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Abstract— This manuscript introduces a robust and efficient sampling technique for optimizing data retrieval 
from large-dimension covariance matrix (CM). The proposed approach focuses on selecting the least-correlated 
and most-independent columns from the CM to construct the so-called projection matrix (PM) applied in angle 
of arrival (AOA) estimation. In contrast to the developed sampling techniques in literature, the recommended 
method excludes the signal variances located in the main diagonal of the CM during the column selection 
process. That is to say, the proposed technique focuses entirely on the off-diagonal elements of the CM that 
captures the covariance (correlations) between signals collected from different array elements. The proposed 
methodology is therefore named variance-omitted sampling technique (VoST). Applying this principle, we are 
able to extract the columns with minimal signal correlations corresponding to the off-diagonal entries of the CM 
and decrease the computational burden involved in the PM formulation process. To validate the theoretical 
claims and demonstrate the advantages of the proposed technique, a numerical example is provided, followed 
by extensive Monte Carlo simulations across several scenarios in which the performance of the proposed method 
is systematically compared with the existing techniques. The results demonstrate that VoST consistently 
surpasses previous algorithms in estimation resolution, root mean square error (RMSE), successful detection 
rate, ability to detect correlated signals, and computational speed. 

 
Keywords— AOA estimation; Covariance matrix sampling; Off-diagonal covariance matrix; Computational 
complexity; VoST.   
    

1. INTRODUCTION  

The estimation of signal parameters including frequency, polarization, and angle of 

arrival (AOA) has been an attractive research problem over a decade [1]. The AOA represents 

the direction from which transmitted signals reach the receiving antenna array. Accurate AOA 

estimation is crucial in many engineering applications, including radar [2, 3], patient 

monitoring [4], sonar [5], and wireless communications [6]. The performance of the newly 

developed smart antenna systems is merely determined by the accuracy of the AOA 

estimation techniques. 

The outputs of these techniques are typically fed into an adaptive beamformer, which 

generates the main lobes and deep nulls as needed [7]. In MIMO systems, modeling space–

time paths accurately are essential for ensuring reliable performance [8, 9]. Because the 

received data matrix in such systems is often large, employing an efficient sampling technique 

is practically important to enhance AOA estimation performance. 

The broadly implemented AOA estimation algorithms in literature are minimum 

variance distortion less response (MVDR) [10], multiple signal classification (MUSIC) [11], 

minimum norm [12], and estimation of signal parameters via rotational invariant technique 
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(ESPRIT)[13]. These algorithms require computationally demanding matrix operations such 

as matrix inversion, eigenvalue decomposition (EVD) or singular value decomposition (SVD) 

to identify the principal components of the large-size original matrix. Although these 

algorithms provide reliable estimation accuracy, they require intensive computational effort. 

This high complexity limits their suitability for real-time implementation. 

Alternatively, linear AOA estimation algorithms such as propagator [14] and orthogonal 

propagator [15] are suggested to avoid such computational-hungry matrix operations through 

dividing the CM into small-dimension matrices. Although these algorithms guarantee 

considerable complexity reduction, they need to process all columns of CM which is unfeasible 

in case of massive MIMO systems.  

To address the computation complexity issue, column-sampling techniques (CST) have 

emerged as an alternative solution [16]. CST extracts a limited number of columns from a high-

dimensional matrix. The selected columns should closely represent the properties of the 

original matrix. 

Mathematically, the sampled columns need to span almost the same subspace as the one 

obtained via EVD. From that perspective, several sampling techniques are proposed in 

literature including classical technique (CT) [17, 18], uniform technique (UT)  [19], non-uniform 

technique (NUT) [20], and least correlated column sampling technique (LCCST) [21] to 

construct the so-called projection matrix (PM). CT extracts the first  𝐿-columns to construct the 

PM, where 𝐿 represents the number of sources. However, its performance is limited because 

it relies only on static column selection, which cannot represent the overall characteristics of 

the original covariance matrix. UT is then proposed as an alternative approach for resolving 

the limitations of CT.  UT enhances the AOA estimation performance via selecting the 𝐿-

columns in a more distributed manner which increases the degree of freedom (DoF). Next, the 

NUT selects columns randomly from the CM. It aims to improve estimation performance by 

choosing L-columns with relatively higher energy. They show that applying the NUT increases 

the number of detectable sources significantly compared to the CT.  Noticeably, the prevalent 

problem among the discussed techniques is that they ignore the correlation (i.e., dependency) 

between the selected columns, which limits the AOA estimation performance [22, 23].  

Recently, a number of studies have addressed low-complexity AOA estimation from 

different perspectives. For example, Deng et al. in [24] propose a joint AOA/TOA UWB 

approach with reduced search dimensions; Shen et al. in [25]  develop a root-SBL method for 

off-grid non-uniform arrays; Ahmad et al. [26] reduce dimensionality in 2D-DOD/DOA 

estimation; a compressive-sensing framework using coprime arrays appears in [27] ; and Yang 

et al. [28] explore coprime arrays with low-rank recovery under non-uniform noise. These 

works highlight the growing trend toward complexity-aware algorithm design, which 

underlines the relevance and novelty of the proposed VoST in this context. 

To improve the estimation performance, an effective algorithm named LCCST is recently 

proposed. In this technique, the 𝐿-columns are chosen in an adaptive manner based on the 

correlation level within the CM columns. In other words, LCCST selects the columns with 

minimum dependency. This approach has been shown to significantly improve AOA 

estimation performance compared to existing techniques. 

However, in LCCST a problem arises when attempting to compute the correlation within 

a given column. To be precise, the main diagonal of a covariance matrix (CM) represents the 

correlation of each signal with itself, also known as the signal variance. The off-diagonal 
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elements represent the correlations between signals received by different array elements, 

indicating how signals relate across the entire array. The focus here is on the correlation 

between different signals, that is, signals received from different array elements rather than 

the signal variance. Therefore, the off-diagonal elements of the CM should be used, and the 

main diagonal omitted during the column-norm calculation. Otherwise, we might end up with 

inaccurate correlation-level calculation and consequently selecting non-optimum samples for 

PM. This will result in degradation in the AOA estimation performance. To solve this 

fundamental problem in LCCST, we propose a new sampling methodology named variance-

omitted sampling technique (VoST). The name stems from the fact that we omit the signal 

variance when we compute the column norm representing the correlation level between the 

signals of different elements. The sampled columns are then used to construct a PM named 

variance-omitted projection matrix (VoPM). The philosophy behind the suggested algorithm 

is that we exclude the correlation between signals themselves (i.e., signal variances) reside on 

the main diagonal of the CM during the column selection process. By doing so, we can focus 

and extract the columns which have minimum correlation between the collected signals. This 

adjustment to the recent LCCST ensures improved AOA estimation performance and reduced 

computational cost during the estimation process. 

The key contributions of this paper can be concluded as follows: 

• A new CM sampling technique named VoST has been proposed. In contrast to the 

existing algorithm, the proposed technique skips the signal variances sit on the main 

diagonal of the CM during the column section procedure. This refinement in column 

selection ensures the following benefits. 

• VoST enables the extraction of optimal columns based on signal dependency, leading to 

improved resolution and accuracy in AOA estimation. That is to say, by excluding 

variances we remove the noise power terms from the CM, and this helps in improving 

the accuracy of the AOA estimation algorithm. 

• VoST decreases the number of mathematical operations required for PM construction, 

resulting in reduced overall complexity of the algorithm.  

The remaining parts of this paper are organized as follows. Section 2 presents the problem 

formulation for AOA estimation. In Section 3, the preceding sampling techniques for PM 

construction are revisited. Section 4 reveals the working principle of the proposed AOA 

estimation algorithm.  The computational complexity of the existing and proposed techniques 

is analyzed in Section 5. In Section 6, the achieved simulation results are presented and 

comprehensively discussed. Section 7 concludes the key findings of the paper. 

2. PROBLEM FORMULATION 

To formulate the AOA estimation problem, we assume that a uniform linear array (ULA) 

with 𝑀 elements is illuminated by 𝐿 far-field sources as shown in Fig. 1. After receiving the 

signal by 𝑚-th element, it is down-converted to base-band signal which can be expressed by 

following equation: 

𝑥𝑚(𝑡) = 𝑠𝑙(𝑡 − ∆𝑡𝑚)𝑒−𝑖2𝜋𝑓𝑐 ∆𝑡𝑚                                                          (1) 

where 𝑠𝑙 is the emitted signal by 𝑙-th source. 𝑓𝑐 denotes the carrier frequency and ∆𝑡𝑚 is the 

propagation-delay of the signal received by 𝑚-th element with respect to reference (i.e., first) 

element.    
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∆𝑡𝑚 =
𝑑 𝑚 𝑠𝑖𝑛 𝜃

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 (𝑐)
                                                                                    (2) 

when 𝑑 is the spatial distance between two adjacent elements.  𝜃 denotes the AOA of the 

incident signal. Then, the down-converted signal is digitalized as follows:   

𝑥𝑚(𝑛𝑇) = 𝑠𝑙(𝑛𝑇 − ∆𝑡𝑚)𝑒−𝑖2𝜋𝑓𝑐 ∆𝑡𝑚                                                   (3) 

where 𝑇 represents the symbol period. In communication system (𝑇 ≫ ∆𝑡𝑚), thus Eq. (3) can 

be approximately written as 

𝑥𝑚(𝑛𝑇) ≈ 𝑠𝑙(𝑛𝑇)𝑒−𝑖2𝜋𝑓𝑐 ∆𝑡𝑚                                                                (4) 

 

As 𝑑 =  ½ 𝜆, and  𝑐 =  𝑓𝑐  λ , the above equation can be simplified as follows: 

𝑥𝑚(𝑛𝑇) ≈ 𝑠(𝑛𝑇)𝑒−𝑖 𝜋 𝑘  𝑠𝑖𝑛 𝜃                                                                (5)  

For simplicity, we use discrete notation and Eq. (5) becomes  

𝑥𝑚[𝑛] ≈ 𝑠[𝑛]𝑒−𝑖 𝜋 𝑘  𝑠𝑖𝑛 𝜃 = 𝑠[𝑛]𝑎𝑚(𝜃)                                                (6) 

where 𝑥𝑚[𝑛] is the 𝑛-th sample of the signal at the 𝑚-th element which can be written as:                                                

          𝑥𝑚[𝑛] ≈ ∑ 𝑠𝑗[𝑛]𝑎(𝜃𝑗)
𝐿−1
𝑗=0             (7) 

where 𝑠𝑗[𝑛] represents the 𝑛-th symbol of the 𝑗-th signal,  𝑗 = 1,2, . . . 𝐿 − 1. Then, considering 

all the array elements, Eq. (7) can be expressed in a matrix form as follows:  

 

[
 
 
 
 
 

𝑥0[𝑛]

𝑥1[𝑛]
.
.
.

𝑥𝑀−1[𝑛]]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑎0(𝜃0)     𝑎0(𝜃1)  .      .      .  𝑎0(𝜃𝐿−1)  
  .  
.
.
.

𝑎𝑀−1(𝜃0)  𝑎𝑀−1(𝜃1)  .  .  .    𝑎𝑀−1(𝜃𝐿−1)
     ]

 
 
 
 
 
 

  

[
 
 
 
 
 

𝑠0(𝑛)

𝑠1(𝑛)
.
.
.

𝑠𝐿−1(𝑛)]
 
 
 
 
 

 +

[
 
 
 
 
 

𝑣0 (𝑛)

𝑣1 (𝑛)
.
.
.

𝑣𝑀−1 (𝑛)]
 
 
 
 
 

     (8) 

Here 𝑣𝑚(𝑛) is the statistically uncorrected additive white Gaussian noise at 𝑚-th element.   

𝑨 =  [𝑎 (𝜃0)   𝑎 (𝜃1) …  𝑎 (𝜃𝐿−1)]             (9) 

where 𝑨 ∈ ∁𝑀 𝑥 𝐿 is called steering matrix (i.e., array manifold), which contains the steering 

vectors 𝑎 (𝜃𝑗) of source 𝑠𝑗(𝑛). Thus, Eq. (8) can be written in more compact form as follows:  

𝒙𝒏   =  𝑨 𝒔𝒏 + 𝒗𝒏          (10) 

where 𝒙𝒏  ∈ ∁𝑀 𝑥 𝑛  denotes the 𝑛-th received signal vector. 𝒔𝒏  and 𝒗𝒏  represent signal and 

noise vectors, respectively.  

 
Fig. 1. AOA model considering 𝑀 elements and 𝐿 incident signals. 
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Although the array model in this work is presented using a ULA configuration for the 

sake of clarity and analytical simplicity, the proposed VoST is not restricted to this geometry. 

The algorithm operates directly on the covariance matrix of the received data, which can be 

constructed for any arbitrary array configuration (e.g., circular, planar, or 3D arrays). 

Therefore, the underlying principles and performance of VoST remain fully applicable to 

general array geometries.  

3. EXISTING SAMPLING TECHNIQUES FOR PM CONSTRUCTION 

To avoid the high computational cost involved with EVD, PM construction based on a 

limited number of columns (i.e., 𝐿-columns) of CM is widely adopted in AOA estimation. The 

estimation performance, however, is directly dependent on the accuracy of the column’s 

selection, i.e., whether the selected columns span the intended subspace. In this section, we 

revisit the existing sampling techniques employed for PM construction and AOA estimation. 

To this end, we assume that 𝑁 data samples have been collected by the ULA shown in Fig. 1 

and the received data matrix is represented as follows: 

𝑿(𝑡) =

(

 
 

 

𝑥1(𝑡1)             𝑥1(𝑡2)      …    …        

𝑥2(𝑡1)             𝑥2(𝑡2)       ⋮       ⋮         
⋮                        ⋮            ⋱       ⋮    
⋮                        ⋮             ⋮       ⋱   

𝑥𝑀(𝑡1)           𝑥𝑀(𝑡2)       …     …         

𝑥1(𝑡𝑁)

𝑥2(𝑡𝑁)
⋮
 ⋮

𝑥𝑀(𝑡𝑁)

 

)

 
 

      (11) 

𝑿(𝑡) is then used to compute the true CM 𝓚𝑥𝑥 as follows: 

𝓚𝐱𝐱 =  E[𝐗(t)𝐗(t)H] = E[𝐅𝐒(t)𝐒H(t)𝐅H] + E[𝐍(t)𝐍H(t)] 

𝓚xx =  𝐅𝓚ss𝐅
H + σn

2  𝐈M           (12) 

where 𝓚ss  ∈ ℂL × L  = E[𝐬𝐧 𝐬𝐧
H] is the desired signal CM. σ2𝐈M depicts the CM of noise where 

𝐈M is an 𝑀 ×  𝑀 identity matrix and 𝜎2 is the noise variance. (. )𝐻 and 𝐸[. ] denote Hermitian 

transpose and expectation operators, respectively. When the observed sources are non-

stationary, the AOA value will fluctuate. Meaning that the content of 𝑭 will change partially 

or completely, which implies that the content of the CM 𝓚𝒙𝒙 will also change. Therefore, to 

track the signal properties of non-stationary sources and achieve an accurate estimation of 

AOA, the CM needs to be estimated periodically over 𝑁 data samples as follows: 

𝓚𝑥𝑥 =
1

𝑇
∑ 𝑿(𝑡)𝑿(𝑡)H𝑇

𝑡=1  = [

κ11         κ12        …       κ1𝑀

 κ21         κ22        …       κ2𝑀

 ⋮             ⋮         ⋱          ⋮
 κ𝑀1        κ𝑀2        …      κ𝑀𝑀

]       (13) 

where 𝑇 denotes the total number of data samples.  

3.1. Classical Technique (CT) 

The CT  [17, 18] follows the simplest procedure to sample the 𝐿-columns from the CM for 

PM construction. This method simply extracts the information lying in the first 𝐿-columns and 

constructs the sampled matrix 𝑺 as follows:   

𝑺CT = [

κ11         κ12        …       κ1𝐿

 κ21          κ22       …       κ2𝐿

 ⋮             ⋮         ⋱           ⋮
 κ𝑀1        κ𝑀2        …      κ𝑀𝐿

]           (14) 

Based on Eq. (14), 𝐒CT = [κ1 κ2  ⋯ κL] , where κ1≤j≤L  represents the 𝑗 -th column of 

original CM 𝓚𝑥𝑥. Fig. 2 illustrates the concept of this column selection. In Fig. 2, the positions 
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of the (selected and unselected) columns are plotted again normalized column norm which is 

a representative of the correlation level between signals in that column.   

 
Fig. 2. Illustrative example of selecting ten columns (𝑳 = 𝟏𝟎) from 𝓚𝒙𝒙 ∈ ℂ𝟑𝟎×𝟑𝟎 using CT. 

Then, the CT constructs the PM as follows: 

𝐐CT = 𝐈M − 𝐒CT (𝐒CT
H  𝐒CT)

−1
𝐒CT

H          (15) 

Then, the AOAs are estimated based on the peaks of the following function: 

𝐘CT(θ,ϕ) =
𝟏

‖𝒇𝐻(θ,ϕ)𝐐CT‖
𝟐                             (16)                                              

This CT's primary advantage lies in its simplicity. However, the algorithm has two 

essential problems. (𝑖) the chosen columns are statics (predefined). It always relies on the 

information on the first 𝐿-columns and ignores others, resulting in low DoF. (𝑖𝑖) The selected 

columns may contain high correlation-level between signals (for example, see column 2 in Fig. 

2).  This makes the columns of the sampled matrix 𝐒CT  to be highly dependent. Hence, 𝐒CT  

will not be a good representative of the general trends of the CM. These two fundamental 

issues will limit the performance of the CT, hence the corresponding AOA estimation 

algorithm.      

3.2. Uniform Technique (UT) 

In comparison to the CT, UT  [19] aims to improve the DoF by selecting the same number 

of columns. To this end, the UT adopts a more distributed approach (rather than simply 

selecting the first 𝐿-columns) to identify a better position of the columns to be chosen for PM 

construction. Therefore, the sampled matrix of UT, 𝐒UT, is formed based on the following 

formula. 

𝐒UT = {ci|ci = 1 + round (
(i−1)(M−1)

L−1
)
𝐢={1,2…,L}

}       (17) 

where c𝑖 represents the indices of the selected columns for 1 ≤ 𝑖 ≤ 𝐿 . The conceptual diagram 

of column selection based on the UT is illustrated in Fig. 3. The advantage of the UT is its 

ability to enhance the DoF by selecting columns in a more distributed manner. However, this 

uniform column-selection is still not adaptive. Additionally, the UT selects columns with high 

column norm (high correlation between signals) for example, see column 4 in Fig. 3. Then, the 
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UT follows the same procedure as CT through applying Eq. (15), with replacing  𝐒CT to 𝐒UT, 

and Eq. (16) to estimate the location of the sources.  

 

Fig. 3. Illustrative example of selecting ten columns (𝐿 = 10) from 𝓚𝑥𝑥 ∈ ℂ30×30  using UT. 

3.3. Non-uniform Technique (NUT)  

NUT suggested in [20] is another attempt made to improve the estimation performance 

of the CT through increasing the signal eigenvalues’ energy. Unlike the CT and UT, NUT 

selects the columns in a non-predefined fashion by randomly choosing 𝐿-columns from 𝓚𝑥𝑥 

to construct the sampled matrix 𝐒NUT as illustrated in Fig. 4.  

 
Fig. 4. Illustrative example of selecting ten columns (𝐿 = 10) from 𝓚𝑥𝑥 ∈ ℂ30×30  using NUT. 

The NUT performs column selection in a non-static, random manner. However, it still 

fails to address the problem of selecting columns with high correlation, indicated by large 

column norms. 
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After constructing the sampled matrix 𝐒NUT, the NUT adheres to the same process as CT 

through applying Eq. (15), with replacing 𝐒CT to 𝐒NUT, and Eq. (16) to generate the spatial 

spectrum.  

3.4. Least Correlated Column Sampling Technique (LCCST) 

LCCST is the latest attempt made to improve the AOA estimation performance through 

selecting optimum positions of the columns. As discussed above, a key limitation shared by 

all previous methods is the selection of columns with high correlation, where a large column 

norm indicates strong signal dependency. 

To address this issue, LCCST is proposed in  [21]. In this technique, the column norm is 

used a measure of correlation level between signals collected from different array elements 

(i.e., higher norm means higher correlation and vice versa). Therefore, the sampled matrix 

based on the LCCST 𝐒LCCST is formed as follows:  

𝐒LCCST = [{

κ11

κ21

⋮
κM1

}  {

κ1c          …           
κ2c         …           
⋮             ⋱           
κMc         …           

κ1c

κ2c

 ⋮
κMc

}  {

κ1M

κ2M

⋮
κMM

}]       (18) 

 Here, 𝑐 represents the set of column numbers defined as: 

𝑐 = {ℇ| ℇ = {2,3… ,𝑀 − 1}}         (19) 

where ℇ is a set of integer numbers. This algorithm selects the 𝐿 − 2 columns (provided that 

first and last columns are already selected as shown in Eq. (15) based on the following formula: 

𝑐𝑠 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ([𝑚𝑖𝑛𝑘 ({‖κ𝑐 ‖2}, 𝐿 − 2)] ), 

  𝑐𝑢 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ([𝑚𝑎𝑥𝑘 ({‖κ𝑐  ‖2},𝑀 − 𝐿)] ), 

where mink and maxk are the two functions that return L-2 minimums and 𝑀 − 𝐿 maximums 

from their arguments ({‖κ𝑐  ‖2}).  ||. || is the norm operator which returns the column norm 

and it includes the signal variance (main diagonal of the CM) into its calculation. The column 

selection based on the LCCST is illustrated in Fig. 5, where the selected columns show low 

correlation (represented in a normalized norm form) compared to the unselected ones.  

 
Fig. 5. Illustrative example of selecting ten columns (𝐿 = 10) from 𝒦xx ∈ ℂ30×30 using LCCST. 

Then, the LCCST follows the same procedure as the abovementioned techniques, using 

𝐒LCCST  to form the PM then applies it in the spatial construction Eq. in (16).  
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While the LCCST attempts to choose columns with minimal correlation, the process of 

calculating the column norm needs to be refined. The main diagonal of the CM represents the 

signal variances, often referred to as noise power, while the off-diagonal elements describe the 

covariance—or correlation—between signals received by different array elements. For precise 

correlation level determination between signals, the main diagonal elements of the CM should 

be omitted when computing column norms. This issue is addressed by introducing a new 

technique which offers several advantages as presented in the following section.  

4. PROPOSED AOA ESTIMATION ALGORITHM  

      The problem with the recently developed LCCST is that it incorporates the signal variances 

into the calculation of the column norm of the observed CM. This may mislead the estimator 

as the correlation between the signals does not rely on the signal variance; it purely relies on 

the signal covariance (located on the off-diagonal of CM).  To address this problem, we 

propose a new sampling technique in this section. 

4.1. Variance-omitted Sampling Technique (VoST)  

Similar to the previous work in [21], we sample 𝐿-columns from 𝑀 (𝐿 < 𝑀) based on the 

correlation between the signals across the antenna array. In contrast to [21], which incorporates 

the signal variances located on the main diagonal of the CM into the column-norm calculation, 

we exclude them by setting the signal variances to zero as shown in Eq. (20). The principle of 

our technique stems from the fact that the variances (i.e., diagonal elements of the CM) 

represent the individual noise power at each antenna element. These terms may not contribute 

significantly to angle estimation since we are more interested in how signals relate to each 

other across the array. This variance omission thus allows for a more accurate calculation of 

the correlation (expressed in covariance form) between signals collected from different array 

elements. Therefore, before calculating the correlation between signals using the column 

norms, we apply a preprocessor to remove the variances from the original CM and generating 

off-diagonal CM (ODCM) as follows: 

𝓚̂𝑥𝑥 = 𝓚xx − diag(𝓚xx) =

[
 
 
 
 

𝟎       κ12       κ13     …     κ1𝑀 
 κ21      𝟎        κ23      ⋯      κ2𝑀  
κ31     κ32        𝟎      …      κ3𝑀 
 ⋮           ⋮         ⋮                      ⋮  
 κ𝑀1    κ𝑀2     ⋯  κ𝑀𝑀−1     𝟎 ]

 
 
 
 

      (20) 

where 𝓚̂𝑥𝑥  represents the ODCM and κ12  denotes the covariance (relationship) between 

signal received from array element 1 and element 2, and diag(𝓚xx) = diag(𝜅11, 𝜅22, … , 𝜅𝑀𝑀) 

After that, we compute the norm for each column of 𝓚̂𝑥𝑥 where each column represents the 

actual correlation between signals collected from different array elements. We subsequently 

select the columns with the relatively smallest norm values, indicating that these columns 

contain the least correlation between signals. The sampled matrix obtained from the ODCM is 

as follows:  

𝐒VoST ∈ ∁M×L= {

𝟎    κ1c  κ1c  

κ2c  𝟎 κ2c  

κMc  κMc  𝟎
}        (21) 

where 𝑐 = 𝑐𝑖|𝑐𝑖 is a unique variable representing the column indices and defined as follows:  

𝑐𝑖  = {ℤ𝑀 = {1,2,… ,𝑀} for 𝑖 = {1,2,… 𝐿}}       (22) 
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To be precise, 𝑐 denotes the indices (i.e., positions) of 𝐿 selected columns (𝑐𝑠) and 𝑀 − 𝐿 

unselected columns (𝑐𝑢). The fundamental problem here is how we can extract 𝐿-columns 

from 𝑀 (𝐿 < 𝑀) that span almost the same spaces as the original signals subspace obtain by 

EVD. We address this problem by selecting the columns based on their pure norms (excluding 

the signals’ variances reside on the main diagonal of the CM during the column norm 

calculation). Mathematically, the proposed technique selects 𝐿 -columns based on the 

following equation: 

𝑐 = {
     𝑐𝑠  ,                   ∤ κ 𝑐𝑠

∤= 𝑚𝑖𝑛 {∤ κ 𝑐𝑠
∤}               𝑓𝑜𝑟 1 ≤ 𝑠 ≤ 𝐿                     

 
 𝑐𝑢  ,                  ∤ κ 𝑐𝑢

∤= 𝑚𝑎𝑥{∤ κ 𝑐𝑢
∤}               𝑓𝑜𝑟 1 ≤ 𝑢 ≤ 𝑀 − 𝐿  

   (23) 

where ∤. ∤ denotes the operator which calculates the column-norm excluding the main diagonal 

elements, max and min are the functions that return the maximum and minimum values from  

∤ κ 𝑐 ∤ for a given value of 𝑢 and 𝑠, respectively. Relying on Eq. (23), the selected columns 

exhibit minimum correlation between the signals in comparison to the unselected columns, 

and this consequently makes the selected columns to be least dependent as it is proven in [21]. 

This feature of the proposed technique is particularly important because it ensures the 

extraction of columns with completely non-redundant information about the signals arriving 

at the receiving array. That is to say, the components of each source are uniquely represented 

by a single column of the sampled matrix 𝐒VoST. The suggested methodology thus guarantees 

higher estimation performance in comparison to not only CT, UT, NUT, but also the newly 

developed LCCST as will be shown in the following sections.   

We here do not rely on the norm calculations from the previous sections (e.g., in Fig. 5), 

as they include the signal variance by calculating the column norm from the original CM 𝓚𝑥𝑥. 

So, we compute a new column-norm for the ODCM 𝓚̂𝑥𝑥 and then select the 𝐿-columns based 

on minimum norm values which reflect the actual correlation between signals. The conceptual 

illustration of the proposed technique is shown in Fig. 6. 

 
Fig. 6. Illustrative example of selecting ten columns (𝐿 = 10) from 𝒦xx ∈ ℂ30×30  using proposed VoST. 

Compared to Fig. 5, the overall column norm in Fig. 6 is reduced due to the exclusion of 

the signal variance in the norm calculation. Importantly, in Fig. 6, the columns are selected 

based on minimum norms which realistically represent the true signal-correlations. It is 
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proven in [21] that selecting columns with minimum norm results in lower dependency 

between selected columns (i.e., each column contains non-redundant information about the 

signal sources). This leads to higher estimation performance of the proposed algorithm. Table 

1 shows and compares the strengths and weaknesses of different sampling techniques applied 

to AOA estimation.    
Table 1. Advantages and limitations of various CM sampling techniques. 

Algorithm Advantage Limitations 

CT [17, 18] (𝑖)Simplicity. 

(𝑖)Positions of the selected columns are predefined. 

(𝑖𝑖) Limited DoF. 

(𝑖𝑖𝑖) High correlation between selected columns. 

UT [19] (𝑖)Enhancing DoF. 
(𝑖) The columns are selected in a static fashion. 

(𝑖𝑖) High correlation between selected columns. 

NUT [20] (𝑖)Increasing signal eigenvalues. (𝑖)High correlation between selected columns. 

LCCST [21] 
(𝑖)Minimizing correlation between 

selected columns. 

(𝑖) Incorporating the signal variance into the 

column norm calculation (i.e., inaccurate 

correlation-level calculation). 

Proposed 

(𝑖) Optimizes the column-norm 

calculation to overcome the LCCST 

limitations. 

(𝑖𝑖)Achieves more accurate 

correlation-level estimation. 

(𝑖𝑖𝑖) Guarantees higher AOA 

estimation accuracy with lower 

computational complexity. 

(𝑖) No significant drawbacks observed in the 

current evaluation. 

While omitting the main diagonal of the CM enhances the accuracy of inter-signal 

correlation estimation, it may slightly reduce the total signal energy captured by the model 

under very low-SNR conditions.  

Nevertheless, in such scenarios, the off-diagonal elements remain the principal 

contributors to accurate AOA estimation, as they characterize the true spatial dependencies 

between array elements. Moreover, as shown in Section 6.2, the proposed VoST retains robust 

estimation accuracy even at low SNR values, validating that the omission of the diagonal does 

not compromise overall performance.  

4.2. PM and AOA Estimation based on VoST 

The VoPM is formulated based on the proposed VoST as follows: 

𝐐VoST = 𝐈M − 𝐒VoST( 𝐒VoST
H  𝐒VoST)

−𝟏
  𝐒VoST

H          (24) 

The angle of the incident signals is calculated based on the proposed algorithm using 

the following formula: 

𝒀VoST(θ,ϕ) =
𝟏

‖𝒇𝐻(θ,ϕ)𝐐𝑉𝑜𝑆𝑇‖
𝟐          (25) 

The main steps of the proposed AOA estimation are summarized as below. 
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Algorithm 1: Variance-omitted sampling technique VoST for accurate AOA estimation.  

Requires The received data 𝑿 ∈ ∁𝑴×𝑵 with 𝑴 array elements, 𝑵 data samples, and 𝑳 sources. 

Ensures Cost efficient and accurate AOA estimation. 

Step 1 Compute the received signal and add Gaussian noise with a certain SNR.    

Step 2 Calculate the CM 𝓚𝑥𝑥 for the received signal using Eq. (13) 

Step 3 Set the main diagonal of 𝓚𝑥𝑥 to zero to generate 𝓚̂𝑥𝑥 (transforming CM to ODCM) 

Step 4 Compute the norm for each column of ODCM 𝓚̂𝑥𝑥 

Step 5 Sort the results of Step 4 in ascending order and determine their corresponding column 

positions (indices). 

Step 6 Save the 𝐿-leading indices in an indexing set ℹ. 

Step 7 Sort the indices values in ℹ in ascending order.  

Step 8 Select 𝐿-columns from 𝓚̂𝑥𝑥   as 𝑺𝑉𝑜𝑆𝑇 = 𝓚̂𝑥𝑥 (: , ℹ). 

Step 9  Compute the VoPM 𝐐VoST using Eq. (24). 

Step 10 Estimate AOA using Eq. (25).  

5. THEORETICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY 

Formulating PM based on the traditionally-used sampling algorithms applied to an 

𝑀 × 𝐿 matrix 𝐒𝑥
1 requires a computational cost of 𝑶(𝑴𝟐𝑳). This is because the resulting matrix 

is  𝑀 × 𝑀 and we need to compute the dot product between a row of 𝐒𝑥 and a column of 𝑺𝑥
𝐻 

where each needs 𝐿 multiplications.  

In the proposed technique, we bypass computations involving the zero elements located 

on the main diagonal of the CM (i.e., signal variances). That is to say, we generate the PM 

based on ODCM rather than the original CM. Thus, the overall computational cost of PM 

based on the proposed algorithm (see Eq. (24)) can be analyzed as follows:  

1. Computation of   𝐒VoST
H  𝐒VoST 

• 𝐒VoST
H  is an 𝐿 × 𝑀 and 𝐒VoST is 𝑀 × 𝐿, so the result is an 𝐿 × 𝐿 matrix. 

• The standard cost that is usually paid for this multiplication is                                  

𝐶𝒐𝒔𝒕𝑻𝒓𝒂𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 = 𝑶(𝑳𝟐𝑴). 

• As 𝐒VoST has zero-elements on its diagonal (i.e., signals variances are omitted in the 

computation), each dot product between a row of 𝐒VoST
H  and a column of 𝐒VoST 

involves 𝑀 − 1 terms rather than 𝑀.    

• The cost based on the proposed algorithm for 𝐒VoST
H  𝐒VoST  becomes                                  

𝑪𝒐𝒔𝒕𝑵𝒆𝒘 = 𝑶(𝑳𝟐(𝑴 − 𝟏)). 

 
1 𝑺𝑥 is a representative of 𝑺CT, 𝑺UT,𝑺NUT, and 𝑺LCCST. 
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2. Computation of  (𝐒VoST
H  𝐒VoST)−𝟏 

• Generally, the inverse of an 𝐿 × 𝐿 matrix needs 𝑂(𝐿3) operations using methods like 

LU decomposition or Gaussian elimination.   

•  We cannot guarantee the direct complexity reduction due to the zeros in 𝐒VoST 

because the inverse operation on 𝐒VoST
H  𝐒VoST, which is already an 𝐿 × 𝐿 matrix with 

non-zero entries.  This step requires the following cost:                                                                

𝑪𝒐𝒔𝒕𝑵𝒆𝒘 = 𝑪𝒐𝒔𝒕𝑻𝒓𝒂𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 =  𝑶(𝑳𝟑) 

3. Computation of  𝐒VoST(𝐒VoST
H  𝐒VoST)−1 

• This involves the multiplications between 𝑀 × 𝐿 𝐒VoST with the 𝐿 × 𝐿 (𝐒VoST
H  𝐒VoST)−1. 

• The standard cost therefore is 𝑪𝒐𝒔𝒕𝑻𝒓𝒂𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 = 𝑶(𝑴𝑳𝟐). 

• Since 𝐒VoST has zero-diagonal elements, the cost based on the proposed algorithm is 

reduced to 𝑪𝒐𝒔𝒕𝑵𝒆𝒘 = 𝑶(𝑴 × 𝑳 × (𝑳 − 𝟏)). 

4. Computation of the final matrix  𝐒VoST(𝑺𝑉𝑜𝑆𝑇
𝐻  𝐒VoST)−1𝑺𝑉𝑜𝑆𝑇

𝐻   

• This step involves the multiplication between 𝐒VoST(𝐒VoST
H  𝐒VoST)−1 which is 𝑀 × 𝐿, 

and the  𝐒VoST
H  ,which is 𝐿 × 𝑀. The standard cost is 𝑪𝒐𝒔𝒕𝑻𝒓𝒂𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 = 𝑂(𝑀2𝐿). 

• Due to the zero-elements on the diagonal, each dot product between a row of 𝐒VoST 

and a column of 𝐒VoST
H  involves 𝐿 − 1 non-zero terms. The adjusted cost based on the 

proposed algorithm becomes 𝑪𝒐𝒔𝒕𝑵𝒆𝒘 = 𝑶(𝑴𝟐 (𝑳 − 𝟏)). 

The total cost of formulating PM based on the proposed method is  

𝑶(𝑳𝟐(𝑴 − 𝟏)) + 𝑶(𝑳𝟑) + 𝑶(𝑴 × 𝑳 × (𝑳 − 𝟏)) + 𝑶(𝑴𝟐 × (𝑳 − 𝟏))  

For 𝑀 > 𝐿, the overall cost therefore becomes 

𝑪𝒐𝒔𝒕𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑵𝒆𝒘 = 𝑶(𝑴𝟐 × (𝑳 − 𝟏))  

Which represents a notable reduction in computational complexity compared to traditional 

approaches that require full-matrix operations. The overall cost of PM construction applied 

in the previous works and that applied in this work are listed in Table 2.  
Table 2. Computational cost of PM construction based on different sampling techniques. 

PM construction steps 

Complexity using 

CT, UT, NUT, 

LCCST 

PM construction steps Complexity using VoST 

𝐒𝑥
𝐻𝐒𝑥 𝑂(𝐿2𝑀) 𝐒VoST

H  𝐒VoST 𝑂(𝐿2(𝑀 − 1)) 

(𝐒𝑥
𝐻𝐒𝑥)

−1 𝑂(𝐿3) (𝐒VoST
H  𝐒VoST)−1 𝑂(𝐿3) 

𝐒𝑥(𝐒𝑥
𝐻𝐒𝑥)

−1 𝑂(𝑀𝐿2) 𝐒VoST(𝐒VoST
H  𝐒VoST)−1 𝑂(𝑀 × 𝐿 × (𝐿 − 1)) 

𝐒𝑥(𝐒𝑥
𝐻𝐒𝑥)

−1𝐒𝑥
𝐻 𝑂(𝑀2𝐿) 𝐒VoST(𝐒VoST

H 𝐒VoST)
−1𝐒VoST

H  𝑂(𝑀2 (𝐿 − 1)) 

Overall cost 𝑶(𝑴𝟐𝑳) Overall cost 𝑶(𝑴𝟐 (𝑳 − 𝟏)) 

6. RESULTS AND DISCUSSIONS 

In this section, we compare the performance of the proposed algorithm to its 

counterparts by conducting multiple computer simulations over a wide range of scenarios.  In 

the performance comparison, we apply average root mean square error (ARMSE) and 

probability of successful detection (P𝑑) as performance indicator and calculated as follows: 

ARMSE =
1

𝐴
∑ √

1

𝐿
 ∑ [(𝜃𝑗 − 𝜃𝑗)

2
]𝐿

𝑗=1
𝑎
𝑖=1         (26) 
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P𝑑(AOA) =
∑ 𝒟𝑖

𝐴
𝑖=1

𝐴𝐿
          (27) 

Here 𝐴 denotes the total number of Monte Carlo trials. 𝜃𝑗 and 𝜃𝑗 represent the original 

and estimated AOAs at the 𝑗th trial, respectively. 𝒟𝑖 is the total number of successful 

detections at 𝑖th trials.    

6.1. Resolution Capability  

When the signal sources are closely located, miss-detection becomes the essential 

problem for AOA estimators.  From that perspective, we compare the resolution2 capability of 

the proposed algorithm to its counterparts using the simulation parameters listed in Table 3. 

To make a fair comparison, we apply a severe test in which three-sets of three closely located 

sources transmit their signals toward the receiving array. Then, the procedures of the 

algorithms under the test are adopted to resolve the locations of these sources. The results 

achieved are shown in Fig. 7. 

 

Fig. 7. The resolution performance of the VoST method is compared with CT, UT, NUT, and LCCST for nine 
AOAs, where the three-sets of three closely spaced AOAs present a severe test. 

 

As illustrated, the compared algorithms show low resolution as they were not abe to 

identify the spatial locations of all the sources. In other words, they all sufer from a situaltion 

in which the three-sources are detected as two-sources experiencing at least one false-

detection. On the other hand, the proposed algorithm accurately and unambiguously resolved 

the directions of all incoming signals by producing nine distinct peaks corresponding to the 

 
2 Resolution is defined as the ability of the AOA estimator to detect the closely located sources.  
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locations of their sources without any missed detections. The suggeted AOA estimator thus 

demonstrates higher resoution capability, which ends up with detecting comparatively higher 

number sources. Moreover, the noise immunity achieved through the proposed sampling 

technique is superior compared to previous technqiues. It is improtant to note that this high 

resoutluion capabilty of the proposed algorithm is due to the newly-adapted sampling 

methodolgy (i.e., VoST) to contsrut the PM.    

Table 3. Simulation parameter for this scenario. 

Parameter Value 

M 30 

L 9 

N 100 

SNR 0 dB 

Actual AOAs -59° -51° -43° -9° 0° 9° 44° 51° 59° 

6.2. Accuracy Comparison based on Varying SNR 

This section aims to evaluate the impact of changing the SNR levels on the estimation 

accuracy 3  of the proposed method and other sampling techniques. To achieve this, we 

compute the ARMSE and 𝑃𝑑 of the proposed algorithm and compare those with that for CT, 

UT, NUT, and LCCST based on different SNRs. This simulation is configured using the 

parameters listed in Table 4. One thousand Monte Carlo simulations (A = 1000) are conducted 

to generate ten random AOAs within the angular range of −90°, 90°. These angles are applied 

consistently across all the techniques to ensure a fair comparison. Then, the ARMSE and 

corresponding successful detections are calculated at each SNR level. The results obtained are 

plotted in Fig. 8 and Fig. 9, respectively. From the figures, it is evident that CT offers the least 

accuracy among the competing methods, followed by the UT, NUT, and LCCST, respectively.  

As shown, due to the minimal dependency between the selected columns obtained through 

applying the VoST, the proposed AOA estimation algorithm shows superior estimation 

accuracy achieving minimum ARMSE and highest successful detections across the entire SNR 

ranges compared to its counterparts.  

Table 4. Simulation parameters for this scenario. 

Parameters Value 

M 30 

L 10 

N 100 

AOA Random between −90° and 90° 

SNR Variying between −10 dB and 5 dB. 

Monte Carlo trials, A 1000 

6.3. Accuracy Comparison Based on the Correlation between Incoming Signals 

Spatial smoothing technique is usually applied as a pre-processor to remove the negative 

impact of correlation among the signals on the AOA estimation technique. This solution, 

however, incurs the drawback of increased computational burden. To ensure low 

computational complexity, it is essential for the signal processing technique (e.g., AOA 

 
3 Estimation accuracy here is determined by the values of ARMSE and probability of successful detection 𝑃𝑑.   
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estimator) to effectively manage correlated sources in an intelligent manner. Therefore, this 

scenario examines how correlations between signals impact the performance of the AOA 

techniques considered. To achieve this, we assume that the incident signals are correlated due 

to multipath effects and ten correlated signals (L = 10) striking the same array as in the earlier 

scenarios. Precisely, we assume that there is just one signal source and the other incident 

signals are the result of reflections from this primary source. To model this scenario, we change 

the correlation level between the first signal and the subsequent ones as                                                           

𝑟 = [0.1 0.2 0.4 0.6 0.8]. Other simulation parameters are listed in Table 5. For each value of 𝑟, 

we compute the accuracy criteria (i.e., ARMSE and Pd) over several trials and the average 

values are plotted as shown in Fig. 10 and Fig. 11.   

 
Fig. 8. Comparison of accuracy (ARMSE) between VoST and existing sampling techniques based on SNR 

variation. 

 
Fig. 9. Comparison of accuracy (𝑃𝑑) between the VoST and existing sampling techniques based on SNR variation. 
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Table 5. Simulation parameters for this scenario. 

Parameters Value 

M 30 

L 10 

N 100 

AOA Random between −90° and 90° 

SNR 5 dB 

Monte Carlo trials, A 5000 

Correlation between signals Vary 

 
Fig. 10. Comparison of accuracy (ARMSE) between the VoST and existing sampling techniques, considering 

different correlation levels between incoming signals. 

 
Fig. 11. Comparison of accuracy (Pd) between the VoST and existing sampling techniques, considering different 

correlation levels between incoming signals. 

To compute the correlation level between arrived signals, we apply the well-known 

Pearson correlation coefficient [29] as follows: 

𝑟 =
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)2 ∑(𝑦𝑖−𝑦̅)2
             (28) 
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where 𝑟 is the Pearson correlation coefficient. 𝑥𝑖 and 𝑦𝑖 are the individual elements of signals 

𝑥 and 𝑦.  𝑥̅ and 𝑦̅ denote the mean values of signals 𝑥 and 𝑦.  

Based on the data shown in the figures, it is evident that the proposed technique reaches 

the highest accuracy relative to the compared algorithms when the incident signals are either 

weakly (𝑟 =  0.1) or strongly (𝑟 =  0.8) correlated. Therefore, this superiority of the proposed 

technique comes from the fact that the proposed sampling technique makes VoPM more 

robust against the correlated signals.  It is also shown that the CT is least robust to these types 

of signals, with the UT, NUT, and LCCST following in that order.  

6.4. Complexity Comparisons 

As previously stated, the existing sampling techniques require 𝑂(𝑀2𝐿) mathematical 

operations to formulate the PM. Whereas, the suggested technique reduces this computational 

burden to 𝑂(𝑀2(𝐿 − 1). To exemplify this advantage, we take the antenna array having the 

above-mentioned specifications with varying the number of detected sources. Next, we 

calculate the computational burden of the proposed technique and compare it with that of 

existing methods in literature. The achieved result is illustrated in Fig. 12.  The figure clearly 

confirms the theoretical analysis presented in Section 5. This feature of the proposed technique 

is due to using sparse matrices (i.e., ODCM) which make operations faster by working with 

smaller and more manageable datasets. 

 
Fig. 12. Comparing the computational complexity of PM construction between the proposed and existing 

methods. 

6.5. Execution Time Comparison 

The mean execution time for columns selection and the PM construction based on 

different techniques are computed and compared in this section. The simulation parameters 

for this scenario are chosen as 𝑀 = 30,𝑁 = 100, 𝐿 = 12, 𝑆𝑁𝑅 = 0 dB . The property of the 

machine used in this scenario is Intel CPU i7-1255U (1.7 GHz), 8GB Installed RAM. 

The column selection process in CT is relatively simple, which makes it the fastest 

algorithm. This simplicity in the selection of columns, however, results in inadequate 

performance as illustrated in the previous section. The data listed in Table 6 shows that the 
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proposed algorithm is much faster than its counterparts (i.e., UT, NUT, and LCCST). This 

improvement stems from excluding the signal variances sit on the main diagonal of the CM 

(processing ODCM instead of CM).  It is important to note that the execution time will be 

different from that presented here depending on the capability of the PC used for the 

computation and the simulation setting. The relative execution time, however, must be the 

same. 
Table 6. Mean execution time comparison for different techniques. 

Algorithm CT UT NUT LCCST Proposed 

Execution time [s] 1.1592 2.3521 2.5709 3.1047 1.3261 

6.6. Overall Comparison between LCCST and VoST 

To summarize the experimental outcomes and highlight the main distinctions between 

the recently developed LCCST [21] and the proposed VoST algorithm, an overall comparison 

is presented in Table 7. This table consolidates both qualitative and quantitative performance 

indicators, including computational complexity, estimation accuracy, robustness under 

correlated sources, and execution time. The results clearly demonstrate that VoST achieves 

superior accuracy and robustness while maintaining significantly lower computational 

complexity. 

Table 7. Quantitative and qualitative comparison between LCCST and VoST. 

Criterion LCCST [21] Proposed VoST 
Improvement / 

Observation 

Sampling principle 

Includes main 
diagonal (signal 

variances) in 
correlation 

computation 

Omits main diagonal 
and uses off-diagonal 

covariance only 

More accurate 
correlation-level 

calculation 

PM complexity 𝑂(𝑀2𝐿) 𝑂(𝑀2 (𝐿 − 1)) 

≈ 10–15 % reduction in 
total operations for 

moderate (𝐿) 

Mean execution time (s) 3.1047 s 1.3261 s ≈ 80 % faster 

Average RMSE at SNR = 0 
dB 

≈ 0.725° ≈ 0.675° 
≈ 8 % reduction in 

error 

Probability of successful 
detection (𝑃𝑑) SNR = 0 dB 

≈ 0.681 ≈ 0.7 
≈ 3 % higher detection 

rate 

Performance under 
correlated signals 

Significant 
degradation 

Maintains stable 
accuracy 

More robust to 
correlation 

Resolution (No. of 
detectable sources) 

Fails to resolve 
all nine closely 
spaced sources 

Successfully detects all 
the nine sources 

Higher angular 
resolution 

Memory usage 
High, due to 

dense CM 
processing 

Lower, due to sparse 
off-diagonal CM 

More efficient 
implementation 

Overall assessment 

High accuracy 
but 

computationally 
intensive 

Higher accuracy with 
reduced complexity 

and faster convergence 

VoST provides 
superior trade-off 

between accuracy and 
efficiency 
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7. CONCLUSION 

This work has presented the VoST as a significant enhancement for efficient AOA 

estimation. The proposed sampling technique selects the columns with the lowest dependency 

in the ODCM, ensuring that the PM is constructed using only unique and non-redundant 

information. By omitting the signal variance and focusing on the ODCM elements, the VoST 

effectively reduces computational load while improving estimation precision and detection 

capabilities. In contrast to the classical and the newly developed methods, the proposed 

algorithm accurately detected all AOAs and effectively resolved closely spaced sources with 

high resolution. Comparative analysis with existing techniques highlights the superior 

performance of VoST, particularly in terms low ARMSE, high probability of successful 

detections, high computational-efficiency, high robustness against signal correlation, and fast 

convergence. The proposed method thus addresses the key limitations of the previous 

sampling approaches, offering a promising solution for real-time AOA estimation in current 

and future wireless communication networks. 
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