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Abstract— This manuscript introduces a robust and efficient sampling technique for optimizing data retrieval
from large-dimension covariance matrix (CM). The proposed approach focuses on selecting the least-correlated
and most-independent columns from the CM to construct the so-called projection matrix (PM) applied in angle
of arrival (AOA) estimation. In contrast to the developed sampling techniques in literature, the recommended
method excludes the signal variances located in the main diagonal of the CM during the column selection
process. That is to say, the proposed technique focuses entirely on the off-diagonal elements of the CM that
captures the covariance (correlations) between signals collected from different array elements. The proposed
methodology is therefore named variance-omitted sampling technique (VoST). Applying this principle, we are
able to extract the columns with minimal signal correlations corresponding to the off-diagonal entries of the CM
and decrease the computational burden involved in the PM formulation process. To validate the theoretical
claims and demonstrate the advantages of the proposed technique, a numerical example is provided, followed
by extensive Monte Carlo simulations across several scenarios in which the performance of the proposed method
is systematically compared with the existing techniques. The results demonstrate that VoST consistently
surpasses previous algorithms in estimation resolution, root mean square error (RMSE), successful detection
rate, ability to detect correlated signals, and computational speed.

Keywords— AOA estimation; Covariance matrix sampling; Off-diagonal covariance matrix; Computational
complexity; VoST.

1. INTRODUCTION

The estimation of signal parameters including frequency, polarization, and angle of
arrival (AOA) has been an attractive research problem over a decade [1]. The AOA represents
the direction from which transmitted signals reach the receiving antenna array. Accurate AOA
estimation is crucial in many engineering applications, including radar [2, 3], patient
monitoring [4], sonar [5], and wireless communications [6]. The performance of the newly
developed smart antenna systems is merely determined by the accuracy of the AOA
estimation techniques.

The outputs of these techniques are typically fed into an adaptive beamformer, which
generates the main lobes and deep nulls as needed [7]. In MIMO systems, modeling space-
time paths accurately are essential for ensuring reliable performance [8, 9]. Because the
received data matrix in such systems is often large, employing an efficient sampling technique
is practically important to enhance AOA estimation performance.

The broadly implemented AOA estimation algorithms in literature are minimum
variance distortion less response (MVDR) [10], multiple signal classification (MUSIC) [11],
minimum norm [12], and estimation of signal parameters via rotational invariant technique
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(ESPRIT)[13]. These algorithms require computationally demanding matrix operations such
as matrix inversion, eigenvalue decomposition (EVD) or singular value decomposition (SVD)
to identify the principal components of the large-size original matrix. Although these
algorithms provide reliable estimation accuracy, they require intensive computational effort.
This high complexity limits their suitability for real-time implementation.

Alternatively, linear AOA estimation algorithms such as propagator [14] and orthogonal
propagator [15] are suggested to avoid such computational-hungry matrix operations through
dividing the CM into small-dimension matrices. Although these algorithms guarantee
considerable complexity reduction, they need to process all columns of CM which is unfeasible
in case of massive MIMO systems.

To address the computation complexity issue, column-sampling techniques (CST) have
emerged as an alternative solution [16]. CST extracts a limited number of columns from a high-
dimensional matrix. The selected columns should closely represent the properties of the
original matrix.

Mathematically, the sampled columns need to span almost the same subspace as the one
obtained via EVD. From that perspective, several sampling techniques are proposed in
literature including classical technique (CT) [17, 18], uniform technique (UT) [19], non-uniform
technique (NUT) [20], and least correlated column sampling technique (LCCST) [21] to
construct the so-called projection matrix (PM). CT extracts the first L-columns to construct the
PM, where L represents the number of sources. However, its performance is limited because
it relies only on static column selection, which cannot represent the overall characteristics of
the original covariance matrix. UT is then proposed as an alternative approach for resolving
the limitations of CT. UT enhances the AOA estimation performance via selecting the L-
columns in a more distributed manner which increases the degree of freedom (DoF). Next, the
NUT selects columns randomly from the CM. It aims to improve estimation performance by
choosing L-columns with relatively higher energy. They show that applying the NUT increases
the number of detectable sources significantly compared to the CT. Noticeably, the prevalent
problem among the discussed techniques is that they ignore the correlation (i.e., dependency)
between the selected columns, which limits the AOA estimation performance [22, 23].

Recently, a number of studies have addressed low-complexity AOA estimation from
different perspectives. For example, Deng et al. in [24] propose a joint AOA/TOA UWB
approach with reduced search dimensions; Shen et al. in [25] develop a root-SBL method for
off-grid non-uniform arrays; Ahmad et al. [26] reduce dimensionality in 2D-DOD/DOA
estimation; a compressive-sensing framework using coprime arrays appears in [27] ; and Yang
et al. [28] explore coprime arrays with low-rank recovery under non-uniform noise. These
works highlight the growing trend toward complexity-aware algorithm design, which
underlines the relevance and novelty of the proposed VoST in this context.

To improve the estimation performance, an effective algorithm named LCCST is recently
proposed. In this technique, the L-columns are chosen in an adaptive manner based on the
correlation level within the CM columns. In other words, LCCST selects the columns with
minimum dependency. This approach has been shown to significantly improve AOA
estimation performance compared to existing techniques.

However, in LCCST a problem arises when attempting to compute the correlation within
a given column. To be precise, the main diagonal of a covariance matrix (CM) represents the
correlation of each signal with itself, also known as the signal variance. The off-diagonal
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elements represent the correlations between signals received by different array elements,
indicating how signals relate across the entire array. The focus here is on the correlation
between different signals, that is, signals received from different array elements rather than
the signal variance. Therefore, the off-diagonal elements of the CM should be used, and the
main diagonal omitted during the column-norm calculation. Otherwise, we might end up with
inaccurate correlation-level calculation and consequently selecting non-optimum samples for
PM. This will result in degradation in the AOA estimation performance. To solve this
fundamental problem in LCCST, we propose a new sampling methodology named variance-
omitted sampling technique (VoST). The name stems from the fact that we omit the signal
variance when we compute the column norm representing the correlation level between the
signals of different elements. The sampled columns are then used to construct a PM named
variance-omitted projection matrix (VoPM). The philosophy behind the suggested algorithm
is that we exclude the correlation between signals themselves (i.e., signal variances) reside on
the main diagonal of the CM during the column selection process. By doing so, we can focus
and extract the columns which have minimum correlation between the collected signals. This
adjustment to the recent LCCST ensures improved AOA estimation performance and reduced
computational cost during the estimation process.

The key contributions of this paper can be concluded as follows:

e A new CM sampling technique named VoST has been proposed. In contrast to the
existing algorithm, the proposed technique skips the signal variances sit on the main
diagonal of the CM during the column section procedure. This refinement in column
selection ensures the following benefits.

e VoST enables the extraction of optimal columns based on signal dependency, leading to
improved resolution and accuracy in AOA estimation. That is to say, by excluding
variances we remove the noise power terms from the CM, and this helps in improving
the accuracy of the AOA estimation algorithm.

e VoST decreases the number of mathematical operations required for PM construction,
resulting in reduced overall complexity of the algorithm.

The remaining parts of this paper are organized as follows. Section 2 presents the problem
formulation for AOA estimation. In Section 3, the preceding sampling techniques for PM
construction are revisited. Section 4 reveals the working principle of the proposed AOA
estimation algorithm. The computational complexity of the existing and proposed techniques
is analyzed in Section 5. In Section 6, the achieved simulation results are presented and
comprehensively discussed. Section 7 concludes the key findings of the paper.

2. PROBLEM FORMULATION

To formulate the AOA estimation problem, we assume that a uniform linear array (ULA)
with M elements is illuminated by L far-field sources as shown in Fig. 1. After receiving the
signal by m-th element, it is down-converted to base-band signal which can be expressed by
following equation:

Xm(t) = s;(t = Atm)e_izrrfc Afm @)
where s, is the emitted signal by [-th source. f. denotes the carrier frequency and At,, is the
propagation-delay of the signal received by m-th element with respect to reference (i.e., first)
element.
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B = o a0 @
when d is the spatial distance between two adjacent elements. 8 denotes the AOA of the
incident signal. Then, the down-converted signal is digitalized as follows:

X (nT) = 5;,(nT — At,,)e ™2™ cAtm (3)
where T represents the symbol period. In communication system (T > At,,), thus Eq. (3) can
be approximately written as

X (nT) = 5,(nT)e™2We Atm ()

Asd = %A, and ¢ = f; A, the above equation can be simplified as follows:

Xp(nT) = s(nT)e~imk sind (5)
For simplicity, we use discrete notation and Eq. (5) becomes
Xp[n] = s[n]e”i7k sin0 = g[n]a,,(6) (6)

where x,,,[n] is the n-th sample of the signal at the m-th element which can be written as:

xmln] = $i2ds;Inla(s,) %
where s;[n] represents the n-th symbol of the j-th signal, j = 1,2,...L — 1. Then, considering
all the array elements, Eq. (7) can be expressed in a matrix form as follows:

xo[n] [ ao(6o) ap(01) . . . ap(O-1) ] so(n) v (n)
x1[n] S1 (n) U1 (n)
= 8)
[xM_'l[n]J ay-1(6o) aM—l(Gl.) oo ay-1(8,-4) s, 1(n) Var1 (n)

Here v,,,(n) is the statistically uncorrected additive white Gaussian noise at m-th element.

A= [a(8) a(8y) .. a(0,-1)] 9)

where A € (M*L is called steering matrix (i.e., array manifold), which contains the steering
vectors a (6;) of source sj(n). Thus, Eq. (8) can be written in more compact form as follows:
Xn = Asp,+ v, (10)

where x, € (M*™ denotes the n-th received signal vector. s, and v,, represent signal and
noise vectors, respectively.

E Bore sight Source 1 E Source 2 E Source 3 E ves Source L
| / | | |
: / : / : / : /
! 7/ ! / ! / ! /
: : : : /
1 9 / / 1 9 / 1 9 / 1 9 /
1 i / 1 / 1 /
5/ i\ / h / L\
il /7 /7 \/
Antenna 1 Antenna 2 Antenna 3 cee Antenna M
< d e d -

Fig. 1. AOA model considering M elements and L incident signals.
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Although the array model in this work is presented using a ULA configuration for the
sake of clarity and analytical simplicity, the proposed VoST is not restricted to this geometry.
The algorithm operates directly on the covariance matrix of the received data, which can be
constructed for any arbitrary array configuration (e.g., circular, planar, or 3D arrays).
Therefore, the underlying principles and performance of VoST remain fully applicable to
general array geometries.

3. EXISTING SAMPLING TECHNIQUES FOR PM CONSTRUCTION

To avoid the high computational cost involved with EVD, PM construction based on a
limited number of columns (i.e., L-columns) of CM is widely adopted in AOA estimation. The
estimation performance, however, is directly dependent on the accuracy of the column’s
selection, i.e., whether the selected columns span the intended subspace. In this section, we
revisit the existing sampling techniques employed for PM construction and AOA estimation.
To this end, we assume that N data samples have been collected by the ULA shown in Fig. 1
and the received data matrix is represented as follows:

x1(t1) x1(ty) x4 (ty)
( x2(t1) x(t) x2(tn) \
X(t) = : : o s (11)
XM (.t1) Xm (.tz) XM (.tzv) /
X(t) is then used to compute the true CM X, as follows:
K = E[XOX®"] = E[FS()ST(OF] + E[N(ON" (D]
Ky = FKFH + 021y (12)

where ;s € C2*L = E[s, s,"] is the desired signal CM. 61y depicts the CM of noise where
Iy is an M X M identity matrix and o2 is the noise variance. (.)" and E[.] denote Hermitian
transpose and expectation operators, respectively. When the observed sources are non-
stationary, the AOA value will fluctuate. Meaning that the content of F will change partially
or completely, which implies that the content of the CM X, will also change. Therefore, to
track the signal properties of non-stationary sources and achieve an accurate estimation of
AOA, the CM needs to be estimated periodically over N data samples as follows:

Kll K12 aes KlM
K K K

Ko =Tl XXM =| 720 R (13)
KMl KMZ CLEl KMM

where T denotes the total number of data samples.

3.1. Classical Technique (CT)

The CT [17, 18] follows the simplest procedure to sample the L-columns from the CM for
PM construction. This method simply extracts the information lying in the first L-columns and
constructs the sampled matrix § as follows:

Kll Klz e KlL
Kzl KZZ ew KZL

SCT = . : . : (14)
KM1 KMZ T KML

Based on Eq. (14), Scr = [x1 x; -+ K], where K, j<;, represents the j-th column of

original CM ¥ ,. Fig. 2 illustrates the concept of this column selection. In Fig. 2, the positions
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of the (selected and unselected) columns are plotted again normalized column norm which is

a representative of the correlation level between signals in that column.
1 T T

=== Selected columns
ookt + v i [ Unselected columns

0.8 - 4

0.7 - 4

0.6 .

0.5 .

04 1

03

0.2

Normalized column norm of original CM K

0.1

0 I I i
1 5 10 15 20 25 30
Location of the selected columns

Fig. 2. lllustrative example of selecting ten columns (L = 10) from ¥, € €3°*3% ysing CT.

Then, the CT constructs the PM as follows:

-1
Qcr = In — Scr (SEr Scr) St (15)
Then, the AOAs are estimated based on the peaks of the following function:

1
Yor(6,) = ————
cr(®,¢) IFH 0.0)ecr]

This CT's primary advantage lies in its simplicity. However, the algorithm has two
essential problems. (i) the chosen columns are statics (predefined). It always relies on the
information on the first L-columns and ignores others, resulting in low DoF. (ii) The selected

(16)

columns may contain high correlation-level between signals (for example, see column 2 in Fig.
2). This makes the columns of the sampled matrix Sct to be highly dependent. Hence, Sct
will not be a good representative of the general trends of the CM. These two fundamental
issues will limit the performance of the CT, hence the corresponding AOA estimation
algorithm.

3.2. Uniform Technique (UT)

In comparison to the CT, UT [19] aims to improve the DoF by selecting the same number
of columns. To this end, the UT adopts a more distributed approach (rather than simply
selecting the first L-columns) to identify a better position of the columns to be chosen for PM
construction. Therefore, the sampled matrix of UT, Syr, is formed based on the following
formula.

i—1)(M—=1
Sur = {Cilci =1+ round (%)h{lz L}} -

where c; represents the indices of the selected columns for 1 < i < L . The conceptual diagram
of column selection based on the UT is illustrated in Fig. 3. The advantage of the UT is its
ability to enhance the DoF by selecting columns in a more distributed manner. However, this
uniform column-selection is still not adaptive. Additionally, the UT selects columns with high
column norm (high correlation between signals) for example, see column 4 in Fig. 3. Then, the
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UT follows the same procedure as CT through applying Eq. (15), with replacing Sct to Syr,
and Eq. (16) to estimate the location of the sources.

1 T T

== Selected columns
--------- Unselected columns
09 r

0.8 [ b
0.7 - b
0.6 - b
0.5 b
0.4 - b
03 7

Normalized column norm of original CM K

ol i |

1 5 10 15 20 25 30
Location of the selected columns

Fig. 3. [llustrative example of selecting ten columns (L = 10) from ¥C,, € €3°*3% using UT.

3.3. Non-uniform Technique (NUT)

NUT suggested in [20] is another attempt made to improve the estimation performance
of the CT through increasing the signal eigenvalues’ energy. Unlike the CT and UT, NUT
selects the columns in a non-predefined fashion by randomly choosing L-columns from ¥,
to construct the sampled matrix Syyr as illustrated in Fig. 4.

1 T

== Selected columns
--------- Unselected columns

o
©
T

o o
~ (o]
T T
1 1

o
[}
T

1

Normalized column norm of original CM K
©o o o o
N w L ;]
T T T
1 1

=4
N

1 5 10 15 20 25 30
Location of the selected columns

Fig. 4. lllustrative example of selecting ten columns (L = 10) from X, € C3**3° using NUT.

The NUT performs column selection in a non-static, random manner. However, it still
fails to address the problem of selecting columns with high correlation, indicated by large
column norms.
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After constructing the sampled matrix Syyt, the NUT adheres to the same process as CT
through applying Eq. (15), with replacing Sct to Syyr, and Eq. (16) to generate the spatial
spectrum.

3.4. Least Correlated Column Sampling Technique (LCCST)

LCCST is the latest attempt made to improve the AOA estimation performance through
selecting optimum positions of the columns. As discussed above, a key limitation shared by
all previous methods is the selection of columns with high correlation, where a large column
norm indicates strong signal dependency.

To address this issue, LCCST is proposed in [21]. In this technique, the column norm is
used a measure of correlation level between signals collected from different array elements
(i.e., higher norm means higher correlation and vice versa). Therefore, the sampled matrix
based on the LCCST Sy ¢cst is formed as follows:

K11 Kic Kic Kim
K21 K2 K2 Kam

SLeest = : : ¢ ;C : (18)
KM1 KMc KMc KMM

Here, c represents the set of column numbers defined as:

c={ele={23..,.M—1}} (19)

where € is a set of integer numbers. This algorithm selects the L — 2 columns (provided that
first and last columns are already selected as shown in Eq. (15) based on the following formula:
¢s = Position ([mink ({llx. [l23, L — 2)]),

¢, = Position ([maxk ({l|lx. |l.},M — L)]),

where mink and maxk are the two functions that return L-2 minimums and M — L maximums
from their arguments ({||x. |l>}). | |. | | is the norm operator which returns the column norm
and it includes the signal variance (main diagonal of the CM) into its calculation. The column
selection based on the LCCST is illustrated in Fig. 5, where the selected columns show low

correlation (represented in a normalized norm form) compared to the unselected ones.
1 T T

=== Selected columns
--------- Unselected columns
09 r

0.8 [ i

0.7 r 4

0.6 [ 1

0.5 1
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03

0.2

Normalized column norm of original CM K

01

0 | 1 1 :
1 5 10 15 20 25 30
Location of the selected columns

Fig. 5. lllustrative example of selecting ten columns (L = 10) from K, € C3°*3° using LCCST.

Then, the LCCST follows the same procedure as the abovementioned techniques, using
Sicest to form the PM then applies it in the spatial construction Eq. in (16).
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While the LCCST attempts to choose columns with minimal correlation, the process of
calculating the column norm needs to be refined. The main diagonal of the CM represents the
signal variances, often referred to as noise power, while the off-diagonal elements describe the
covariance — or correlation —between signals received by different array elements. For precise
correlation level determination between signals, the main diagonal elements of the CM should
be omitted when computing column norms. This issue is addressed by introducing a new
technique which offers several advantages as presented in the following section.

4. PROPOSED AOA ESTIMATION ALGORITHM

The problem with the recently developed LCCST is that it incorporates the signal variances
into the calculation of the column norm of the observed CM. This may mislead the estimator
as the correlation between the signals does not rely on the signal variance; it purely relies on
the signal covariance (located on the off-diagonal of CM). To address this problem, we
propose a new sampling technique in this section.

4.1. Variance-omitted Sampling Technique (VoST)

Similar to the previous work in [21], we sample L-columns from M (L < M) based on the
correlation between the signals across the antenna array. In contrast to [21], which incorporates
the signal variances located on the main diagonal of the CM into the column-norm calculation,
we exclude them by setting the signal variances to zero as shown in Eq. (20). The principle of
our technique stems from the fact that the variances (i.e., diagonal elements of the CM)
represent the individual noise power at each antenna element. These terms may not contribute
significantly to angle estimation since we are more interested in how signals relate to each
other across the array. This variance omission thus allows for a more accurate calculation of
the correlation (expressed in covariance form) between signals collected from different array
elements. Therefore, before calculating the correlation between signals using the column
norms, we apply a preprocessor to remove the variances from the original CM and generating
off-diagonal CM (ODCM) as follows:

0 ¥y Kz . Ky

R K21 O K2z =+ Kom

Kyx = Kyx — diag(Hyy) =| K31 K32 0 - K3y (20)
Kyi Kmz - Kymy-1 0

where X, represents the ODCM and k;, denotes the covariance (relationship) between
signal received from array element 1 and element 2, and diag(Kyx) = diag(k11, k22, ..., Kpn)
After that, we compute the norm for each column of X, where each column represents the
actual correlation between signals collected from different array elements. We subsequently
select the columns with the relatively smallest norm values, indicating that these columns
contain the least correlation between signals. The sampled matrix obtained from the ODCM is
as follows:

0 Kic  Kic }
(21)

Svost € ML= {KZC 0 K2c

KMc KMc 0

where ¢ = ¢;|c; is a unique variable representing the column indices and defined as follows:
¢ ={Zy={12,..,M}fori={12,..L}} (22)
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To be precise, ¢ denotes the indices (i.e., positions) of L selected columns (c;) and M — L
unselected columns (c,). The fundamental problem here is how we can extract L-columns
from M (L < M) that span almost the same spaces as the original signals subspace obtain by
EVD. We address this problem by selecting the columns based on their pure norms (excluding
the signals’ variances reside on the main diagonal of the CM during the column norm
calculation). Mathematically, the proposed technique selects L -columns based on the
following equation:

Cs JfKCSJ(:min{JfKCSJ(} for1<s<L
c= (23)
Cu > JfKCuJ(:max{JfKCuJ(} forl<u<M-1L

where t.+ denotes the operator which calculates the column-norm excluding the main diagonal
elements, max and min are the functions that return the maximum and minimum values from
t x t for a given value of u and s, respectively. Relying on Eq. (23), the selected columns
exhibit minimum correlation between the signals in comparison to the unselected columns,
and this consequently makes the selected columns to be least dependent as it is proven in [21].
This feature of the proposed technique is particularly important because it ensures the
extraction of columns with completely non-redundant information about the signals arriving
at the receiving array. That is to say, the components of each source are uniquely represented
by a single column of the sampled matrix Sy,st. The suggested methodology thus guarantees
higher estimation performance in comparison to not only CT, UT, NUT, but also the newly
developed LCCST as will be shown in the following sections.

We here do not rely on the norm calculations from the previous sections (e.g., in Fig. 5),
as they include the signal variance by calculating the column norm from the original CM ¥ ,.,.
So, we compute a new column-norm for the ODCM X, and then select the L-columns based
on minimum norm values which reflect the actual correlation between signals. The conceptual
illustration of the proposed technique is shown in Fig. 6.

1 T T T

=== Selected columns
--------- Unselected columns
0.9

0.8 [ b
0.7 b
0.6 [ b
0.5 E
0.4 . E

. 18 i, l
1 5 10 15 20 25 30
Location of the selected columns

Normalized column norm of variance omitted CM K

Fig. 6. lllustrative example of selecting ten columns (L = 10) from Ky, € €3°*3% using proposed VoST.

Compared to Fig. 5, the overall column norm in Fig. 6 is reduced due to the exclusion of
the signal variance in the norm calculation. Importantly, in Fig. 6, the columns are selected
based on minimum norms which realistically represent the true signal-correlations. It is



Jordan Journal of Electrical Engineering. Volume 11| Number 4 680

proven in [21] that selecting columns with minimum norm results in lower dependency
between selected columns (i.e., each column contains non-redundant information about the
signal sources). This leads to higher estimation performance of the proposed algorithm. Table
1 shows and compares the strengths and weaknesses of different sampling techniques applied

to AOA estimation.
Table 1. Advantages and limitations of various CM sampling techniques.

Algorithm Advantage Limitations

(i)Positions of the selected columns are predefined.
CT [17, 18] ())Simplicity. (ii) Limited DoF.
(iii) High correlation between selected columns.

UT [19] (i)Enhancing DoF. (.i.) Th.e columns r?lre selected in a static fashion.
(ii) High correlation between selected columns.

NUT [20] (i)Increasing signal eigenvalues. (i)High correlation between selected columns.

(i)Minimizing correlation between (i) Incorporating the signal variance into the

LCCST [21] column norm calculation (i.e., inaccurate
selected columns. . .
correlation-level calculation).
(i) Optimizes the column-norm
calculation to overcome the LCCST
limitations.
P d (ii)Achieves more accurate (i) No significant drawbacks observed in the
ropose
P correlation-level estimation. current evaluation.

(iii) Guarantees higher AOA
estimation accuracy with lower
computational complexity.

While omitting the main diagonal of the CM enhances the accuracy of inter-signal
correlation estimation, it may slightly reduce the total signal energy captured by the model
under very low-SNR conditions.

Nevertheless, in such scenarios, the off-diagonal elements remain the principal
contributors to accurate AOA estimation, as they characterize the true spatial dependencies
between array elements. Moreover, as shown in Section 6.2, the proposed VoST retains robust
estimation accuracy even at low SNR values, validating that the omission of the diagonal does

not compromise overall performance.

4.2. PM and AOA Estimation based on VoST
The VoPM is formulated based on the proposed VoST as follows:
-1
Quost = Im — Svost( SVost Svost)  SVost (24)
The angle of the incident signals is calculated based on the proposed algorithm using
the following formula:

1
Yvost (8. 9) = e e )
vosT(8, I fH(e,(]))QvoST"Z N

The main steps of the proposed AOA estimation are summarized as below.
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Algorithm 1: Variance-omitted sampling technique VoST for accurate AOA estimation.

Requires
Ensures
Step 1
Step 2
Step 3
Step 4

Step 5

Step 6
Step 7
Step 8
Step 9

Step 10

The received data X € CM*¥ with M array elements, N data samples, and L sources.
Cost efficient and accurate AOA estimation.

Compute the received signal and add Gaussian noise with a certain SNR.

Calculate the CM X, for the received signal using Eq. (13)

Set the main diagonal of X ,, to zero to generate X, (transforming CM to ODCM)
Compute the norm for each column of ODCM X,

Sort the results of Step 4 in ascending order and determine their corresponding column
positions (indices).

Save the L-leading indices in an indexing set i.

Sort the indices values in i in ascending order.

Select L-columns from X, as Syosy = Ky ¢, 1).

Compute the VoPM Qy,st using Eq. (24).

Estimate AOA using Eq. (25).

5.  THEORETICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

Formulating PM based on the traditionally-used sampling algorithms applied to an

M X L matrix S,! requires a computational cost of 0(M?L). This is because the resulting matrix

is M x M and we need to compute the dot product between a row of S, and a column of S¥

where each needs L multiplications.

In the proposed technique, we bypass computations involving the zero elements located

on the main diagonal of the CM (i.e., signal variances). That is to say, we generate the PM
based on ODCM rather than the original CM. Thus, the overall computational cost of PM
based on the proposed algorithm (see Eq. (24)) can be analyzed as follows:

1. Computation of St 1 Svost

o SH crisanL x M and Sy,gr is M X L, so the result is an L x L matrix.

e The

standard cost that is wusually paid for this multiplication is

Costrraditional = O(LZM)-
e As Sy,st has zero-elements on its diagonal (i.e., signals variances are omitted in the

computation), each dot product between a row of S{,st and a column of Sy,st

involves M — 1 terms rather than M.

e The

cost based on the proposed algorithm for S{,sr Syost becomes

Costy,, = O(L*(M — 1)).

1S, is a representative of Scr, Syt Snut, and Syccst-
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2. Computation of (S¥,st Svost) ™!

e Generally, the inverse of an L X L matrix needs 0(L*) operations using methods like
LU decomposition or Gaussian elimination.

e We cannot guarantee the direct complexity reduction due to the zeros in Sy,st
because the inverse operation on S¥ 1 Syest, which is already an L x L matrix with
non-zero  entries. This  step  requires  the  following  cost:
Costyew = COStrragitional = 0(L3)

3. Computation of Syost(StosT Svost) ™
e This involves the multiplications between M X L Sy,st with the L X L (St Svost) ™%
e The standard cost therefore is Costr, qgitionat = O(ML?).
e Since Sy,st has zero-diagonal elements, the cost based on the proposed algorithm is
reduced to Costy,, = O(M x L x (L — 1)).
4. Computation of the final matrix Syost(Shost Svost) *SHosr
e This step involves the multiplication between Sy,s1(SHost Svost)  * which is M x L,
and the S¥ ¢r ,which is L x M. The standard cost is CoStr,qgitionar = O (M>L).
¢ Due to the zero-elements on the diagonal, each dot product between a row of Sy,st
and a column of S{} 1 involves L — 1 non-zero terms. The adjusted cost based on the
proposed algorithm becomes Costy,,, = 0(M? (L — 1)).
The total cost of formulating PM based on the proposed method is

0 (L2 (M- 1))+ 0(L3) + O(M x Lx (L - 1)) + 0 (M? x (L — 1))
For M > L, the overall cost therefore becomes

Costoyerati New = O (MZ X (L - 1))
Which represents a notable reduction in computational complexity compared to traditional
approaches that require full-matrix operations. The overall cost of PM construction applied

in the previous works and that applied in this work are listed in Table 2.

Table 2. Computational cost of PM construction based on different sampling techniques.

Complexity using

PM construction steps CT, UT, NUT, PM construction steps Complexity using VoST
LCCST
7S, 0(L*M) SVosT SvosT o(L*(M - 1))
(87S0)7" o(L?) (SVosT Svost) " 0(L?)
S, (S¥S)™ oML?) SvosT(SVosT Svost) ™" OMXLx(L-1))
Sx(SyS:)7'S} 0(M?L) Svost(SVostSvost) ™ SVost o(mM? (L - 1)
Overall cost o(M?L) Overall cost O(M 2(L- 1))

6. RESULTS AND DISCUSSIONS

In this section, we compare the performance of the proposed algorithm to its
counterparts by conducting multiple computer simulations over a wide range of scenarios. In
the performance comparison, we apply average root mean square error (ARMSE) and
probability of successful detection (P;) as performance indicator and calculated as follows:

ARMSE = ;;1\[% St (6 - 8)] (26)
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_ I
P4(AOA) = ==L (27)

Here A denotes the total number of Monte Carlo trials. 8; and 6; represent the original
and estimated AOAs at the jth trial, respectively. D; is the total number of successful

detections at ith trials.

6.1. Resolution Capability

When the signal sources are closely located, miss-detection becomes the essential
problem for AOA estimators. From that perspective, we compare the resolution® capability of
the proposed algorithm to its counterparts using the simulation parameters listed in Table 3.
To make a fair comparison, we apply a severe test in which three-sets of three closely located
sources transmit their signals toward the receiving array. Then, the procedures of the
algorithms under the test are adopted to resolve the locations of these sources. The results
achieved are shown in Fig. 7.
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Fig. 7. The resolution performance of the VoST method is compared with CT, UT, NUT, and LCCST for nine
AOAs, where the three-sets of three closely spaced AOAs present a severe test.

As illustrated, the compared algorithms show low resolution as they were not abe to
identify the spatial locations of all the sources. In other words, they all sufer from a situaltion
in which the three-sources are detected as two-sources experiencing at least one false-
detection. On the other hand, the proposed algorithm accurately and unambiguously resolved
the directions of all incoming signals by producing nine distinct peaks corresponding to the

2 Resolution is defined as the ability of the AOA estimator to detect the closely located sources.
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locations of their sources without any missed detections. The suggeted AOA estimator thus
demonstrates higher resoution capability, which ends up with detecting comparatively higher
number sources. Moreover, the noise immunity achieved through the proposed sampling
technique is superior compared to previous technqiues. It is improtant to note that this high
resoutluion capabilty of the proposed algorithm is due to the newly-adapted sampling
methodolgy (i.e., VoST) to contsrut the PM.

Table 3. Simulation parameter for this scenario.

Parameter Value
M 30
L 9
N 100
SNR 0dB
Actual AOAs -59° -51° -43° -9° 0° 9° 44° 51° 59°

6.2. Accuracy Comparison based on Varying SNR

This section aims to evaluate the impact of changing the SNR levels on the estimation
accuracy?® of the proposed method and other sampling techniques. To achieve this, we
compute the ARMSE and P, of the proposed algorithm and compare those with that for CT,
UT, NUT, and LCCST based on different SNRs. This simulation is configured using the
parameters listed in Table 4. One thousand Monte Carlo simulations (A = 1000) are conducted
to generate ten random AOAs within the angular range of —90°, 90°. These angles are applied
consistently across all the techniques to ensure a fair comparison. Then, the ARMSE and
corresponding successful detections are calculated at each SNR level. The results obtained are
plotted in Fig. 8 and Fig. 9, respectively. From the figures, it is evident that CT offers the least
accuracy among the competing methods, followed by the UT, NUT, and LCCST, respectively.
As shown, due to the minimal dependency between the selected columns obtained through
applying the VoST, the proposed AOA estimation algorithm shows superior estimation
accuracy achieving minimum ARMSE and highest successful detections across the entire SNR
ranges compared to its counterparts.

Table 4. Simulation parameters for this scenario.

Parameters Value
M 30
L 10
N 100
AOA Random between —90° and 90°
SNR Variying between —10 dB and 5 dB.
Monte Carlo trials, A 1000

6.3. Accuracy Comparison Based on the Correlation between Incoming Signals

Spatial smoothing technique is usually applied as a pre-processor to remove the negative
impact of correlation among the signals on the AOA estimation technique. This solution,
however, incurs the drawback of increased computational burden. To ensure low
computational complexity, it is essential for the signal processing technique (e.g., AOA

3 Estimation accuracy here is determined by the values of ARMSE and probability of successful detection Py.
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estimator) to effectively manage correlated sources in an intelligent manner. Therefore, this
scenario examines how correlations between signals impact the performance of the AOA
techniques considered. To achieve this, we assume that the incident signals are correlated due
to multipath effects and ten correlated signals (L = 10) striking the same array as in the earlier
scenarios. Precisely, we assume that there is just one signal source and the other incident
signals are the result of reflections from this primary source. To model this scenario, we change
the correlation level between the first signal and the subsequent ones as
r =[0.10.2 0.4 0.6 0.8]. Other simulation parameters are listed in Table 5. For each value of r,
we compute the accuracy criteria (i.e.,, ARMSE and Py) over several trials and the average

values are plotted as shown in Fig. 10 and Fig. 11.
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Fig. 8. Comparison of accuracy (ARMSE) between VoST and existing sampling techniques based on SNR
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Fig. 9. Comparison of accuracy (P;) between the VoST and existing sampling techniques based on SNR variation.
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Table 5. Simulation parameters for this scenario.

Parameters Value
M 30
L 10
N 100
AOA Random between —90° and 90°
SNR 5dB
Monte Carlo trials, A 5000
Correlation between signals Vary
1.8 _ . .
Classical
—%—US
—%—NUS
1.75 LccsT ‘
—A— Proposed

ARMSE(Degree)

1 1
0.1 0.2 0.4 0.6 0.8
Correlation coefficient r

Fig. 10. Comparison of accuracy (ARMSE) between the VoST and existing sampling techniques, considering
different correlation levels between incoming signals.
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Fig. 11. Comparison of accuracy (P4) between the VoST and existing sampling techniques, considering different
correlation levels between incoming signals.
To compute the correlation level between arrived signals, we apply the well-known
Pearson correlation coefficient [29] as follows:
2(xi—)i—y)
r= 28
VEGiD? -7 (28)
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where r is the Pearson correlation coefficient. x; and y; are the individual elements of signals
x and y. ¥ and y denote the mean values of signals x and y.

Based on the data shown in the figures, it is evident that the proposed technique reaches
the highest accuracy relative to the compared algorithms when the incident signals are either
weakly (r = 0.1) or strongly (r = 0.8) correlated. Therefore, this superiority of the proposed
technique comes from the fact that the proposed sampling technique makes VoPM more
robust against the correlated signals. It is also shown that the CT is least robust to these types
of signals, with the UT, NUT, and LCCST following in that order.

6.4. Complexity Comparisons

As previously stated, the existing sampling techniques require 0(M?L) mathematical
operations to formulate the PM. Whereas, the suggested technique reduces this computational
burden to O(M?(L — 1). To exemplify this advantage, we take the antenna array having the
above-mentioned specifications with varying the number of detected sources. Next, we
calculate the computational burden of the proposed technique and compare it with that of
existing methods in literature. The achieved result is illustrated in Fig. 12. The figure clearly
confirms the theoretical analysis presented in Section 5. This feature of the proposed technique
is due to using sparse matrices (i.e., ODCM) which make operations faster by working with
smaller and more manageable datasets.
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Fig. 12. Comparing the computational complexity of PM construction between the proposed and existing
methods.

6.5. Execution Time Comparison

The mean execution time for columns selection and the PM construction based on
different techniques are computed and compared in this section. The simulation parameters
for this scenario are chosen as M = 30,N = 100,L = 12, SNR = 0 dB. The property of the
machine used in this scenario is Intel CPU i7-1255U (1.7 GHz), 8GB Installed RAM.

The column selection process in CT is relatively simple, which makes it the fastest
algorithm. This simplicity in the selection of columns, however, results in inadequate
performance as illustrated in the previous section. The data listed in Table 6 shows that the
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proposed algorithm is much faster than its counterparts (i.e., UT, NUT, and LCCST). This
improvement stems from excluding the signal variances sit on the main diagonal of the CM
(processing ODCM instead of CM). It is important to note that the execution time will be
different from that presented here depending on the capability of the PC used for the
computation and the simulation setting. The relative execution time, however, must be the
same.

Table 6. Mean execution time comparison for different techniques.

Algorithm CT UT NUT LCCST

Proposed

Execution time [s] 1.1592 2.3521 2.5709 3.1047 1.3261

6.6. Overall Comparison between LCCST and VoST

To summarize the experimental outcomes and highlight the main distinctions between
the recently developed LCCST [21] and the proposed VoST algorithm, an overall comparison
is presented in Table 7. This table consolidates both qualitative and quantitative performance
indicators, including computational complexity, estimation accuracy, robustness under
correlated sources, and execution time. The results clearly demonstrate that VoST achieves
superior accuracy and robustness while maintaining significantly lower computational

spaced sources

complexity.
Table 7. Quantitative and qualitative comparison between LCCST and VoST.
Criterion LCCST [21] Proposed VoST Improvem?nt /
Observation
Includes main
diagonal (signal ~ Omits main diagonal More accurate
Sampling principle variances) in and uses off-diagonal correlation-level
correlation covariance only calculation
computation
~10-15 % reduction in
PM complexity 0(M?L) O(M 2(L - 1)) total operations for
moderate (L)
Mean execution time (s) 3.1047 s 1.3261 s ~ 80 % faster
Average RMSE at SNR = 0 ~0.725° ~0.675° ~8 % reduction in
dB error
Probability of successful ~ 0681 ~07 ~ 3 % higher detection
detection (P;) SNR =0 dB ) ) rate
Performance under Significant Maintains stable More robust to
correlated signals degradation accuracy correlation
Resolution (No. of Faﬂs. to resolve Successfully detects all Higher angular
detectable sources) all nine closely the nine sources resolution

Memorv usage Hé%ﬁlsgl(lji/to Lower, due to sparse More efficient
y usag . off-diagonal CM implementation
processing
High accuracy Higher accuracy with VOST provides
but . superior trade-off
Overall assessment . reduced complexity
computationally between accuracy and
. . and faster convergence .
intensive efficiency
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7.  CONCLUSION

This work has presented the VoST as a significant enhancement for efficient AOA
estimation. The proposed sampling technique selects the columns with the lowest dependency
in the ODCM, ensuring that the PM is constructed using only unique and non-redundant
information. By omitting the signal variance and focusing on the ODCM elements, the VoST
effectively reduces computational load while improving estimation precision and detection
capabilities. In contrast to the classical and the newly developed methods, the proposed
algorithm accurately detected all AOAs and effectively resolved closely spaced sources with
high resolution. Comparative analysis with existing techniques highlights the superior
performance of VoST, particularly in terms low ARMSE, high probability of successful
detections, high computational-efficiency, high robustness against signal correlation, and fast
convergence. The proposed method thus addresses the key limitations of the previous
sampling approaches, offering a promising solution for real-time AOA estimation in current
and future wireless communication networks.
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