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Abstract— Ransomware is a significant cybersecurity threat that encrypts sensitive data or locks users out of
systems, demanding payment for recovery. It mainly targets organizations dealing with personal, financial, or
intellectual properties. Detecting ransomware is challenging due to its evolving techniques. This study proposes
hybrid models that combine deep learning-based feature extraction architectures, including Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN), with machine learning classifiers, including
Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). Experiments conducted
using a dataset of more than 26,548 gray-scale images show that the hybrid models outperform standalone
machine learning and deep learning approaches. Notably, the CNN-RF hybrid model achieved the highest
accuracy, with 97.39% for binary classification and 94.32% for multi-class classification. These results highlight
the potential of hybrid models to strengthen ransomware detection and enhance overall cybersecurity.
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1. INTRODUCTION

The wide development in the digital technology known as the Internet has greatly
influenced the dynamics in the education, business, and government sectors. On the other
hand, this development has contributed to the rise in the number of cyber-attacks in the world.
One major disruptive attack that has risen from the increase in the number of cyber-attacks is
the attack by ransomware [14]. With time, ransomware is using evade techniques such as
obfuscation, polymorphism, etc. Classic malware detection mechanisms of signature-based
heuristic analysis are inefficient in overcoming these threats because of their dynamic nature.
Therefore, new effective methods of detecting ransomware have become crucial.

These days, Machine Learning and Deep Learning methods are increasingly used in
cybersecurity [11], serving as robust tools that provide sophisticated methods of analysis for
ransomware attacks, thereby raising the performance level of detection. In machine learning,
algorithms such as RF involve the classification of ransomware in analyzing static and
behavioral characteristics; however, these methods are less adaptable owing to their reliance
on human-engineered features. Deep Learning methods, on their part, automatically deduce
complex characteristics in an attempt to identify patterns in the behavior of ransomware;
however, these methods are often resource-intensive.
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This work proposes a hybrid framework that systematically benchmarks CNNs
(extracting spatial features) and RNNs capturing sequential dependencies combined with
classical machine learning classifiers-SVM, RF, and KNN. The framework allows for the
comparison between spatial versus sequential feature representations. The results clearly show
that the spatial features extracted from the image-based representations are generally better at
masquerading ransomware behavior than the sequential features. Although RNN-based
hybrids were included for completeness, the CNN-based hybrids fare better in performance.
For a reliable evaluation, we make use of a dataset size of more than 26,548 images besides
advanced preprocessing techniques. It shows that the framework makes a systematic
evaluation of hybrid combination, hence confirming that integrating deep feature extraction
together with robust ML classifiers enhances ransomware detection performance and
resilience.

The remaining part of this article is outlined in the following order: Section 2 discusses
the state of the art in the area of ransomware detection. Section 3 introduces the methodology
of the new approach. Section 4 deals with the experimental results. Section 5 concludes the
paper with findings and the direction of future research.

2. RELATED WORK

Ransomware detection has been widely studied using ML and DL and their combinations
[2]. Recently, image-based analysis has emerged as a promising avenue, leveraging visual
patterns in malicious operations [3, 4]. Earlier detection methods focused on using handcrafted
features derived from static or behavioral ransomware characteristics. For example, Ahmed et
al. [5] employed ML classifiers on Android network traffic traces, achieving 97.24% accuracy
after feature reduction to 19 using correlation analysis.

Similarly, Anwar et al. [6] applied ML classifiers to 50,000 samples, achieving a 99.9%
accuracy with RF, while SVM reached 74% and KNN 97%. Ciaramella et al. [7] transformed
executable files into grayscale images and applied CNN (LeNet, AlexNet, and VGG16), with
VGG16 model achieved 96.9% accuracy. Ganfure et al. [8] proposed DeepWare, training CNNs
on hardware performance counter data represented as images, achieving 98.6% recall and
robust zero-day detection capability for unseen ransomware families.

Dynamic analysis has also been leveraged for ransomware detection. Gulmac et al. [9]
utilized sandbox execution extract API calls, DLLs, and registry operations, achieving 85% and
99% accuracy with DL models such as CNN, LSTM, and MLP. Gupta et al. [10] proposed a
soft-voting ensemble of five ML classifiers (RF, AdaBoost, Extra Trees, XGBoost, and Decision
Tree), achieving 98.42% accuracy. Masum et al. [12] combine feature selection with ensembles
of various ML classifiers, such as RF, DT, and KNN. Herrera-Silva and Hernandez-Alvarez [11]
used 50 behavioral features from ransomware samples in sandbox environments, obtaining
over 99% accuracy with RF and neural networks. Rani et al. [13] compared different ML
classifiers (Decision Tree, RF, SVM, KNN, XGBoost, and Logistic Regression), achieving 99%
accuracy. Moreover, Rani et al. [14] and Smith et al. [16] reviewed ML-based detection models.

Shwetha et al. [15] addressed class imbalance using SMOTE and NearMiss coupled with
CNN and CNN-LSTM models. Their SMOTE-CNN model achieved 98.9% accuracy, while
CNN-LSTM with Near Miss worked better compared to others in handling imbalanced data
conditions. Vehabovic et al. [17] used federated learning for imbalanced datasets, reaching 95%
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binary classification and 84.15% accuracy in multiclass classification. Early detection methods
using API sequences with VM and Gradient Boosted Trees also showed success rates [18].

Despite the progress in hybrid models, prior work often focused on using individual
architectures leaving a gap in systemic comparative studies. This study addresses this gap by
evaluating multiple hybrid combinations (CNN/RNN with RF/SVM/KNN) on common
benchmark, providing empirical insights into the most effective architectural synergies for
ransomware detections.

3. METHODOLOGY

This section outlines the proposed hybrid ransomware detection framework as depicted
in Fig. 1, beginning with image processing, deep features extraction, ML-based classification
and evaluation models. The goal is to build a comprehensive pipeline capable of effectively
distinguishing benign samples from multiple ransomware families. Each phase is discussed in
detail in the next subsections.
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Fig. 1. Three-phase ransomware detection framework.

3.1. Dataset

This work utilized a dataset consisting of 26,548 grayscale images generated by
converting executable files into 2D visual representation. More precisely, the dataset includes
14,012 benign samples and 12,536 ransomware samples divided into ten families: BetterSurf,
Eksor.A, Obfuscator.AFQ, Occamy.C, OnLineGames.CTB, Reveton.A, Sfone, VB.IL, Zbot, and
Zbot!CI. Each executable file was converted to a grayscale image by mapping its bytes into pixel
intensities within the 0-255 range. This representation captures specific textural and structural
features, allowing the models to learn meaningful spatial patterns and understand the diverse
representation of benign and malicious files. Figure 2 shows some representative examples of
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the analyzed dataset samples. Most are characterized by more heterogeneous and irregular
textures, while benign files are much smoother and more homogeneous in structure. This
composition ensures a diverse dataset for developing and evaluating both binary and multi-
class ransomware detection models.

Benign.png BetterSurf.png Obfuscator.png Reveton.A.png

Fig .2. Sample grayscale executable image.

3.2. Preprocessing Dataset

Various preprocessing techniques have been adopted to accomplish consistency and
universality throughout the dataset. Firstly, rescaling was adopted to make the values range
between [0,1]. The images, which had an original size of 128x128 pixels, were resized to 64x64
pixels, with images processed in batches of 32 for optimal computational efficiency.
Furthermore, one-hot encoding was adopted to transform the labels into categorical variables,
which aided multi-class classification. Various techniques, which included rotation, were
adopted to increase the diversity of the dataset, hence overcoming the issue of overfitting.

3.3. Feature Extraction

In this study, feature extraction was done by using CNN and RNN for the identification
of both ransomware as well as the legitimate samples, based on spatial as well as sequential
features. CNN extracts hierarchical spatial features like texture, structure, as well as patterns
automatically from the corresponding gray-scale images, while the RNN makes use of the
sequential dependencies for the analysis of the behavioral patterns in the ransomware
samples. The extracted features from these deep learning algorithms can be fed to the machine
learning algorithms RF, SVM, as well as KNN for enhanced accuracy of classification. The use
of both deep learning as well as machine learning increases the potential.

3.4. Model Architectures

This paper discusses various models for ransomware detection, such as stand-alone
machine learning, deep learning, and hybrid models, on binary and multi-class classification
problems. For the extraction of features using deep learning, we implement two main
architectures: a CNN (VGG16) and a standard RNN.

The CNN architecture consists of 16 learnable layers, customized for grayscale image
inputs, starting with a 64x64x1 input layer. This contains five convolutional blocks totaling 13
convolutional layers: the first block contains 2 convolutional layers with 64 filters of size 3x3,
the second block contains 2 convolutional layers with 128 filters, and the third, fourth, and
fifth blocks each contain 3 convolutional layers with 256, 512, and 512 filters, respectively. The
convolutional layers are all ReLU-activated and are succeeded by 2x2 max-pooling layers.
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These are then followed by 3 fully connected layers: two comprising 4,096 units each with
ReLU activation, and the final one is a softmax layer for classification. It was trained with the
Adam optimizer, utilizing a learning rate of 0.001, a batch size of 32, over 50 epochs, and
including dropout in the fully connected layers (rate=0.5) for regularization.

For the RNN model, we used conventional architecture with 4 neural layers: two
recurrent and two dense. The network considers sequential patches, where every row of the
64x64 image is taken as one step with 64 features. This includes two RNN layers: the first one
has 128 units, and the second layer with 64 units, using tanh activation. Further, these are
followed by a dense layer of 64 units with ReLU activation before the final softmax output
layer. This model was also trained with the Adam optimizer and a learning rate of 0.001, with
a batch size of 32, for 50 epochs, and implemented dropout after every RNN layer to handle
overfitting, using a rate of 0.3.

Besides the deep models, we also explored three classical machine learning classifiers:
RF with 100 trees and the Gini impurity criterion; SVM with RBF kernel, C=1.0, y='scale'; and
K-Nearest Neighbors with k=5 and Euclidean distance. These were employed both as stand-
alone models, as well as being used as classifiers in our hybrid framework. These hybrid
models were developed by combining the deep feature extraction capability of CNN or RNN
with the classification capability of ML models. In particular, features from the last pooling
layer of CNN or the last RNN layer were extracted, flattened, and then used to train the RF,
SVM, and KNN classifiers, leading to six hybrid combinations: CNN-RF, CNN-SVM, CNN-
KNN, RNN-RF, RNN-SVM, and RNN-KNN. Hyperparameters for all models were carefully
tuned based on a grid search approach with 5-fold cross-validation to explore optimal values
related to learning rates, filter sizes, the number of units, the number of trees, and
regularization parameters.

In this study, the dataset was split into 80% for training and 20% for testing in such a
way that all classes were represented. To maintain a representative proportion of both benign
and ransomware samples, stratified sampling was performed for both subsets. Randomization
was controlled using a fixed random seed for reproducibility of experiments. Fine-tuning
model hyperparameters was performed with the grid search optimization combined with 5-
fold cross-validation on the training set. This approach ensured that the selected models were
robust and resilient against overfitting, generalizing well to both binary and multi-class
classification tasks.

3.5. Performance Evaluation

Quantitative assessment of anomaly detection quality relies on multi-dimensional
measures that evaluate various attributes in relation to the complexity of the classification
problem. Since ransomware detection involves both binary and multi-class scenarios, multiple
accuracy and error metrics are used for evaluating the ensemble model prediction.

TP+TN
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TPATN+FP+FN
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4. RESULTS AND ANALYSIS

This section presents the experimental evaluation of the proposed ransomware detection
model. The experiments address both binary and multi-class classification tasks to assess and
compare baseline machine learning models, deep learning models, and their respective hybrid
counterparts.

4.1. Binary Classification

The ransomware samples from different families were merged into one category labeled
“ransomware” and differentiated from the “benign” class for the binary classification task.
Overall, the performance of the tested models is summarized in Tables 1 and 2 and visualized
in Figs. 3 to 6. Among the classic machine learning models, SVM showed the best F1-score and
accuracy, reflecting its strong ability for modeling complex, nonlinear decision boundaries. RF
and KNN also provided competitive results, showing stable precision and recall for both
benign and ransomware classes. As for deep learning models, the CNN architecture inspired
by VGG16 demonstrated the highest accuracy of 95.1%, outperforming RNN with an achieved
accuracy of 91.02%. The CNN model also yielded a lower value of training loss equal to 0.1344,
which indicated more stable convergence and an effective extraction of spatial features from
image representations of executable files.

Table 1. Machine and deep learning results for binary classification.

Class Metric RF KNN SVM CNN RNN
Precision 97 98 98 98 87
Benign Recall 98 96 97 92 96
F1-score 97 97 98 95 92
Precision 97 96 97 91 95
Ransomware Recall 97 97 98 98 84
Fl-score 97 97 98 94 89
100
98 1
= 96 1
)
>
S 94 4
5
Q
£ 92
90 +
86

RF KNN SVM CNN RNN
Fig. 3. Accuracies for binary classification.

Results indicated that the hybrid models, which combined deep feature extraction and
machine learning classifiers, outperformed the standalone ML and DL models. According to
Figs. 3 and 4, the CNN-RF hybrid model achieved the highest overall accuracy of 97.39%, with
balanced precision, recall, and F1-scores for both classes. This demonstrates that the integration
of powerful spatial representation from CNN with the robust classification of RF yield superior
performance. Other hybrid models, such as CNN-SVM and RNN-RF, showed improved
performance compared to their respective individual components but failed to perform better
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than the CNN-RF model. Figure 5 demonstrates the superior learning stability and
generalization of CNN by achieving faster and smoother convergence compared to RNN.

Table 2. Binary classification performance of hybrid models.

. CNN- CNN- RNN- RNN- RNN-
Class Metric CNN-RF KNN SVM RF KNN SVM
Precision 97 98 98 92 90 86
Benign Recall 98 97 97 95 93 94
Fl-score 98 97 97 93 92 90
Precision 98 96 96 94 92 92
Ransomware Recall 96 97 98 90 89 82
Fl-score 97 97 97 92 90 87
100
98 -
96 -
F M
§ 92 -
£
W -
88 1
86 -
CNN-RF CNMN-KNM CHN-5VM RNN-RF RNN-KNN RNN-SVM

Fig. 4. Hybrid models accuracies for binary classification.
Training Loss Curve with CNN and RNN Loss Values

—— Training Loss
== CNN (VGG16) Loss
== RNN Loss

T T T T T T
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Epochs

Fig. 5. Loss for deep learning in binary classification.

Further evidence for the effectiveness of the CNN-RF model is presented in Fig. 6, where
a confusion matrix with high diagonal dominance and very few misclassified samples can be
observed. From these results, one can draw conclusions on the high detection accuracy and
reliability of the proposed hybrid approach in distinguishing ransomware from benign files for
binary classification.
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Fig. 6. Confusion matrix for binary classification using the CNN-RF model.

4.2. Multi-Class Classification

In the multi-class classification scenario, the task was extended to classify each
ransomware sample by its respective family; therefore, there were eleven classes in total: ten
were for ransomware families and one for the benign class. Performance metrics such as
precision, recall, and Fl-score are presented in Tables 3 and 4. Figures 7 to 10 present the
comparative model accuracies. CNN led among individual models with an average F1-score
of 95%, outperforming all traditional machine learning algorithms. RF did very well with
particular families, like BetterSurf and Obfuscator. AFQ, with an F1 score greater than 90%,
while the performance decreased whenever dealing with the more complex classes like
Occamy, C, and Zbot. SVM also gave similar behavior, maintaining good performance for
well-structured classes but facing difficulties with harder-to-classify ransomware variants.
The RNN model exhibited inconsistent performance; it showed very good classification for
Sfone and VBL.IL and poorer accuracy in the case of Reveton.A and Zbot, making this classifier
less reliable in general.

Hybrid models certainly improved with consistency for nearly all the families,
validating their efficiency in generalization. In Figs. 7 and 8, the CNN-RF hybrid once again
proved to have the best overall accuracy of 94.32%, which is stated by its strong F1-scores and
balanced class-level performance.

100

98
96

94 4

92 A
90
88
86
RF KI‘\IIN SVM CNN RNN

Fig. 7. Multi-class classification accuracy of models.

Accuracy (%)




Jordan Journal of Electrical Engineering. Volume 11| Number 4 700

It effectively modeled variation in texture patterns and prevented inter-class confusion,
as was also confirmed by the Confusion Matrix (Fig. 10) showing sharp separation between
ransomware families. Other hybrids like CNN-KNN and RNN-RF also showed improvements
over their base models, though performances varied on family complexity.

Table 3. Multi-classification performance of models.

Class Metric RF KNN SVM CNN RNN
Precision 83 82 84 99 1.0
BetterSurf Recall 99 98 1.0 1.0 1.0
Fl-score 90 89 91 99 1.0
Precision 1.0 1.0 1.0 81 96
Recall 1.0 1.0 1.0 84 90
Eksor.A Fl-score 1.0 1.0 1.0 83 93
Precision 1.0 97 94 98 1.0
Obfuscator.AFQ Recall 99 98 99 1.0 1.0
Fl-score 99 97 96 99 1.0
Precision 79 41 49 58 52
Occamy.C Recall 15 16 26 82 57
F1-score 25 23 34 68 55
Precision 97 94 93 74 72
OnLineGames.CTB Recall 91 93 94 56 60
Fl-score 94 94 94 50 15
Precision 83 75 84 50 1.0
Reveton.A Recall 94 91 93 0 78
F1-score 88 82 88 0.01 66
Precision 1.0 1.0 1.0 1.0 1.0
Sfone Recall 1.0 1.0 1.0 1.0 1.0
Fl-score 1.0 1.0 1.0 1.0 1.0
Precision 1.0 1.0 1.0 77 99
VB.IL Recall 1.0 1.0 1.0 96 87
F1-score 1.0 1.0 1.0 85 92
Precision 94 66 62 60 77
Zbot Recall 61 51 56 66 66
F1-score 74 57 59 30 40
Precision 96 71 74 96 90
ZbotICI Recall 55 58 67 94 96
Fl-score 70 64 70 95 93
Precision 95 97 98 81 78
benign Recall 99 97 97 98 97
F1-score 97 97 98 89 86
100
98
a6
F 91
§ 92
%
50
BB
iR
CNM-RF CHN-KMNMN CNN:SVM RMN-RF RNN-ENN RMNMN-5WM

Fig 8: Multi-class classification accuracy of hybrid models.
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Table 4. Multi classification performance of hybrid models.

CNN- CNN- CNN- RNN- RNN- RNN-

. Metric RF KNN  SVM RF KNN SVM
Precision 84 83 83 83 80 79
BetterSurf Recall 99 96 98 89 96 97
Fl-score 91 89 90 86 87 87
Precision 1.0 1.0 1.0 1.0 1.0 1.0
Eksor.A Recall 1.0 1.0 1.0 1.0 1.0 1.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0
Precision 1.0 92 96 96 85 94
Obfuscator.AFQ Recall 98 99 99 96 94 87
Fl-score 99 95 98 96 89 920
Precision 88 51 71 47 53 1.0
Occamy.C Recall 19 19 66 55 60 45
F1-score 31 28 33 32 53 60
Precision 99 93 97 97 92 98
OnLineGames.CTB Recall 94 96 97 90 20 88
F1-score 96 95 97 93 91 93
Precision 81 75 72 76 58 55
Reveton.A Recall 92 86 89 64 61 41
F1-score 86 80 79 70 59 47
Precision 1.0 1.0 1.0 1.0 1.0 1.0
Sfone Recall 1.0 1.0 1.0 1.0 1.0 1.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0
Precision 1.0 99 1.0 1.0 1.0 1.0
VB.IL Recall 1.0 1.0 1.0 1.0 1.0 1.0
F1-score 1.0 1.0 1.0 1.0 1.0 1.0
Precision 98 58 69 91 60 85
Zbot Recall 65 61 56 55 54 46
Fl-score 78 59 61 68 57 74
Precision 88 63 66 86 36 1.0
Zbot!CI Recall 56 56 46 61 34 55
F1-score 68 60 54 56 35 66
Precision 95 97 97 92 93 87
Benign Recall 99 97 97 98 98 92
F1-score 97 97 97 98 98 95

Training Loss Curve with CNN and RNN Loss Values

= Training Loss
== CNN (VGG16) Loss
== RNN Loss

107

0.8 1

0.6

Loss

0.4 1

0.2 1

T T T T T T
0 20 40 60 80 100
Epochs

Fig. 9. Deep learning modes loss for multi classification.
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Fig. 10. Confusion matrix for multi-classification using the CNN-RF model.

The ROC curves of the hybrid models show in Fig. 11, for each of them, the balance
between the TPR and FPR. A higher curve reflects greater discrimination capability. In the
binary classification scenario, the CNN-RF model had the highest AUC value (AUC = 0.9739)
among the models and hence was able to distinguish very well between ransomware and
benign with very minimal false alarms. While the CNN-SVM and RNN-RF hybrids were
competitive, they were slightly less sensitive for higher false positive regions. In a multi-class
classification, as seen in the right plot, the CNN-RF model significantly outperformed other
models again, reaching an AUC of 0.9432, confirming its robustness in differentiating between
a multitude of ransomware families. The smooth curvature near the top-left corner of the
graph reflects superior generalization and stable learning of diverse ransomware patterns.
Overall, both binary and multi-class experiments showed that hybrid models show a
significant boost to performance in ransomware detection, especially for CNN-RF. This
synergy boosts generalization due to deep spatial feature extraction and robust ensemble
classification, reducing false positives while reliably detecting diverse categories of

ransomware.
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Fig. 11. ROC or hybrid models in binary and multi-class classification.
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5. CONCLUSIONSS

The proposed study aimed at developing a comprehensive hybrid approach for the
detection of ransomware by combining the extraction of deep features with the aid of CNN
and RNN, and the usage of machine learning classifiers such as RF, SVM, and KNN. The study
proved the efficiency of the proposed method as the obtained accuracy, precision, recall, and
Fl-score were high for the binary and multiple classes. The study has several limitations,
which may be pointed out as: the first limitation is that all the models were tested for offline
data, and hence, it is yet to be proved how accurate the models will be in real-time; the second
limitation may be stated as the fact that the models were not tested for adversarial attacks or
obfuscation, which may also play an important role.

The future scope of the present work involves real-time detection pipelines systems,
increasing the increasing the efficiency of adversarial attacks or using an anomaly detection
system, and the use of transfer learning for understanding the ability of the system to be
applicable for different types of ransomwares. It not only provides practical applicability but
also improves the robustness against the rising ransomware threats.
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