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Abstract— This paper presents a control algorithm for single-input single-output systems with time-varying 
model parameters based on the integration of sliding mode control (SMC) and recursive least squares (RLS). The 
proposed algorithm is evaluated through simulations on a virtual direct current motor under abrupt parameter 
changes at 𝑡 = 10 seconds and 𝑡 = 20 seconds. Without RLS, the system output fails to converge to the desired 
velocity, while the presence of RLS reduces the error but results in slow convergence. Hence, the influence of 
control parameters, weighting coefficients ( 𝑐 ), and forgetting factor (𝜆 ), along with their interaction, was 
analyzed. Specifically, reducing 𝜆 to 0.99 and increasing the SMC gain 𝑐 up to 5 improves the convergence speed 
but introduces significant overshoot (up to 150 rpm). For this reason, a damping function is proposed and 
incorporated into the control signal. Simulation results show that the proposed controller completely eliminates 
overshoots at the initial time (𝑡 < 2 s), reduces settling time to under 2 seconds after each model change, and 
maintains steady-state errors within ∣ 𝑒 ∣< 2 rpm despite input disturbance in the range [−0.1, 0.1] voltage. The 
overshoot at 𝑡 = 10  seconds and 𝑡 = 20  seconds is reduced to 80  rpm and 114  rpm, respectively, without 
causing instability. As a result, it confirms the effectiveness of the proposed method in achieving fast, robust, 
and smooth tracking performance under parameter uncertainties. 

 
Keywords— Sliding mode control; Discrete time; Recursive Least Squares; Hybrid control.   
     

1. INTRODUCTION  

In the era of dramatic advancements in robotics and intelligent control systems, robust 

and adaptive control strategies have significantly more requirements than ever [1]. In reality, 

these control approaches are applied in various fields of control applications [2-5], including 

the cleaning robot in the photovoltaic panels system [6, 7], the mobile robot [8, 9], the 

mechanical ventilator in the healthcare system[10-16] , etc.  However, a significant challenge in 

practical control systems is the presence of system uncertainties and various noises, both of 

which can severely degrade the performance of traditional controllers. These uncertainties may 

arise from modeling errors, environmental fluctuations, unknown system dynamics, etc. 

Hence, there is a demand for control algorithms that can dynamically adapt to such variations 

while maintaining reliable operation. 
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Accordingly, numerous control strategies have been developed to address the issues 

posed by uncertain or time-varying models. Among them, sliding mode control (SMC) is 

considered popular due to its inherent robustness against matched uncertainties and external 

disturbances [17]. On the other hand, conventional SMC is primarily designed in the 

continuous-time domain. When applied in digital systems with discrete-time sampling, 

classical SMC may exhibit undesirable behaviors such as chattering or control instability due 

to the mismatch between discrete signals and continuous design assumptions [18]. To 

overcome these limitations, discrete sliding mode control (DSMC) has been proposed as a 

powerful alternative [19, 20]. Unlike conventional SMC, DSMC considers the discrete nature of 

sampled signals and control inputs, leading to a more realistic and accurate control action in 

digital implementations [21]. DSMC modifies the sliding surface dynamics and control laws to 

operate in the discrete-time domain, mitigating chattering and enhancing real-time feasibility 

[22]. However, the effectiveness of DSMC still heavily depends on an accurate mathematical 

model of the system. In practice, the system model  changes during operation because of 

disturbances, nonlinear factors, and external influences; therefore, the fixed-parameter design 

of DSMC became insufficient, prompting the need for adaptive solutions. 

To address this issue, recent studies have explored integrating DSMC with online 

parameter estimation algorithms to achieve adaptive control in uncertain environments. One 

potential approach involves using the recursive least squares (RLS) algorithm for real-time 

system identification. RLS is a recursive algorithm that estimates system parameters by 

minimizing the cumulative squared error, providing fast convergence and high adaptability to 

changing dynamics [23]. In combination with DSMC, RLS can continuously update the control 

model, enabling the controller to adjust its actions based on the most recent system behavior. 

Several researchers have successfully demonstrated the effectiveness of combining RLS with 

sliding mode controllers. Actually, Kim et al. introduced a self-tuning sliding mode control 

method integrated with an RLS estimator for position tracking in direct current (DC) motor 

drives. The approach enhances tracking performance under varying load inertia by adapting 

the control input based on real-time parameter estimation. It improves energy efficiency by 

adjusting the input voltage according to updated system dynamics and demonstrates strong 

robustness against model uncertainties through hardware experiments. Nevertheless, the 

method requires careful tuning of the RLS forgetting factors and sufficient computational 

capacity, which may limit its applicability in low-resource embedded systems [24]. 

Additionally, Wang et al. proposed an adaptive terminal sliding mode controller augmented 

by an RLS-based parameter identifier for servo systems experiencing inertia variation. The 

controller achieves finite-time convergence and improved tracking accuracy by continuously 

updating model parameters in real-time. Through comprehensive simulations, the method 

demonstrates enhanced disturbance rejection and adaptability under parameter shifts. 

Nevertheless, it has only been validated in simulation environments, and its effectiveness may 

degrade under abrupt transitions or high-frequency disturbances if the characteristic model or 

estimation fails to capture rapid dynamics [25]. In addition, Sguarezi Filho et al. introduced a 

sliding mode control approach integrated with an RLS algorithm for voltage compensation in 

three-phase loads. The method enhances voltage regulation under sag conditions, improves 

energy efficiency by relying on steady-state operation, and demonstrates reliability across 

various scenarios through simulations and experiments. Nevertheless, it demands precise 

parameter tuning and consistent system monitoring and may have reduced adaptability during 
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transient conditions [26]. As a result, these studies confirm the value of integrating parameter 

estimation into sliding mode frameworks. However, many existing approaches are either 

limited to specific applications or require high computational resources, making them less 

suitable for systems with tight real-time constraints. Furthermore, Oh et al. [27] employed RLS 

to tune the switching gain for continuous SMC, aiming to balance robustness and energy 

efficiency. Valladolid et al. [28] combined RWLS–QSMC for steady-state error reduction, while 

Znidi et al. [29] used Matrix-RLS in discrete SMC to improve parameter convergence. However, 

these approaches typically use RLS as an auxiliary estimator rather than integrating it directly 

into the control law, and they do not explicitly address the dynamic effects that arise during 

fast adaptation. 

This paper presents a hybrid control algorithm that combines the strengths of discrete 

sliding mode control and the RLS algorithm for single input-single output (SISO) systems with 

time-varying dynamics. The main difference lies in using RLS for online AutoRegressive with 

eXogenous inputs (ARX) model identification and deriving the discrete sliding control law 

from the updated parameters, creating a fully model-adaptive control scheme. This method is 

specifically designed for systems whose parameters change during operation, addressing the 

practical demand for model adaptation in real-time applications. The key idea is to treat the 

plant as a discrete-time auto-regressive with exogenous input model, where the model 

coefficients are continuously updated using the RLS estimator. The DSMC controller is then 

derived using these real-time parameter estimates to compute the control input. 

The main contribution of this paper is: 

• Proposed an adaptive control algorithm that integrates SMC with RLS for SISO systems 

with time-varying models.  

• Conducted a simulation-based analysis of the effects of parameters 𝑐 and 𝜆 on system 

settling time and output stability.  

• Applied a damping function to the control signal and demonstrated its effectiveness in 

shortening settling time and eliminating oscillations.  

• Verified the superior adaptability and performance of the proposed algorithm compared 

to a fixed-parameter PID controller under model variations. 

Subsequent to the introductory background, the paper is organized as follows: Section II 

details the formulation of the ARX model and the implementation of the online RLS algorithm 

for real-time parameter estimation. Additionally, it presents the design of the DSMC based on 

the identified parameters and discusses the integration of a damping function into the control 

signal. Section III describes the simulations using a DC motor model in software-in-the-loop, 

including scenarios with time-varying parameters and disturbances. Alongside that, it analyses 

the simulation results, comparing the proposed algorithm’s performance with that of a 

conventional PID controller in terms of settling time, overshoot, and steady-state error. Finally, 

Section IV concludes the paper by summarizing the main findings, outlining the limitations, 

and suggesting directions for future experimental validation and optimization. 

2. DC MOTOR MODELING AND CONTROL METHODOLOGY 

2.1. RLS-Based Online Identification 

The DC motor is modeled as a SISO system represented by an ARX structure, where the 

input polynomial terms are derived from 𝑢(𝑘 − 1) and preceding time steps, represented by 
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𝑦(𝑘) + 𝑎1𝑦(𝑘 − 1) + ⋯ + 𝑎𝑛𝑦(𝑘 − 𝑛)

= 𝑏1𝑢(𝑘 − 1) + 𝑏2𝑢(𝑘 − 2) + ⋯ + 𝑏𝑚𝑢(𝑘 − 𝑚), 
(1) 

where 𝑎1, … , 𝑎𝑛  (𝑛 ∈ ℝ) represent the coefficients of the past output polynomial, and 𝑏1, … , 𝑏𝑚 

(𝑚 ∈ ℝ) correspond to those of the past input. 

Define the parameter vector 𝜽  as the set of coefficients associated with the system’s 

autoregressive and exogenous components, i.e., 𝜽 = [𝑎1 … 𝑎𝑛 𝑏1 … 𝑏𝑚]𝑇 (𝜽 ∈ ℝ𝑛+𝑚). 

The regressor vector 𝝓, consisting of time-shifted samples of the input and output signals, is 

expressed as 𝝓(𝑘 − 1) = [−𝑦(𝑘 − 1) … −𝑦(𝑘 − 𝑛) 𝑢(𝑘 − 1) … 𝑢(𝑘 − 𝑚)]𝑇 (𝝓 ∈ ℝ𝑛+𝑚). 

Substituting these defined symbols into Eq. (1), the output at time 𝑘 is determined as follows: 

𝑦(𝑘) = 𝝓𝑻(𝑘 − 1)𝜽. (2) 

Assuming that 𝝓 can be determined in practice, the goal of the algorithm is to predict 𝜽 

based on the recorded data of 𝝓. Let 𝜽̂ be the prediction vector of 𝜽, then the output from the 

prediction model at time 𝑘 is given by: 𝑦̂(𝑘) = 𝝓𝑻(𝑘 − 1)𝜽̂(𝑘 − 1). Let 𝐽 be a cost function of 

the form of the cumulative square of the error described as follows: 

𝐽(𝑘) = ∑ 𝜆𝑘−𝑖 (𝑦(𝑖) − 𝝓𝑻(𝑖 − 1)𝜽̂(𝑘))
2

𝑘

𝑖=1

, (3) 

where 𝜆 = (0,1]  is the forgetting factor, which regulates the weight of past data in the 

estimation process. The update mechanism for 𝜽̂ is derived based on the minimization of a cost 

function 𝐽 . Let 𝑷(𝑘) = [∑ 𝜆𝑘−𝑖𝝓(𝑖 − 1)𝝓𝑻(𝑖 − 1)𝑘
𝑖=1 ]

−1
 be the covariance matrix, then 𝑷(𝑘 +

1) = (𝜆𝑷−1(𝑘) + 𝝓(𝑘)𝝓𝑻(𝑘))
−1

 is determined by applying a forward time shift to 𝑃(𝑘). The 

equation defining 𝜽̂(𝑘 + 1) is based on the derivative from Eq. (3) and 𝑷(𝑘 + 1) is defined by: 

𝜽̂(𝑘 + 1) = 𝜽̂(𝑘) + 𝑷(𝑘 + 1)𝝓(𝑘)𝜀(𝑘 + 1), (4) 

According to Sherman-Morrison [30], the covariance matrix at time 𝑘 + 1 is rewritten as: 

𝑷(𝑘 + 1 ) =
1

𝜆
[𝑷(𝑘) −

𝑷(𝑘)𝝓(𝑘)𝝓𝑻(𝑘)𝑷(𝑘)

𝜆 + 𝝓𝑻(𝑘)𝑷(𝑘)𝝓(𝑘)
]. (5) 

For the case where the model is previously undefined, the initial covariance matrix is 

defined by 𝑷(0) = 𝜎𝑰, where 𝜎 is the initial selection coefficient and 𝑰 is the identity matrix. 

Besides, the estimated parameters and initial observations are set to zero. By employing the 

adaptive law defined in Eq. (4), the parameter vector 𝜽̂ is continuously updated during the 

operation of the DC motor, enabling the identification model to closely follow the actual system 

dynamics. However, the computational burden of the RLS algorithm becomes a limiting factor 

when executed continuously. To address this issue, the present study introduces an error-

magnitude-based triggering condition for RLS activation. Specifically, 𝜽̂ is updated only when 

the relative error satisfies (𝑦𝑑 − 𝑦)100/𝑦𝑑 > 𝜌 , where 𝑦𝑑  denotes the desired output and 𝜌 

represents the triggering threshold. It should be noted that 𝜽̂ retains its previous value when 

the RLS computation is suspended due to the threshold 𝜌. The pseudocode describes the model 

identification process in Table 1. 

2.2. Controller design 

By advancing Eq. (1) by one step, the ARX system model is represented by: 

𝑦(𝑘 + 1) = 𝐴 + 𝑏1𝑢(𝑘). (6) 

where 𝐴 ≔ − ∑ 𝑎𝑖𝑦(𝑘 + 1 − 𝑖)𝑛
𝑖=1 + ∑ 𝑏𝑗𝑢(𝑘 + 1 − 𝑖)𝑚

𝑗=2 . The control law is designed to ensure 

that the output of the SISO system 𝑦 asymptotically tracks the desired output 𝑦𝑑. Let 𝑒 be the 
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error between the actual output of the SISO system and the desired output 𝑦𝑑, that expressed 

at time 𝑘 is as follows: 

𝑒(𝑘) = 𝑦(𝑘) − 𝑦𝑑 . (7) 

The sliding surface 𝑠 at 𝑘 time is formulated as a linear combination of errors, defined as: 

𝑠(𝑘) = ∑ 𝑐𝑖𝑒(𝑘 − 𝑖)

𝑛−1

𝑖=1

+ 𝑒(𝑘), (8) 

where 𝑐1, … , 𝑐𝑛−1  denote the weighting coefficients of the sliding surface, functioning as 

adjustable parameters in the control design. Taking into account Eqs. (6) and (7), along with the 

time-shift operation in Eq. (8), the sliding surface at time 𝑘 + 1 is determined by 𝑠(𝑘 + 1) =

∑ 𝑐𝑖𝑒(𝑘 + 1 − 𝑖)𝑛−1
𝑖=1 + 𝑒(𝑘 + 1), specifically rewritten by: 

𝑠(𝑘 + 1) = ∑ 𝑐𝑖𝑒(𝑘 + 1 − 𝑖)

𝑛−1

𝑖=1

+ 𝐴 − 𝑦𝑑 + 𝑏1𝑢(𝑘). (9) 

According to Gao’s reaching law [31], the dynamic equation of 𝑠 in terms of the discrete 

domain is determined by: 

𝑠(𝑘 + 1) = 𝛼𝑠(𝑘) − 𝛽sign(𝑠(𝑘)), (10) 

where 𝛼 ∈ (0,1) and 𝛽 > 0. It is noteworthy that Gao’s reaching law has been demonstrated to 

satisfy the necessary conditions for steering the system into the Quasi-Sliding mode [32]. The 

control law 𝑢(𝑘) is designed such that the sliding surface at the next time point (𝑘 + 1) has the 

form of Eq. (10). Substitute Eq. (9) into Eq. (10), the control law 𝑢(𝑘) is expressed by: 

𝑢(𝑘) =
1

𝑏1
[𝛼𝑠(𝑘) − 𝛽sign(𝑠(𝑘)) − ∑ 𝑐𝑖𝑒(𝑘 + 1 − 𝑖)

𝑛−1

𝑖=1

− 𝐴 + 𝑦𝑑]. (11) 

Table 1. The pseudocode of the RLS algorithm. 

Step Command 

1 Set initial time 𝑘 ← 1 

2 Compute the covariance matrix 𝑷(2) by (5); 

3 Repeat  

4 𝑘 ← 𝑘 + 1 

5 𝑦̂(𝑘) = 𝝓𝑻(𝑘 − 1)𝜽̂(𝑘 − 1); 

6 Record system’s input and output data (ϕ(k), y(k)); 

7 𝜀(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘); 

8 𝜽̂(𝑘) = 𝜽̂(𝑘 − 1) + 𝑷(𝑘)𝝓(𝑘 − 1)𝜀(𝑘) by (4); 

9 Compute the covariance matrix 𝑷(𝑘 + 1) by (5); 

10 Repeat step 1 if (𝑦𝑑 − 𝑦)100/𝑦𝑑 > 𝜌; 

11 Suspend RLS computation until (𝑦𝑑 − 𝑦)100/𝑦𝑑 > 𝜌; 

Fig. 1 illustrates the schematic diagram of a discrete-time sliding mode control system 

combined with an online RLS algorithm. Specifically, the output 𝑦  is discretized with a 

sampling period 𝑇, and subsequently compared with the desired output 𝑦𝑑 to determine the 

error 𝑒 (i.e., the input to the SMC controller). The Zero-Order Hold (ZOH) performs discrete-

to-continuous conversion by holding each discrete control input constant over the entire 

sampling interval, resulting in a piecewise constant signal 𝑢(𝑡) for the continuous-time plant. 

Historical input–output data of the control system are recorded and provided to the RLS block 

for processing. Based on the discrepancy between the estimated model output 𝑦̂ and the actual 

output 𝑦 , the RLS algorithm updates the model parameters at each sampling interval. 
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Consequently, the SMC controller coefficients are likewise updated periodically. This 

continuous adaptation enables the controller to respond effectively to variations in the system 

dynamics caused by disturbances. 

 
Fig. 1. Schematic diagram of the proposal controller. 

3. RESULTS AND DISCUSSION 

Since the controller’s computation depends on the model parameters, specifying an 

initial model is essential prior to conducting the simulation. Accordingly, this article uses a 

multi-physics DC motor model developed in Simscape, with parameters shown in Table 2, 

and considers a velocity control problem as the case study. The dynamic behavior captured 

by the Simscape model represents a standard DC motor, with the input as voltage (𝑉) and the 

output as the motor shaft’s angular velocity (rpm). However, the parameters and responses of 

the virtual model may inadequately represent those of a real physical system. Besides, the 

Simscape model captures the main system dynamics, while certain real characteristics, such 

as temperature variation, parameter drift, and unmodeled nonlinearities, are beyond its scope. 

A simulation of the RLS algorithm using the available block of Matlab Simulink, as shown in 

Fig. 2, is first performed to determine the initial ARX model of the Simscape DC motor. In 

which, the Simscape DC motor block in blue represents the physical system, where electrical 

and mechanical domains are interconnected through voltage, current, torque, and rotational 

speed signals. The RLS block in black performs online estimation of ARX parameters using the 

measured input voltage and motor speed. The Regressors block in green generates the delayed 

input–output data required for the recursive least-squares computation. In this scheme, black 

lines denote the signal flow within the Simulink computational environment, whereas colored 

Simscape lines correspond to physical electrical and mechanical connections. The parameter 𝜆 

is configured as 0.995, and the ARX model is defined as Eq. (1) with 𝑚 = 2 and 𝑛 = 1. The 

simulation time is set to 1000 seconds with a sampling time of 0.05 seconds. The input voltage 

signal of the Simscape DC motor generated from the Step block has a value of 10 volts when 

𝑡 < 500 seconds and 20 volts at the remaining times. The past data of voltage and velocity are 

recorded in the Regressors block, which includes a combination of Delay blocks. Following 

the simulation, the ARX model is identified with 𝑎1 = −0.747, 𝑎2 = 0.242, 𝑏 = 8.849, and is 

expressed as: 

𝑦(𝑘) = −0.747𝑦(𝑘 − 1) + 0.242𝑦(𝑘 − 2) + 8.849𝑢(𝑘 − 1). (12) 

This result is assigned to 𝜽̂(1) at the initial time when simulating the control algorithm. 
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Table 2. Parameters of the Simscape DC motor. 

Parameter Value Unit 

Armature inductance 0.0410 𝑚𝐻 

Stall torque 15560 𝑚𝑁𝑚 

No-load speed 4035 𝑟𝑝𝑚 

Rated DC supply voltage 24 𝑉 

No-load current 1020 𝑚𝐴 

Rotor inertia 1290 𝑐𝑚2𝑔 

Torque at the motor shaft 0.2 𝑁𝑚 

 

 
Fig. 2. Simscape DC motor model and block diagram of RLS algorithm simulation using Simulink. 

The simulation scenarios are constructed to evaluate the system’s adaptability to time-

varying conditions for 30 seconds (sampling time is 0.05 seconds). To emulate the effects of 

system modeling uncertainties, the ARX model used for simulation is varied at two specific 

time instants, as described in Table 3, instead of being fixed as in Eq. (12). The input 

disturbance 𝑑, generated from a uniform distribution [33] within the range [−0.1, 0.1] voltage, 

is applied at the control input to reproduce practical imperfections such as voltage ripple, 

PWM jitter, and electrical noise typically observed in real actuator systems. The trigger 

threshold of the RLS algorithm (𝜌) is defined as 5% for the simulation process. Since the ARX 

model is predefined, the initial covariance matrix is initialized with a small value 𝜎 = 10−3. 

The gain parameters of the SMC controller are preliminarily selected as 𝑐 = 0.05, 𝛽 = 0.01, 

and 𝛼 = 0.01 . In this study, four simulation scenarios are implemented to evaluate the 

performance of the proposed controller as described in Table 4.  

The forgetting factor 𝜆 is simulated with two values: 0.99, offering high sensitivity but 

low stability, and 0.999, providing better stability with less sensitivity  

Fig. 3 depicts the response of the virtual DC motor in two cases, without and with the 

intervention of the RLS algorithm. In the absence of the RLS algorithm, as shown in Fig. 3a, 

the system velocity converges around the desired velocity with an error |𝑒| ≤ 1 when 𝑡 < 10 

seconds (i.e. before the time the model is changed). This shows that the SMC controller works 

effectively if the model parameters are predicted correctly. However, the output is unable to 

attain the desired velocity beyond the 10th second, specifically, the steady-state errors are −9.5 

rpm and −1.5  rpm at 10 ≤ 𝑡 < 20  seconds and 𝑡 ≥ 20  seconds, respectively. This result 

indicates that the controller is capable of maintaining a stable output but lacks the capacity to 

eliminate the steady-state errors when the system parameters are mispredicted. In the case of 
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applying the RLS algorithm with 𝜆 = 0.999, the simulation results show that the output tends 

to improve the error. Following approximately 10 seconds of response fluctuation, the error is 

reduced to −4.17 rpm corresponding to the variation at 𝑡 = 10 seconds, and 1.87 rpm for the 

remaining change. However, the results showed that 10 seconds was insufficient time for the 

velocity to converge to the desired velocity. This behavior primarily results from two factors: 

the RLS algorithm exhibits a slow parameter update rate, and the SMC controller requires a 

prolonged duration to stabilize the system. Consequently, reducing 𝜆  can increase the 

sensitivity of the RLS algorithm, while increasing 𝑐 contributes to faster convergence of the 

SMC controller. However, both approaches may potentially lead to instability and induce 

significant oscillations in the system response. 

Table 3. Parameter variation scenarios of the ARX model. 

Time [s] 𝑎1 𝑎2 𝑏 

𝑡 < 10 −0.747 0.242 8.849 

10 ≤ 𝑡 < 20 −0.647 0.392 10.949 

𝑡 > 20 −0.767 0.192 7.349 
 

Table 4. Simulation scenarios to evaluate the performance of the proposed controller. 

Scenarios Description 

1 
Evaluation of the system output with and without RLS intervention, 

where 𝜆 is set to 0.999 and the reference output is 100 rpm. 

2 
Investigation of the effects of the control parameters 𝜆and 𝑐, 

considering two cases: 𝜆 = 0.99, 𝑐 = 0.05 and 𝜆 = 0.99, 𝑐 = 0.5. 

3 
Comparison of the proposed controller performance with that of a 

PID controller designed using the Ziegler–Nichols method. 

4 
Evaluation of the system output response under varying reference 

signals and external disturbance effects. 

 
Fig. 3. Speed response of the system is controlled by SMC in case of a) without combination; and b) combined 

with RLS algorithm (𝜆 = 0.999). 

Fig. 4 illustrates the output signal controlled by the SMC combined with the RLS 

algorithm under two scenarios: (Fig. 4a) reducing 𝜆  only, and (Fig. 4b) reducing 𝜆  while 

simultaneously increasing 𝑐 . In the case of Fig. 4a, 𝜆  is reduced to 0.99  to increase the 

sensitivity of the RLS algorithm while 𝑐 is kept at 0.05. The overshoot percentages in this case 

are 3.12%, 15.24% and 7.26% for the initialization, first and last model changes, respectively. 

The results indicate that the error drops to −1.5 rpm within 7 seconds following the initial 

fluctuation, and further declines to −0.5  rpm within 5  seconds from the final variation 
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onward. Besides, the velocity tends to approach the target velocity, but the adjustment occurs 

at a significantly diminished rate after the previous rapid drop. However, the response time is 

insufficiently fast for the control system to converge within 10 seconds, as shown in Fig. 3. In 

the case of combining both 𝜆 and c as shown in Fig. 4b, the results show that the controlled 

steady-state error converges to zero, and the overshoot percentage is controlled by 50% at the 

initial time, 25%  and 6.25%  for the model changes, respectively. However, the system’s 

output signal fluctuates significantly, especially at the initial time (speed increases to 150 

rpm). This is because the increase in 𝑐 leads to large and sudden changes in the control signal. 

Additionally, the system exhibits a response time of about 10 seconds for the initial variation 

and about 3 seconds for the subsequent ones. This indicates that the response time has not 

significantly improved, primarily due to the emergence of strong oscillations despite the 

enhanced speed of the algorithm.  

To solve this problem, this study proposes incorporating a damping function, 

implemented as a first-order filter, into the control signal as follows: 

𝑢𝑑𝑎𝑚𝑝(𝑘) = (1 − 𝛾)𝑢(𝑘) + 𝛾𝑢(𝑘 − 1), (13) 

where 𝛾 is a confidence coefficient with a value in the range (0,1). Eq. (13) incorporates the 

influence of the previous control signal 𝑢(𝑘 − 1)  into the current signal 𝑢(𝑘) , thereby 

smoothing the control input and mitigating abrupt changes in 𝑢(𝑘). A larger 𝛾 smooths the 

control signal with more delay, while a smaller 𝛾 allows faster response but less damping. 

 
Fig. 4. Speed response of the system under the proposed controller in the case of a) 𝜆 = 0.99, 𝑐 = 0.05;  

and b) 𝜆 = 0.99, 𝑐 = 0.5. 

Fig. 5a depicts the output response under the proposed algorithm with the inclusion of 
the damping function described in Eq. (13). In which, 𝛾  is chosen to be 0.99 , while the 
controller parameters are set as 𝜆 = 0.99 and 𝑐 = 18. The purpose of increasing 𝑐 compared to 
previous cases is to strongly improve the response time and to evaluate the effectiveness of 
the damping function. Furthermore, a proportional-integral-derivative (PID) controller is 
simulated (𝐾𝑝 = 0.05, 𝐾𝑖 = 0.4, 𝐾𝑑 = 0.001) to compare the performance with the proposed 

algorithm, the results are depicted in Fig. 5b. For the proposed algorithm, the simulation 
results show a positive improvement in both the settling time, and steady-state error 
compared to the previous cases. Specifically, the transition times are 0.45 , 0.55  and 0.5 
seconds at the initial time and the times when the model is changed, respectively. It can be 
seen that the transient performance is maintained with negligible deviation, regardless of the 
model changes. Besides, the results show that the overshoot percentage is controlled by 2.67% 
at the initial time, 18.19%  at the first transformation of the model (𝑡 = 10  seconds), and 
11.10%  at the remaining event (𝑡 = 20  seconds). At the steady state, the output velocity 
fluctuates around the desired value with an error |𝑒| < 2  rpm, which is caused by the 
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disturbance. It is important that the velocity tends towards the desired velocity after the 
overshoot without any significant fluctuations. The result is attributed to strong SMC action 
(large 𝑐), fast RLS updates (small 𝜆), and control signal smoothing via the damping function. 
For the results of the PID controller, the transient time is shown to be worse than the proposed 
algorithm, namely about 1.5 seconds at the initial time, 1.2 seconds at 𝑡 = 10 seconds, and 
about 1.3  seconds for the remaining time of the model change. However, the overshoot 
percentage is controlled with improved results, namely 14.11% at 𝑡 = 10 seconds, 8.11% at 
𝑡 = 20 seconds, and no overshoot occurs at the initial time. The reason is that the slow response 
results in better control over overshoot oscillations. The system error is controlled to fluctuate 
within 2 rpm, similar to the case of operation by the proposed controller. It is noted that the 
gains of the PID controller are selected based on the Ziegler–Nichols method [34], and their 
values are maintained during the simulation. This shows that within the small variation range 
of the system model, the PID parameter set still ensures the control of the system while the 
response behavior does not change significantly. However, controlling performance metrics 
such as settling time, overshoot, and steady-state error is infeasible due to closed-loop 
dynamics altering the desired pole locations used in gain design. Therefore, it can be 
concluded that both the proposed algorithm and the conventional PID are capable of 
controlling within the small variation range of the model parameters.  

 

 
Fig. 5.  Speed response of the system under a) the proposed controller (𝜆 = 0.99, 𝑐 = 5, 𝛽 = 0.99); and b) PID 

controller (𝐾𝑝 = 0.05, 𝐾𝐼 = 0.4, 𝐾𝑑 = 0.001). 

Fig. 6 illustrates the output response and tracking error of the Simscape DC motor model 

under varying reference signals and external disturbances. Specifically, the desired output is 

defined as a harmonic oscillation with a frequency of 0.05 Hz given by: 
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𝑦𝑑(𝑡) = 100 sin(2𝜋0.05𝑡). (14) 

In addition, an external disturbance scenario is introduced to induce output deviations 
at the two moments of model variation, namely +15 rpm at 𝑡 = 10 seconds and −20 rpm at 
𝑡 = 20 seconds. The control parameters (𝜆, 𝑐, 𝛼, 𝛽, 𝛾) and model parameter variation scenarios 
are set similar to the simulation scenario in Fig. 5. The output signal in Fig. 6a indicates that 
the system closely follows the reference oscillation, with a settling time below 0.3 seconds 
under external disturbances. Furthermore, the steady-state error observed in Fig. 6b remains 
approximately 6 rpm for most of the simulation period, increasing to 18.89 rpm at 𝑡 = 10 
seconds and 24.63 rpm at 𝑡 = 20 seconds. These results indicate that the Simscape DC motor 
model is stably controlled under the proposed algorithm throughout the entire simulation, 
despite model variations and disturbances. From another perspective, the tracking error tends 
to decrease as the reference signal converges to its boundary, where the variation of the 
harmonic function becomes significantly attenuated. Combined with previous results, it is 
evident that the proposed control algorithm achieves its best performance when the desired 
output remains constant or exhibits minor fluctuations. Moreover, the settling-time 
characteristics in the scenarios of Fig. 5 and Fig. 6 are similar, both remaining below 0.5 
seconds. This consistency indicates that the proposed algorithm maintains stable dynamic 
behavior under equivalent control parameter settings, regardless of disturbances or reference 
variations. 

 

 
Fig. 6.  a) Speed feedback; and (b) control error of the system under the proposed algorithm under the condition of 

varying reference signal and applied external force. 

4. CONCLUSIONS 

This paper proposed a control algorithm for the SISO system with model parameter 

changes based on the combination of SMC and RLS algorithms. Based on the simulation, the 

system output is confirmed to be unable to converge to the desired velocity without the 

intervention of the RLS algorithm. In addition, the simulation demonstrated the impact of the 

coefficients 𝑐 , 𝜆  and their cross-influence on the system output. Specifically, the results 

showed that increasing 𝑐  and decreasing 𝜆  lead to improved settling time but caused 
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instability in the control system. Although decreasing 𝜆 alone reduces the settling time, the 

improvement is marginal. Importantly, this study proposed a damping function for the control 

signal as a mandatory addition. The strong control of this function in eliminating sudden and 

significant oscillations in the control signal is clearly demonstrated. As a result, the overshoot 

phenomenon is completely eliminated at the initial time, the settling time is less than 2 

seconds, and there is no significant oscillation at the time when the model fluctuates. Besides, 

the system error converges to zero with a small oscillation region (|𝑒| < 2). Furthermore, an 

additional simulation was performed with the system control scenario using a PID controller 

with the aim of comparing the performance with the proposed algorithm. The results show 

that both algorithms are capable of controlling the output when the model remains relatively 

unchanged. However, the PID controller is inferior in controlling the desired behavior because 

the control parameters are fixed regardless of any changes in the model. Additionally, the 

simulation results confirm the algorithm’s stability, achieving a settling time below 0.5 seconds 

and maintaining the steady-state error within about 6 rpm under varying references and 

disturbances. 

On the other hand, the limitation of the study’s results is only demonstrated by 

simulation; therefore, the similarity to real systems lacks the capacity to be fully confirmed. 

Additionally, the influence of input disturbances is considered to be negligible with small 

amplitudes [−0.1, 0.1]  voltage; mainly focusing on the times when the model simulation 

suddenly changed. Moreover, updating the model online at each sampling time causes a 

computational burden on the hardware.  

For future work, an experimental platform based on a nonlinear SISO system is built to 

practically evaluate the proposed controller’s performance. Besides, external forces, such as 

friction, vibration, etc., will be introduced to create situations that cause errors in the model. 

To reduce the computational load on hardware, studies related to determining the conditions 

that enable or disable the intervention of the RLS algorithm will be carried out. 
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