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Abstract— The process of developing in intelligent shadow detection system for solar panels using stand-alone
cells and visible and infrared (RGB/IR) imaging techniques The experiment relied an reproducibility intelligence
algorithms neural networks and hybrid algorithms such as ANFIS and SCFNN to analyze images and predict
the effect of shadows on energy production The methodology was implemented using MATLAB and the
modeling of shadow effects in maximum power point tracking (MPPT) systems were demonstrated. It has been
proven that uniform shadow distribution on panel surfaces reduces energy waste and increases production
efficiency. The study presents a model for reconfiguring a photovoltaic array using image analysis to track
shadow movement during operation. It demonstrates the development of an intelligent system that uses imaging
techniques and algorithmic analysis to improve the performance of solar panels under the influence of shadow
and dust. Field experiments indicate conventional methods. It appears that dust accumulation significantly
reduced the panel’s efficiency. Three levels of dust density were examined, and their visual data were later
analyzed through artificial neural networks (ANNs). Although the outcomes were not entirely consistent, the
statistical results suggest a clear and meaningful relationship. This indicates that combining image analysis with
Al enhances the system's ability to track the optimal power point and improves the overall efficiency of the
photovoltaic system.

Keywords— Photovoltaic (PV) systems; partial shading; maximum power point tracking (MPPT); artificial
neural networks (ANN); ANFIS; SCENN.

1. INTRODUCTION

Solar is a stable and reliable source of energy and the most prominent [1]. Because it is a
clean, environmentally friendly energy source, it can be relied upon to operate off-grid power
plants and generate electricity for consumers. Despite its advantages, the system still requires
occasional light maintenance, a common drawback of solar technologies. A practical approach
would be to combine the photovoltaic setup with a storage battery to balance performance and
reliability. In recent years, photovoltaic (PV) systems have become widely used to enhance
overall energy efficiency, particularly in solar-based water applications. Still, the relatively low
efficiency of some modules remains a noticeable challenge. When the user turns on the water
tap in a solar heating system, the photovoltaic (PV) system is activated, a technology
increasingly used to improve energy efficiency. The low module efficiency still limits the
operational capacity of these PV systems [1-3]. The PV module traps and blocks solar radiation,
which causes a reflection problem [4]. It seems that shading in solar systems can generally be
categorized into two forms: static and variable. Static shading occurs when dust, dirt, or bird
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droppings accumulate on the panels over time, reducing light exposure. Variable shading, on
the other hand, develops due to shifting obstacles, such as moving tree leaves, smoke, or the
shadows of nearby buildings. To better understand these effects, dust accumulation at different
levels is examined to compare the energy loss under each condition. During the process, several
images are captured to represent three distinct panel states, which are later analyzed using
artificial neural networks (ANNSs) to estimate the extent to which dust influences system
performance.

Several advanced techniques have been developed to improve maximum power point
tracking (MPPT) in solar systems. Among these, control approaches using neural networks
(ANNSs) stand out as particularly effective. Artificial intelligence (Al)-based controllers have
demonstrated strong capability to follow the MPP with precision, even when solar irradiance
changes unpredictably. In comparative simulations, such control models often surpass
traditional FLC and ANN-based designs in both accuracy and efficiency. On the other hand,
conventional tracking methods tend to perform poorly under partial shading, underscoring the
need for Al-based solutions to enhance overall system performance [2].

It seems that photovoltaic modules, as semiconductor devices, are influenced by several
environmental and design factors, including module type, tilt angle, location, temperature,
shading, and surface cleanliness. In desert regions, even though sunlight is abundant, the
panels” performance tends to drop because of heavy dust buildup and the lack of regular
rainfall. The difficulty of cleaning these surfaces is often considered the main reason behind the
reduced efficiency.

Dust accumulation clearly limits the output of photovoltaic (PV) systems and reduces the
energy they can generate. To achieve the highest possible electrical efficiency, each essential
component of the solar panel must be evaluated carefully and under realistic conditions.
System design requires selecting the most efficient PV modules using algorithms such as
Maximum Power Point Tracking (MPPT). The total PV array directly affects overall system
efficiency and energy production, making careful component evaluation and the selection of
intelligent control technologies crucial to achieving optimal performance. Full or partial
shading directly affects the photovoltaic arrays, degrading the overall system performance and
reducing electrical energy production. Depending on the angle of sunlight, shadows cast by
surrounding buildings and trees reduce the solar panel's output. Cloud migration also creates
the same problems and imbalances in production [4].

Using MPPT and the matrix reconfiguration process [2, 7] is not capable. Gained
considerable interest in the solar photovoltaic system, which produces clean and renewable
electricity. Compared to other conventional sources, PV cells appear to offer pollution-free
operation and to utilize abundant solar resources. Interestingly, these features may also help
extend the lifespan of a PV system by maintaining a fairly stable power output. In the method
proposed here, shading on PV panels can be detected in real time using a web camera. This
seems to remove the need to separate the PV array from its load, which could be a practical
advantage [8, 9]. The approach also appears to reduce wiring and sensor needs, cutting both
cost and complexity. Once shading is detected, an algorithm adjusts the array’s configuration
to improve output. This makes the system more adaptable to changing shading conditions and
can be applied across different PV setups. Overall, this solution improves the reliability of solar
power systems in real-world situations. Next, solar photovoltaic modules are tested under high,
medium, and low light intensities, depending on the light source's radiation. These



Jordan Journal of Electrical Engineering. Volume 11| Number 4 640

technologies appear to respond better to common issues in generating output power, showing
fewer deviations than earlier methods [10]. This study also provides a comparative analysis of
control methods based on ANNs. These are among the more commonly used Al approaches
when analyzing partial photovoltaic systems. With Al-based control systems, the maximum
power point (MPP) can be tracked with high accuracy even under random variations in solar
radiation intensity.

By running simulations across multiple test cases and verifying the results, it appears the
proposed systems achieved better performance. Interestingly, this improvement isn’t uniform;
it varies depending on conditions, but overall, the results suggest a noticeable gain. This study
also tries to classify random pollution factors that can significantly affect electricity production
from photovoltaic modules. These factors may be captured, analyzed, and classified using
artificial neural networks (ANNs). This approach provides a way to see how different
environmental factors affect energy efficiency.

Several modern techniques exist to more effectively track the maximum power point. In
this research, a comparative look was taken at control methods known for their ability to follow
the MPP accurately, even when solar radiation changes unpredictably. Some methods seem
more consistent than others, though occasional fluctuations still appear in certain scenarios.

2. Literature Review

The field of solar energy is attracting increasing attention from researchers. Lately, there’s
been a push to develop modern methods for estimating solar radiation, analyzing dust buildup,
cooling panels, and tracking performance. Panel cooling, in particular, reflects how researchers
are seeking innovative ways to improve solar system efficiency under changing conditions.
Various techniques have been applied in image processing, artificial intelligence, intelligent
algorithms, and even wireless sensor networks, helping increase photovoltaic efficiency and
improve performance in unpredictable environments.

This research aims to take a closer, critical look at previous studies, examining how they
approached problems and the results they achieved. It also seems essential to assess how well
these studies addressed issues such as dust accumulation, high temperatures, and partial
shading, and the effects of these factors on overall system efficiency. In doing so, it may be
understood that current research builds on these earlier efforts using contemporary smart
technologies such as fuzzy logic control, neural network-based energy tracking, and real-time
testing of solar systems.

Cheng Yu Peng and colleagues [11] addressed improving solar cell performance under
shaded conditions by designing fine-scale optical structures that reduce losses caused by metal
strips. Karthikeyan and ]. A. Basil Raj [12] proposed an image-processing-based method for
real-time. Aziza I. Hussein and colleagues [13] developed an MPPT algorithm based on the
Herbaceous Lévy method, combined with PID control, for high-precision duty-cycle tuning in
smart home systems. T. L. Belahcene and colleagues [14] compared the Grey Wolf and Cuckoo
Search algorithms. They found that the Grey Wolf algorithm outperforms in terms of reducing
total harmonic distortion (THD) and improving response time. M. H. El-Shimy and colleagues
[15] reviewed the effects of various maximum power point tracking (MPPT) techniques on the
total harmonic distortion (THD) of photovoltaic systems under partial shading conditions.
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Anwar and colleagues [16] also analyzed the performance of a parallel step-up converter using
artificial intelligence techniques to enhance efficiency in partially shaded conditions.

On the other hand, Abdo and colleagues [17] used deep learning techniques such as
DQN, DDPG, and TD3 to compare their performance in tracking the maximum power point
under solar radiation variations. In contrast, Li and colleagues [18] presented an innovative
approach to solar array design based on optimization techniques to improve performance
under partial shading. Jaafar and colleagues [19] developed a new algorithm that achieves high
speed and accuracy. Saleh and colleagues [20] developed a mechanism for rearranging
photovoltaic modules using the Ken-Ken Puzzle algorithm to minimize power loss due to
partial shading. Table 1 provides a comprehensive summary of the above-mentioned previous
studies and compares them in terms of methods and results.

3. METHODOLOGY

Maximum power point tracking (MPPT) in photovoltaic systems is one of the most
important features for extracting the maximum electrical energy from a solar system. In this
work, an Al-based approach, the Adaptive Neuro-Fuzzy Inference System (ANFIS), is used.
The system monitors and tracks PV panel power output across different levels of sunlight and
temperature. It may be understood that the suggested approach provides a new way to design
automatic control systems using Artificial Intelligence tools.

Given the plant dynamics, expected reference signals, and possible disturbances, a neural
network-based controller is automatically designed. In this research, a Self-Constructing Fuzzy
Neural Network (SCFNN) is developed to handle situations in which parts of the PV panels
are affected by dust or shading. The SCFNN learns both its structure and its parameters online.
This is done by dividing the input space and using a supervised gradient descent method
guided by the adaptive delta rule. The results appear to suggest that this approach can adapt
effectively even under challenging environmental conditions.

In this context, an intelligent approach based on the Adaptive Neuro-Fuzzy System
(ANFIS) is employed to detect and track the generated power in MPPT systems under varying
solar radiation and temperature conditions.

An optimal neural network-based controller is automatically designed to account for
system dynamics, expected reference signals, and potential disturbances. The research also
seeks to develop a self-forming fuzzy neural network (SCFNN) to address problems caused by
dust accumulation or shading on parts of solar panels. This system performs the structure
construction and parameter learning phases simultaneously and directly by partitioning the
input space, using a supervised regression algorithm based on the adaptive delta law.

The ANFIS method relies on selective fuzzy logic and a specially trained neural network
to display and analyze the performance of the tracking method. Within this framework, ANFIS
algorithms were used to determine the optimal radiation power for the solar panel condition.
The panel array was modeled using the single-diode model, the most common representation
of the photovoltaic cell, as shown in Fig. 1 [21-23].

The current output of the PV cell is represented by Fig. 1 as a function:

I'=1lp,—1g—Ig, (1

The scientific problem addressed in this study is the reduced efficiency of photovoltaic
systems under partial shading and dust accumulation. The research object is the photovoltaic
array operating under variable environmental conditions, while the research subject is the
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optimization of MPPT performance using Al-based algorithms (ANN, ANFIS, SCENN). The
main aim is to enhance energy extraction efficiency, and the tasks include developing,
modeling, and validating intelligent control methods for real-time power optimization.
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Fig. 1. Equivalent circuit of PV cell.

Table 1. Summary of the ligature review.

Author(s) Year Technique used The proposed work
Cheng-Yu Peng 2095 Shaded Light Trapping Solar ~ Improve ribbon shading loss using
etal. Module optical microstructures

G. Karthikeyan 2025 Image Processing with Real- Enhances output using shading
etal. Time Reconfiguration detection and relay switching
Spline MPPT with PID and
Azizal. 2004 p 1£1e I Wl W dan Accurate duty cycle adjustment using
evy Invasive Wee
Hussein et al. y o LIWO for smart homes
Optimization
Grey Wolf Optimization
T. L. Belah GWO sh ior THD and
CANCEn® o024 (GWO) vs Cuckoo Search SHOWS éupenor an
etal. response time under PSC
(©S)
M. H. EI-Shimy 2004 Comparative MPPT Analyzes the THD effects of MPPT
etal. Techniques on THD under PSC
M. A A t Al-Based Interl d Boost
TWATEE 0023 ased mierieaved Boos Performance analysis under PSC
al. Converter
A. A. Abdou et C deep RL methods for MPPT
°" 2023  DQN, DDPG,TD3 for MPPT — bore CEEP 7 IETROCs TOF
al. under variable irradiance

Desi timizati h f
Y. Lee etal. 2023  Optimizing PV Array in PSC esign optimization approach fot

partial shading
M. Z. M. Jaffar Introduces a novel ANFIS approach
2023 ANFIS-Based MPPT _
etal. for MPPT detection
K. H. Salih et 2001 Ken-Ken Puzzle Dynamic module arrangement for
al. Reconfiguration power loss reduction
Proposes an Al-based MPPT method
Islam et al. 2025 FCL, NN, ANFIS, and to improve response time, power
(Current work) SCEFNN extraction, under partial shading

conditions in a 1400W PV system.

During the experiments, the photovoltaic array was connected to a variable resistive load
using the Lucas-Niille training system, which allows for controlling resistance values and
changing load conditions to simulate real-world household and industrial systems. The
variable resistors and inverter were programmed to represent different power-demand
patterns, enabling the evaluation of the performance of the intelligent tracking algorithms
(MPPT) under realistic, dynamic operating conditions.
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3.1.1. Derating Factor

The derating factor in solar photovoltaic (PV) systems is the percentage reduction in the
expected power output of a solar panel under real-world operating conditions relative to its
ideal (rated or nameplate) performance. In other words, it accounts for various losses that occur
in practical installations and operations. The derating factor directly affects a solar system's
operational efficiency, the lower the derating factor, the higher the system's actual performance.

Purpose of Using the Derating Factor:

i.Used in simulation software such as PVsyst or SAM to understand system behavior under
different conditions.
ii.Ensures a realistic estimate of the payback period and expected returns.
iii.Prevents under- or oversizing of inverters, batteries, etc.

3.1.2. Control Techniques

Controlling technologies play a crucial role in managing the maximum power point
tracking process in this research. A comparative analysis was conducted between traditional
control systems and an Al-based control system. The Al-based system is characterized by its
superior ability to handle nonlinear situations more efficiently than conventional systems.

Fuzzy Logic Controller and ANFIS

Fuzzy Logic Controllers (FLCs) are widely used in control systems for their ability to
handle non-linearities and uncertainty through rule-based, linguistic reasoning. Introduced by
Zadeh in 1965, fuzzy set theory laid the groundwork for this approach. Mamdani later
advanced the concept by applying it to control applications. In the proposed FLC design, the
error (e) is defined as the ratio of AP to Al, and the change in error (Ae) is determined by the
difference between successive error values, as shown by:

e(k) = AP(k)/A(k) @)

IncrementlAe(k) = e(k) —e(k— 1) 3)

The FLC output is an incremental change in duty cycle (AD). The duty cycle is
continuously regulated by this incremental change, as shown in Fig. 3.
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Fig. 3. Membership function of FLC.
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Fig. 4. A block diagram of Fuzzy Logic control (FLC).

The input and output variables were divided into seven equal fuzzy sets. These sets were
named as follows: large negative, medium negative, small negative, zero, small positive,
medium positive, and large positive. The results indicate that some outputs may behave
unpredictably when adjacent sets overlap. In practice, this underscores the importance of
carefully adjusting the membership degrees for each set; otherwise, contradictory responses
may occur when using the process knowledge provided in Table 2.

Table 2. The rule base of FLC.

e/ Ae NL NM NS ZE PS PM PL
NL ZE ZE ZE PL PL PL PL
NM ZE ZE ZE PM PM PM PM
NS ZE ZE ZE PS PS PS PS
ZE PS PM ZE ZE ZE NM NS
PS NS NS NS NS ZE ZE ZE
PM NM NM PS NM ZE ZE ZE
PL NL NL NL NL ZE ZE ZE

In this work, we discuss the development of a solar cell that operates efficiently in various
environmental conditions, and explore solutions to the environmental issues it faces, such as



645 Jordan Journal of Electrical Engineering. Volume 11| Number 4

shadows or dust particles that block the panel's rays coming from the sun, and thus, a noticeable
failure occurs in the panel’s productivity. To address these problems, solutions were developed
using tracking systems and artificial intelligence.

The system is modeled in MATLAB with a curve representing energy production over
time. One factor contributing to a decrease in power is that the intensity of light falling on solar
cells is affected by clouds and surrounding buildings. Mathematical models of the current and
voltage of each solar cell under partial shading were developed. In effect, this means that
shadows covering the cells lead to a significant decrease in power output.

i Al Prediction: Dirt Coverage vs. Efficiency
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Fig. 5. Al perdition: dirt coverage vs. efficiency.

In this section, we explain the process of cleaning the solar panel and reducing its gas
emissions by simulating the system using artificial intelligence to increase its productivity.

A. Artificial Neural Network Controller

Artificial neural networks have been observed to mimic the way the human brain works.
They are one of the most prominent control techniques based on artificial intelligence. They can
be used as a universal approach and efficiently handle nonlinearities in practical operations
[11]. In this research, an artificial neural network with two neurons in the input layer, one
neuron in the output layer, and ten neurons in the hidden layer were used, as shown in Fig.6.
Bipolar activation functions (tanh) are used in the hidden layer. In the output layer, the
activation function is linear. The network was trained using the Levenberg-Marquardt error
correction algorithm with supervised learning. In practice, this means the network's
performance depends heavily on layer configurations and the number of neurons.

c Y [ 3
i @1 @ NHT
\ J J

Fig. 6. Artificial Neural Network (ANN).
B. Online Learning Algorithms for SCFNN



Jordan Journal of Electrical Engineering. Volume 11| Number 4 646

The basic architecture of a self-configuring fuzzy neural network consists of four layers,
as shown in Figs. 7 and 8: an input layer, two hidden layers, and an output layer.

Layer 4

Layer 3

Layer 2

Layer 1

¢

Generate new nodes
with center
Mifnewy=Ximen
Gifuew) =G mitial

Xiisthefirst
input data

3

Gen erate new
nodes with center

mil=xi mean
GA=Ginial Is similar?
No Yes
Structure l l
learning?

Adopt newly Ddete newly
Yes No ;

generated node generated node
Parameter
learning
Add node No

Fig. 8. Flowchart of SCFNN method.

Parameter learning employs supervised learning techniques, such as a feedback
algorithm, to adjust the link weights and the membership function coefficients while
minimizing a predefined energy function. Initially, the network contains only input and output
nodes. Membership nodes and rules are dynamically generated during training based on

incoming data.

The structure learning phase begins by checking whether structural learning is required,
often based on predefined positive constants. It then decides whether to add a new membership
function in the second layer and the corresponding fuzzy rule in the third layer. Each cluster
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in the input space represents a potential fuzzy base. The activation strength of each cluster
indicates the degree to which the data belongs to the cluster and is calculated using the Eq. (4).

(new) _(new)

Emax = maxlSjSM(t)E (u (m1 »0 ) , u(mjlw U]l)) (4)

Losses, fill factors, Performance indicators, and tracking efficiency were observed based
on various faults. In all cases, the ANFIS-based controller performs better, as shown. ANFIS is
a hybrid version of an artificial neural network and a fuzzy logic unit. In practice, this gives it
a performance advantage over other controllers. The current research methodology is
compared with Essakiappan S' theory, which relies on an adaptive control algorithm and
conductivity and voltage-current analysis to track the maximum power point. While
Essakiappan's theory focuses on traditional analytical methods, this research extends the
concept by integrating artificial intelligence techniques (ANN, ANFIS, SCFNN) with image
analysis to detect shadows and reconfigure the solar array in real time, thereby improving
tracking accuracy and stability.

4. PROPOSED SYSTEM

Figure 9 shows a block diagram of PV panel simulation using MATLAB/Simulink. Figure
10: Complete solar setup using Lucas-Nuelle system, where Fig. 10a is the wiring connection
hardware and Fig. 10b is the solar panel altitude emulator. It was observed that the solar panel
elevation simulator replicates the changing angle of the sun in the sky, as shown in Fig. 10b It
is used to test the panel's power output. In practice, this means results may vary depending on
the sun's altitude. Data: 10W polycrystalline solar module, open-circuit voltage: 22.5V, short-
circuit current: 9.8A, adjustable module tilt, adjustable sun altitude, adjustable solar azimuth,
175W halogen lamp with dimming regulator. The performance of the Al-based controllers was
evaluated against several criteria, including shadow losses and misalignment. Tables 3 and 4
show the specifications of the solar cell used in this work.

Table 3. Specifications of the devices used.

Item
DC-PV Output: 250 - 1000 V
MPP: 300 - 800 V
Iax = 114
AC Voltage: 3 x 230, 50/60 Hz
Power factor=0.8
Lax = 74
Prax = 1400 W
Maximum efficiency=98.6%

|| N[O = | W N~

Table 4. Renogy 175W Monocrystalline solar panel specifications.

Specification Value
Maximum DC Voltage 189V
Maximum DC Current 925 A

Maximum DC Power 175 W

Open Circuit Voltage 225V

Short Circuit Current 98 A
Efficiency ~19.8%

Cell Type Monocrystalline
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Dimensions 1485 x 668 x 35 mm
Weight ~10.8 kg

5. RESULTS AND DISCUSSION

Figure 11 illustrates the relationships between voltage, current, and power under the
maximum operating conditions of a solar system without shading. The pink (P-V) curve shows
that the maximum power output is 1440 W at approximately 403 V and 3.57 A. The blue (I-V)
curve shows that the current remains relatively stable at low voltages. Sharply declines after
the maximum voltage, reflecting the natural behavior of solar cells under ideal irradiance

conditions.
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Fig. 9. Block diagram of PV panel simulation.
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(a) (b)

Fig. 10. complete solar setup: a) wiring connection hardware; b) solar panel altitude emulator.

W Uretied - LUCAS MULLE Solar Panet - o *

o S e Chan e

& b S L e 3

Fig.11. Power and current vs voltage using the SCADA technique.

The SCADA results show the impact of partial shading. In the ideal case with no shading
or other reducing factors (Fig. 12), the maximum power was approximately 1,395 watts. With
full shading (Fig. 13), the power was removed entirely. With 50% shading (Fig. 14), the power
was reduced by almost half. A 30% combination with a similar reducing factor (Fig. 15) resulted
in a significant drop in performance. Figure 16 shows that high shading combined with a
reducing factor caused variability manifested as negative power. These results demonstrate the
importance of effective tracking and shading management to maintain system operational
efficiency. Figure 17 illustrates the derating case at 30% and 0% shading.
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Fig. 16. Derating at 30% and 90% shading. Fig. 17. Derating at 30% and 0% shading.

Figure 18 shows the relationship between the shading percentage (% shading) and the
continuous control output (Ppc) for four derating levels. The higher the shading percentage, the
more pronounced the decrease in PV system power output. At 0% derating, power drops
sharply, reflecting the system's sensitivity to shading at maximum power. A 30% derating
shows a similar but less severe drop, indicating better loss control .The results suggest that the
60% power-reduction case offers more stable performance than the other two cases, especially
at shading levels above 50%. In contrast, the 100% reduction shows a near-horizontal line,
reflecting the stability of power despite shading, but its overall value is very low. Variation
between the curves highlights the importance of balancing stability and efficiency in solar
system design. The intersection of the curves at shading levels between 60% and 80% indicates
an optimal balance point for system performance. The reduction factor is an effective means of
tuning system stability under shading conditions, even though it reduces the total power
output.
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PDC vs. Shading
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Fig. 18. The relationship between the shading percentage (% shading) and the
power output (Ppc).

Figure 19 illustrates the relationship between the shading ratio (% shading) and the
inverter output power (P4¢) at different levels of the step-down factor. The higher the shading
ratio, the lower the inverter power in all cases. At a 0% drop, the decrease seems sharp,
indicating a strong shading effect when the system is operating at maximum capacity.

PAC vs. Shading

1400 .
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Fig. 19. The relationship between % shading and inverter output power is different
for different derating levels.

At a step-down of 30% the power decline is less severe, indicating relative stability
compared to the previous case. At a step-down of 60% stability improves further, and the
power gradually decreases without collapsing. A 100% step-down keeps the curve nearly
horizontal, keeping the output power almost constant despite shading changes. This stability
at a 100% step-down demonstrates stable performance, but it indicates a loss of a portion of
the total power output. The convergence of the curves at high shading ratios (80-100%)
demonstrates the similarity of the systems' behavior under harsh operating conditions. The
figure suggests that the inverter reacts more flexibly to shading when an appropriate step-
down strategy is applied.

Figure 20 shows the relationship between the shading ratio and the overall system
efficiency at different levels of the reduction factor. Efficiency here expresses the ratio of the
inverter's output power to its continuous input power. (P,¢c/Ppc). At 0% reduction, efficiency
starts at an acceptable level and gradually declines sharply after 70% shading, until it collapses
at 100%. A 30% reduction exhibits almost the same behavior, but with a lower slope, and the
decline continues as shading increases. At a 60% reduction, efficiency remains relatively high
up to 70% and then gradually declines. A full reduction of 100% stabilizes efficiency across
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shading ratios, as the constant values between Pp. and P,; Result in misleading readings that
do not reflect actual performance. The best efficiency is observed when a balance is achieved
between moderate reduction and low shading. The significant drop in efficacy at 0% reduction
under high shading conditions indicates substantial operational and energy losses. The figure
supports the idea that adopting a moderate decrease of 30% to 60% provides the system with
acceptable flexibility and stable efficiency across different operating conditions.

Efficiency vs. Shading
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Fig. 20. The relationship between % shading and the overall system
efficiency at different levels of derating.

Table 5 displays a simulation comparison of four Al-based maximum power point
tracking techniques under partial shading conditions. The metrics include tracking time,
steady-state error, power extracted from fluctuations around the maximum power point, and
overall tracking efficiency. This translates to a total solar power output of up to 1,400 W in this

scenario.
Table 5. Comparison of Al-based MPPT methods.
Method Tracking Steady-State  Extracted  Oscillation Tracking
Time [s] Error [%] Power [W] W] Efficiency [%]
FCL 41 4.5 1267.0 £33.0 90.5
ANN 2.5 2.0 1332.8 118.0 95.2
ANFIS 1.7 1.1 1366.4 8.5 97.6
SCFNN 11 0.5 1386.0 4.2 99.0

The SCFNN system achieves the highest trailing efficiency of 99.0%, with the lowest error
and fastest response time, extracting up to 1,386 watts from a 1,400-watt system. ANFIS comes
close with a powerful presentation but involves more complexity. ANN offers a good balance
between accuracy and speed, while FCL performs worse but is easier to implement.

The theoretical results from the model and MATLAB simulations were compared with
experimental data from the Lucas-Niille system to evaluate the performance of the MPPT
intelligent tracking algorithms. The comparison showed clear convergence between the
theoretical and experimental results for tracking efficiency, response time, and extracted
energy, confirming the accuracy of the mathematical model and its suitability for practical
application in real-world photovoltaic systems.
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6. CONCLUSION

The problem is that partial/full shadows disrupt PV system performance and confuse
MPPT algorithms, resulting in significant energy losses. Early detection of shadows and their
impact estimation have become operational necessities. It is concluded that combining
computer vision (RGB/IR) and artificial intelligence (neural networks or hybrid algorithms
such as ANFIS/SCFNN) enables quantitative shadow diagnosis and prediction of their impact
on productivity with higher accuracy than traditional methods.

Core hypothesis: Homogeneous shade distribution combined with dynamic array
reconfiguration reduces string heterogeneity, increases equivalent voltage/power, and
improves peak power point capture. The main innovation is converting real-time visual
information into an Al-driven structural electrical action (reconfiguration), i.e., moving from
purely reactive MPPT to proactive structural adaptation of the array. Adopting MATLAB
simulation with field-image validation provides a dual (software/practical) validation path,
supporting the approach's validity in realistic shading conditions rather than just in simulation
environments.

The proposed approach is understood to offer significant power increases and better
consistency of the power curve under shading compared to static resampling methods on both
hardware and software platforms. It is expected to reduce MPPT oscillations, shorten settling
time after shadow disturbances, and improve daily energy utilization while minimizing losses
at the local maximum. Performance depends on image quality, camera calibration algorithm,
processing time, illumination consistency, and available interconnection architecture. That is
the response time, and the array's electrical architecture may limit gains. Extending the work
towards lightweight edge deep learning models, using additional spectral sensors, studying
the long-term cost/benefit of rewiring, and building a benchmark dataset for motion shading.

The results indicate that the proposed configuration can be generalized to any PV Array
size and that its output parameters can be improved by relocating it in physical space under
various shading conditions. What is impressive is that the method does not isolate the load but
instead uses a standard digital camera and MATLAB image processing techniques to detect
partial shading. The camera captures images of the PV array, and real-time image processing
identifies shading. The control signals generated based on the detected shading patterns
energize relays that electrically reconfigure the array to maximize power output. The proposed
technique will ensure the efficient operation of the PV system even under shaded conditions.

The proposed Al-based MPPT system can be practically implemented in household and
industrial photovoltaic installations using standard SCADA interfaces and low-cost imaging
sensors. Its integration enables adaptive reconfiguration of PV arrays, ensuring higher
efficiency and reliability in real-world environments.
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