated valley-filling strategies in this paper have been presented as near-future
operational methods, not merely ideal or theoretical concepts. The S1, S2, and S3
comparisons on the same feeder have been used to show current unmanaged charging
issues alongside the practical advantages of managed charging methods.

2.4. Network Model and Performance Metrics

2.4.1. Linearized DistFlow

Network responses are computed with a linearized DistFlow model on the chain feeder.
Let Pi(t) and Qi(t) denote the downstream real and reactive power flows on line ; (from Bus i
to Bus i+1), obtained by summing bus injections downstream at time t. The voltage recursion
is:

Vi = Y0) - 20100 g
with V1(t)=1.0 p.u. Losses on line iii are approximated by
loss - R 2 2
PSS (6) = 5= (PA(D) + Q2(0)) @

Here R; and X; are per-unit series parameters derived from the physical Q values and the
10 MVA base. The model captures voltage depression from cumulative downstream power
and enables fast time-series evaluation at 5-min resolution.

2.4.2. Aggregate Signals and Limits

Feeder real power is PY(t) =Y, Pyys(t,b) . Substation apparent power is
Ssup(t) =/ P% + QF, referenced to the 10 MVA nameplate. A branch thermal proxy compares
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S;(t) = /P? + Q2 to a notional S¥™ = 7MVA. Voltage adequacy is assessed via minimum bus
voltage and the count of time-bus pairs with V < 0.95 p.u. Daily copper losses are the time
integral of }; P/*5(¢).

2.4.3. Metrics

We report:

i. Peak feeder real power and its timing

ii. Minimum bus voltage and violation count relative to 0.95 p.u.
iii. Transformer loading as max;100S,,;,(t)/10MVA
iv. Peak branch loading as max,;100S,,;,(t)/7MV A per line

v. Daily I2R energy losses (MWh)
vi. Public-station utilizations (L2/DCFC). These KPIs align with utility planning and
operations practice and enable cross-scenario comparison.

2.5. Experimental Design, Resolution, and Sensitivities

All simulations span a 24-h horizon at 5-min resolution (288 steps), sufficient to resolve
arrival/departure windows, TOU boundaries, and station dwell distributions. Baseline
parameters (e.g., EV fleet size, station sizes, line impedances) reflect realistic but generic values
to avoid dependence on proprietary feeder data. To quantify robustness, we conduct a
penetration sensitivity by scaling the residential EV count by factors [0.3,0.5,0.7,1.0,1.2,1.5]
and recomputing S1 impacts; this clarifies how peak demand, voltage violations, and losses
scale with adoption. Optional sensitivities can vary station mix (L2/DCFC ratio) or TOU
windows to explore tariff design levers. For each sensitivity point, independent random seeds
govern EV arrivals/SOC and station arrivals/service times to avoid overfitting to a single
trajectory; summary statistics use the deterministic seed reported for reproducibility.

3. RESULTS

3.1. Base-Case Comparison (S1 vs S2 vs S3)

Load curves (peak magnitudes & time shifts). Under S1, the net feeder demand exhibits
a pronounced evening peak that coincides with residential arrivals; S2 shifts energy into 22:00-
06:00 creating a secondary nocturnal peak; S3 flattens the profile via valley filling, reducing
the daily maximum and evening ramp, (see Fig. 15)
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Fig. 15. Total feeder power vs time.

Voltage behavior (heatmaps, peak-hour profiles, violations). Time-bus heatmaps show
the deepest depressions under S1 during the evening; S2 moves the low-voltage region to late
night; S3 raises the voltage floor across all buses (Fig. 16). At the S1 peak hour, the radial
voltage drop is largest for S1, smaller for S2, and smallest for S3 (overlayed profiles in Fig. 17).
The count of V<0.95 p.u. events follows the same ordering S1>52>S3 (see Figs. 16-17).
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Fig. 16. Voltage magnitude heatmaps.
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Fig. 17. Voltage profiles at S1 peak (t=20.00 h).

Losses (time series and daily totals). Because copper losses scale with current squared,
S1’s concentrated peak produces the highest instantaneous and daily I2R losses; S2 lowers

evening maxima but adds a nighttime shoulder; S3 yields the lowest loss envelope and daily
total (Fig. 18).
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Fig. 18. Feeder losses vs time.

Thermal loading (transformer & branches). Substation loading approaches/exceeds
nameplate under S1’'s evening peak, is moderated (but shifted) under S2, and remains
comfortably below rating under S3 (Fig. 19). Peak branch-loading bars identify mid-to-distal
spans as most constrained in S1 (Fig. 20); a stressed-branch time series shows prolonged
excursions in S1, shorter/later in S2, and reduced, often sub-limit operation in S3 (Fig. 21).
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3.2. Public Station Behaviour

Public L2 clusters show broad midday utilization, while DCFC occupancy is bursty and
short-lived; both contribute a discernible midday shoulder in feeder net load (compare Fig. 22
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with Fig. 15). Higher DCFC penetration intensifies brief, high-magnitude impulses on local
branches and can erode voltage margins at station buses (Fig. 23).

Public Charging Station Utilization
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Fig. 22. Public station utilization.
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Fig. 23. Sensitivity to EV penetration (S1, uncontrolled): a) peak feeder demand rises ~linearly; b) voltage
violations are near-zero until ~110-120% then spike; c) daily.

3.3. Sensitivity Analyses

EV penetration sweep. Peak feeder demand, voltage-violation counts, and daily losses
increase monotonically with adoption under S1; violations accelerate beyond a feeder-specific
threshold, while losses grow faster than linearly due to 12 scaling (Fig. 9). Coordinated charging
(not plotted in the sweep for brevity) shifts these thresholds rightward, implying increased
hosting capacity

Station mix, increasing the DCFC share strengthens midday transformer loading and
deepens local voltage dips near station buses, while a higher L2 share spreads demand at
lower instantaneous power; illustrative curves provided in Supplementary Fig. S1.

Robustness across seeds. Replications show small variance in system-level metrics and
moderate variance in local indicators; the qualitative ordering S3<S2<S1 (for peaks, losses,
violations) is invariant (Supplementary Fig. S2 / Table S1).
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4. DISCUSSION

Achieved simulation results corroborate and contextualize key patterns reported in the
literature. First, the uncontrolled (S1) case concentrates demand in the residential evening
window, which deepens voltage depressions at distal buses, elevates I2R losses, and pushes
transformer/branch loading toward limits. This aligns with findings that rising EV
penetration stresses low-voltage networks via higher transformer loading and lower voltages
[1] and that primary-side voltage deviations can remain modest while line loadings increase
materially (<10-15%) under robust feeders [2]. Our time-bus voltage maps also illustrate the
sensitivity of local performance to the spatiotemporal allocation of charging [3], the same daily
energy, when synchronized with arrivals, produces nonlinear compounding of drops along a
radial path.

Time-of-use (S2) shifting mitigates coincidence with the native evening peak but creates
a secondary off-peak surge, reproducing both the benefits and side effects seen in tariff studies
[16, 17, 20]. In our feeder, S2 reduces evening violations and losses yet introduces a late-night
shoulder that can nudge transformer loading toward its rating, consistent with campus and
household case studies where savings and peak reduction coexist with rebound effects [18].
By contrast, the coordinated (S3) strategy yields the flattest net-load trajectory, the highest
voltage floor, and the lowest daily losses, mirroring reported advantages of feeder-aware,
aggregator-mediated coordination [21-24]. The ordering S3 > S2 > S1 on all reliability-relevant
metrics is robust across random seeds in our experiments.

Public-station behavior observed in the model is also consistent with prior queuing and
DCFC impact studies. Midday L2 utilization creates a broad shoulder in feeder demand, while
DCEFC produces short, power-dense impulses that locally erode voltage margins and raise
branch loading near station buses, an effect echoed in power-quality and regulator-tap
analyses [14, 15]. The lost-customer finite-server abstraction reproduces macro-utilization
patterns reported in M/c-style station studies [9, 10], sufficient for feeder-level stress
screening.

From an operational standpoint, these results favor (i) aggregator-mediated control that
valley-fills within customer availability to curb peaks and violations without excessive
curtailment; (ii) tariff design that combines TOU with guardrails (e.g., staggered windows or
price gradients) to avoid single-hour pile-ups; and (iii) DCFC siting guidelines that steer high-
power ports away from electrically weak buses or pair them with local mitigation (on-site
storage, Volt-VAR support). Framed as hosting-capacity management, coordination clearly
shifts the violation and overload thresholds to higher EV penetrations [30, 31], expanding
integration headroom without immediate reinforcement.

Limitations of our approach parallel gaps noted in the review. We employ a balanced
single-phase equivalent and linearized DistFlow, which is well-accepted for planning-time
screening [25] but omits unbalance and voltage-dependent losses; validating key cases with
unbalanced AC power flow or ADMM-based OPF [26] is a natural extension. The horizon is a
single synthetic day; multi-day variability (weekends, weather) and transformer thermal aging
are not modeled explicitly [34, 35]. We assume EV charger PF~1 and exclude harmonics,
despite documented power-quality concerns [7, 28]. The public-station model uses a lost-
customer assumption; finite-queue dynamics could increase short-term coincident demand.
Each of these simplifications biases us toward conservative, qualitative comparisons rather
than absolute limits.
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Generalizability is strong at the pattern level. On feeders with higher R/X or longer
radial chains, S1 impacts intensify and the relative benefits of S3 grow. Different arrival
patterns (e.g., workplace-heavy regions) and TOU windows shift when, not whether, rebound
peaks appear; gentler price gradients and randomized start delays can suppress
synchronization.

As a result, the DCFC share strongly shapes midday stresses; co-siting storage or
enabling reactive support can decouple customer service from grid constraints. Overall, our
results extend the literature by jointly simulating station utilization and feeder physics at 5-
min resolution, reinforcing that coordinated, feeder-aware scheduling is the most reliable lever
to raise EV hosting capacity while protecting voltage and thermal margins.

4.1. Practical Applicability And Validation Considerations

The comparison between uncontrolled, TOU-based, and coordinated charging has been
presented under realistic conditions rather than as an exact replication of a single feeder.
Simple modeling assumptions have been adopted so the study has been executed efficiently
and the effects of charging plans have been isolated. Arrival and departure times, energy
needs, and public-station usage have been sampled using random models fitted to typical
values from past studies. The network has been represented by a balanced, single-phase model
with simple linear DistFlow power flow.

In real feeders, customer behavior, tariff use, and aggregator participation have differed
from the smooth assumptions used in this study. TOU plans have shown partial customer
response, and coordinated plans have faced issues from communication tools, privacy rules,
and market structure. Even with these simple setups, observed changes, peak reduction under
TOU, deeper peak drop with better voltage in coordinated valley-filling, and the area effect of
DCEFC stations, have aligned with field results and other tests. The approach has been adapted
to specific feeders by matching charging and load data with local numbers, applying
unbalanced three-phase power flow, and validating voltage and loading with historical data.
Therefore, the presented comparison has been offered as a basic, adaptable example for other
networks, not as a full real-system test.

4.2. Economic Aspects of Charging Strategies

Although primary focus has been placed on technical performance, voltages, thermal
loading, and losses, distinct economic effects have also been shown by the three charging
strategies for EV users and network operators. In the uncontrolled charging method (S1), EV
demand has coincided with the evening peak, and system peak demand has been increased.
As a result, higher demand charges for large customers have been incurred, and earlier
upgrades of transformers and lines have been required.

In the TOU-based charging approach (S2), substantial EV energy has been shifted to off-
peak periods, which have been associated with lower energy rates and reduced generation
costs. However, when many customers have responded within the same TOU window, a
second late-night peak has been created, and this has remained costly from a network planning
perspective.

Under the coordinated valley-filling strategy (S3), feeder peak loading has been reduced
and the load shape has been flattened. Improved technical performance has been achieved,
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while capacity upgrades have been delayed and total losses have been lowered. In practical
application, these beneficial effects have needed to be weighed against the costs of
implementing control and communication tools, as well as the incentives required for users.
A comprehensive techno-economic assessment, with detailed tariff and investment models,
has been reserved for future study.

4.3. Harmonic Distortion and Power Quality

EV chargers have been recognized as power-electronic devices, and harmonic distortion
has been produced in power networks as a result. Earlier tests and modelling of residential
Level-2 (L2) chargers have shown distinctive harmonic patterns that have been explained by
models such as Gaussian mixture models of current harmonics, while higher harmonic
currents have been generated by DC fast charging (DCFC) stations because higher power has
been used.

In this research, harmonics have not been examined explicitly. Instead, electric vehicle
chargers have been represented as constant-power users with power factors close to one, and
only fundamental-frequency voltages and currents have been analysed. Consequently,
possible effects on total harmonic distortion (THD), transformer heating due to harmonic
currents, and interactions with network impedance have not been included.

For future work, the method has been planned to be enhanced to include harmonic-
aware charging assessments and to determine whether spatial and temporal clustering of EV
charging has been able to cause local power-quality problems under high usage levels.

5. CONCLUSIONS

This study quantified how residential and public EV charging shape distribution-feeder
performance under three scheduling regimes. Uncontrolled plug-in (S51) concentrated demand
in the residential evening window, producing the largest feeder peaks, the lowest voltage floor
with the most V<0.95 p.u. events, the tightest thermal margins at the transformer and distal
branches, and the highest daily I?R losses. Time-of-use shifting (S2) reduced coincidence with
the native evening peak and lowered violations and losses relative to S1, but introduced a
secondary off-peak surge around the tariff window that could approach nameplate loading.
Coordinated valley-filling (S3) delivered the best aggregate outcomes across all KPIs: the
flattest net-load trajectory, higher bus voltages throughout the day, relieved
transformer/branch loading, and the lowest daily losses. Sensitivity analyses showed
monotonic growth of peak, violations, and losses with EV penetration under S1, while
coordination shifted hosting-capacity thresholds rightward. Public-station behavior mattered:
L2 created a broad midday shoulder; DCFC generated short, power-dense impulses that
eroded local voltage margins, emphasizing that station utilization must be explicitly modeled
in planning.

Operationally, we recommend (i) deploying managed charging via aggregator-
mediated, feeder-aware coordination to flatten load within customer availability; (ii)
designing tariffs with gentle price gradients or staggered windows and randomized start
delays to avoid synchronized pile-ups; (iii) siting DCFC away from electrically weak buses, or
pairing them with on-site storage and Volt-VAR support; and (iv) incorporating queuing-
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based station utilization into interconnection and hosting-capacity studies, not just average
load profiles.

Future work should examine V2G strategies that co-optimize active/reactive power
under uncertainty; validate key cases with exact unbalanced AC power flow and field data
from real feeders; integrate transformer thermal-aging and OLTC dynamics to translate peak
reductions into lifetime benefits; and activate reactive power control from EVSE/inverters to
support voltage. Extending to multi-day, seasonal simulations with stochastic travel patterns,
unbalance, and harmonics will further generalize results and sharpen utility planning
guidelines.
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