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Abstract— Accurate estimation of solar photovoltaic (PV) parameters plays a crucial role in achieving optimal 
performance in PV systems, which is essential for theoretical analysis and real-time applications. This paper 
introduces the Puzzle Optimization Algorithm (POA) as a novel approach for determining the optimum PV 
parameters in a PV single-diode model. The primary objective is to show the efficacy of this method by 
evaluating the root mean square error (RMSE) of the objective function. The investigation involves the analysis 
of four commercial PV modules, with a comparison of RMSE values against recently published literature. 
Applying the POA to these PV modules, reveals improved accuracy and minimal error in output current. 
Moreover, using optimized PV parameters, open-circuit voltage, short-circuit current, and maximum power are 
determined for all the PV modules in MATLAB and compared with manufacturer data. The obtained results 
unveil that the percentage relative error in both maximum power and short-circuit current is less than 1% for all 
of the PV modules. All in all, this investigation establishes the effectiveness of the POA in achieving precise 
parameter estimation for various PV modules, contributing to improved PV system design and operation. 
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   Nomenclature 
 

𝐾 Boltzmann constant 𝑇𝑁 Nominal operating temperature 

 𝑁𝑠 Number of cells in series 𝑘𝑖 Temperature coefficient of short circuit current 

𝑇 Operating temperature 𝑠𝑡𝑐 Standard test condition 

𝑞 Electron charge 𝑆 Irradiation in w/m2 at operating temperature 

𝐼𝑠𝑑𝑚 Single diode module output current 𝑆𝑠𝑡𝑐 Irradiation in w/m2 at stc 

𝐼𝑝ℎ Photocurrent 𝐼𝑠ℎ Current through the shunt resistance 

𝐼𝑠 Reference diode saturation current 𝐼𝑜 Diode saturation current 

𝑉𝑠𝑑𝑚 Single diode module output voltage 𝑉𝑇 Thermal voltage 

𝑅𝑠 Series resistance 𝐴𝑀 Air mass (average solar spectrum) 

𝑅𝑠ℎ Shunt resistance 𝑃𝑚 Maximum power 

𝑛 Ideality factor of the diode 𝐼𝑠𝑐  Short circuit current 

  𝑅𝑀𝑆𝐸𝐶𝐴𝐿 Calculated RMSE 𝑉𝑜𝑐  Open circuit voltage 

𝑉𝑚𝑝 Voltage at maximum power 𝐼𝑚𝑝 Current at maximum power 
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1. INTRODUCTION  

The extensive exploitation of fossil fuels results in the growth of fossil fuel depletion, 

unchecked natural pollution, and volatile energy prices [1]. Solar energy is prominent among 

other renewable sources such as wind, tide, ocean, geothermal, and biomass due to its ample 

availability, eco-friendliness, cost-effectiveness, and wide range of applications. PV, which 

directly converts solar energy into electric energy, is a critical technology in this domain [2]. 

Within a PV system, arrays of series-parallel connected PV modules serve as the primary 

energy source. However, the nonlinear behaviors exhibited by PV characteristics pose a 

significant challenge, prompting researchers to rigorously model these modules for enhanced 

accuracy [3, 4]. Researchers have explored mathematical approaches to capture the details of 

PV systems' nonlinear performance in pursuit of precise modeling. The outline of equivalent 

circuits has proven its worthiness in comprehending module behaviors, and in the field of 

solar PVs, two distinct types of equivalent circuits have emerged. The single and double-diode 

equivalent circuit models have acquired substantial attention, primarily through mathematical 

formulations. The SDM exhibits superior applicability over the DDM, except under low 

irradiation conditions [4]. For in-depth analysis of current (I) – voltage (V) and power (P) – 

voltage (V) characteristics, the SDM has demonstrated its effectiveness as a versatile and 

proven model. This model facilitates the determination of the five essential parameters 

associated with the SDM equivalent circuit [5]. In practice, these ideas are often tested using 

experimental setups like the one shown in Fig. 1, which help collect current and voltage 

characteristics for PV modules. 

 
Fig. 1. Experimental arrangement for obtaining the peak power and the current-voltage characteristics. 

Five essential parameters are present within the single diode model (SDM): 

photocurrent, diode saturation current, ideality factor, series and shunt resistance. Accurate 

determination of these parameters is crucial, and SDM analysis takes care of both precision 

and simplicity when compared to the double diode model [6]. Assigning precise values to 

these parameters for an actual solar cell proves to be a challenging task. While analytical 

approaches offer straightforward solutions, they often require approximations to capture the 

fundamental nature of the PV cell's diverse characteristics and behaviours [7]. Standard 

stepwise techniques such as the Newton-Raphson Method (NRM) are favoured to derive 

accurate PV parameters, overshadowing alternatives such as bisection and false position 

methods [8]. In [9], a modified NRM addresses the nonlinear transcendental equation within 

the PV cell. However, this iterative approach encounters limitations due to model constraints, 

potentially leading to local optima [10]. To deal with errors from repeated trial methods, 
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metaheuristic algorithms are used to find better solutions for complex problems. Researchers 

have introduced recent optimization algorithms like the gaining-sharing knowledge-based 

algorithm (GSK) [11], musical chair algorithm (MCA) [12], modified particle swarm 

optimization (PSO) [13] etc. Ahmed et al. proposed Particle Swarm Optimization (PSO) and 

its improved versions to optimize the benefits derived from solar panels. The standard PSO 

(SPSO) algorithm faces challenges such as low convergence speed, trouble in parameter 

adjustment, and susceptibility to getting trapped in local maximum power points (LMPPs) 

during rapid variation in solar irradiance or partial shading conditions (PSCs). A new 

enhanced MPPT method using a Superior version of the Autonomous Group PSO (EAGPSO) 

algorithm is suggested in response to these challenges. In [14], the HMSCPSO, Hybrid Multi-

Group Stochastic Cooperative PSO algorithm is introduced. 

The suggested algorithm incorporates a multi-group cooperation search approach to 

enhance global search capabilities, with every group employing dissimilar search methods. 

The first group uses the fundamental way to update speed and position, the second integrates 

the chaos strategy, and the third utilizes the levy flight approach. The algorithm aims to 

increase population diversity by fostering group cooperation, reducing the likelihood of 

converging to local optima. Simultaneously, it encourages specific entities to discover the 

global optimum, enhancing the correctness of the solution. In [15], an improved Gradient-

Based Optimizer (GBO) iteration is presented to estimate unknown parameters in diverse PV 

models. The enhancement involves integrating the Criss-Cross (CC) algorithm and the 

Nelder–Mead simplex (NMs) methodology with the GBO to elevate its overall efficacy. 

Incorporating the CC algorithm maximizes population performance and prevents entrapment 

in local optima. Despite these advancements, a comprehensive algorithm that accurately 

addresses the optimization lacks clear information. According to the non-free lunch theorem, 

each optimization solution has the potential for improvement [16], thereby rendering the 

search for competitive and efficient metaheuristics for PV parameter estimation an ongoing 

challenge.  

In this study, a novel approach named the POA is introduced to fine-tune parameter 

values of a PV module, with the core objective of minimizing output current error and thereby 

enhancing overall PV system performance. The uniqueness of the POA lies in its game-based 

framework, wherein participants collaboratively solve a puzzle. This game-based strategy 

offers a unique correlation that distinguishes it from traditional optimization algorithms. The 

study links puzzle-solving and optimization, demonstrating how the algorithm strategically 

assembles puzzle pieces at optimal positions, effectively reducing the time required for 

convergence. The POA unfolds in two main steps: participants work on solving their puzzles 

while imitating others and offer advice on suitable puzzle pieces to assist those facing 

difficulties. This study examines four benchmark PV modules—Photo watt PWP201, STP6-

120/36, KC200GT, and Shell ST40—to assess the correctness and performance of the POA. It 

analyzes the root mean square output current error values for five parameters and compares 

them with results from well-known metaheuristic algorithms. The algorithm is implemented 

in the four PV modules, and its efficacy is assessed by analyzing the root mean square error 

(RMSE). The outcomes show that the POA algorithm outperforms others in accuracy, resulting 

in a highly effective technique for optimizing solar PV parameters. POA algorithm is applied 

to retrieve PV parameters. The key highlights of this paper include: 
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 A novel use of the POA algorithm is shown in this paper to determine the best values of 

the PV parameters of the four PV models, where the POA algorithm suitability 

compared to other metaheuristic (MH) algorithms is witnessed by the objective function 

value and rate of convergence. 

 The performance of the proposed POA algorithm is evaluated using RMSE.  

 The performance of the POA algorithm is assessed through comparison with other MH 

algorithms, like DE [17], FADE [18], LMSA [19], HFAPS [20], and COA [21].  

 The results highlight that the POA algorithm provides the lowest error in RMSE and is 

superior to other existing literature. 

The paper's structure includes several distinct sections. Section 2 overviews the PV 

module and the mathematical foundation underlying the objective function. Section 3 

elaborates on the novel algorithm's working, supplemented by a visual flowchart of its 

operational process. In Section 4, the findings are discussed and compared. In addition, a 

comparative study was added to verify the effectiveness of POA. After optimization, the 

performance parameters are found from MATLAB simulation and compared with the 

manufacturer data. Finally, Section 5 encapsulates the comprehensive conclusions. 

2. MODELING OF THE PV MODULE AND PROBLEM FORMULATION 

2.1. Single Diode PV Model 

A PV module comprises multiple P-N junction solar cells interconnected in a series 

configuration. The model's equivalent circuit and performance attributes depend on five 

crucial parameters. The illustration in Fig. 2 depicts the architecture of a PV cell using a single-

diode model with 𝐼𝑝ℎ  denoting the photocurrent, 𝐼𝑑  representing the current flows in the 

diode, 𝑅𝑠 signifying the series of resistance, 𝑅𝑠ℎ standing for the module's shunt resistance, 𝐼𝑠ℎ 

indicating the shunt path current and 𝐼𝑠𝑑𝑚 and 𝑉𝑠𝑑𝑚 denoting the current and voltage outputs 

of the SDM model, respectively. 
 

 

Fig. 2. Electrical equivalent circuit of a single diode PV model. 

Shockley diode equation and Kirchhoff's current law give the current equation of the 

single diode model (SDM) as: 

𝐼𝑠𝑑𝑚 =  𝐼𝑝ℎ −  𝐼𝑠 [𝑒𝑥𝑝 (
𝑉𝑠𝑑𝑚+ 𝐼𝑠𝑑𝑚𝑅𝑠

𝑛𝑁𝑠𝐾𝑇

𝑞

) − 1] − (
𝑉𝑠𝑑𝑚+ 𝐼𝑠𝑑𝑚𝑅𝑠

𝑅𝑠ℎ
)                                                           (1) 

where 𝐼𝑠 is the diode saturation current, 𝑛 is the diode ideality factor, 𝐾 is Boltzmann constant 

(1.3806503 × 10–23 J/K), 𝑞 is the electron charge (1.60217646 × 10–19 C), 𝑇 is temperature and 𝑁𝑠 

is the number of series-connected cells.  
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Four PV modules were chosen to assess the POA algorithm's effectiveness, including 

three polycrystalline modules and one thin-film module. In addition to the conventional 

crystalline silicon solar cells, the applicability of the current algorithm was extended to the 

Shell ST40 module, which comprises a monolithic arrangement of series-connected solar cells 

based on Copper Indium Diselenide (CIS) technology. The electrical attributes of these 

modules are presented in detail in Table 1. 

Table 1. Electrical attributes of the designated four PV modules. 

 

In addition to utilizing optimization techniques for parameter extraction from a PV 

module, a more comprehensive investigation is necessary to enhance the accuracy and align 

it closely with the module's actual characteristics curve. The Eqs. (1-6) [26] offer valuable 

insights for creating a PV Simulink model in MATLAB. 

𝐼𝑜 = (
𝑇

𝑇𝑁
)

3

∗ 𝐼𝑠 ∗ 𝑒
[(

1

𝑇𝑁
−

1

𝑇
)∗𝑞∗

𝐸𝑔𝑜

𝑛𝐾
]
                                                                                                        (2) 

Eq. (2) represents the diode saturation current, 𝐼𝑜  and it is proportional to cell 

temperature, 𝑇. 𝐸𝑔𝑜 is the bandgap energy of the semiconductor. The light-generated current 

of the PV module can be expressed as: 

𝐼𝑝ℎ = [𝐼𝑠𝑑𝑚 + {𝑘𝑖 ∗ (𝑇 − 𝑇𝑁)}] ∗
𝑆

𝑆𝑠𝑡𝑐
                                                                                                                        (3) 

𝑘𝑖 is the temperature coefficient of the short circuit current. 

Variations in PV module temperature led to fluctuations in the short circuit current. Each 

PV module technology possesses its distinct temperature coefficient. Eq. (4) subsequently 

depicts the current within the shunt resistance branch, as illustrated in Fig. 2. This shunt 

current is influenced by both the module's series resistance and its shunt resistance. The 

symbol 𝑅𝑠 represents the effective contact resistance resulting from the aggregation of all cells 

within the module, while 𝑅𝑠ℎ  denotes the effective leakage resistance originating from the 

interconnected cells within the module. 
 

𝐼𝑠ℎ =  
𝑉𝑠𝑑𝑚+𝐼𝑠𝑑𝑚∗𝑅𝑠

𝑅𝑠ℎ
(4)

Eq. (5) presents the reference saturation current of the diode where 𝑉𝑇 is the thermal 

voltage, which depends on the number of cells and the module's operating temperature, as 

expressed in Eq. (6). 
 

𝐼𝑠 =
𝐼𝑠𝑐

𝑒
[

𝑉𝑜𝑐
𝑛∗𝑉𝑇

]−1
(5) 

PV module 
parameter 

PV module 

Photo watt PWP201 [22] KC200GT [23] Shell ST40 [24] STP6-120/36 [25] 

𝐼𝑠𝑐  1.03A 8.21 A 2.68 7.33A 

𝑉𝑜𝑐  16.778V 32.9 V 23.3 21.24V 

𝐼𝑚𝑝 0.89789A 7.61 A 2.41 6.67A 

𝑃𝑚 12W 200W 40 120W 

𝑉𝑚𝑝 

 
12.6V 26.3 V 16.6 18V 

𝑇 45°C 25°C 25°C 25°C 

𝑁𝑠 
 

36 54 36 36 

𝑆 1000W/m2 1000W/m2 1000W/m2 - 
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𝑉𝑇 =
𝑁𝑠𝐾𝑇

𝑞
(6)

The above mathematical formulations from Eqs. (1) to (6) are the basis of mathematical 

simulation of a PV module from where the 𝐼 − 𝑉 and 𝑃 − 𝑉 characteristics can be found. 

 

2.2 Objective Function 
 

This paper aims to unearth discrepancies and measure the accuracy between real-world 

and computational data matches after making improvements. Using the optimized 

parameters: photocurrent ( 𝐼𝑝ℎ ), diode saturation current ( 𝐼𝑠 ), ideality factor ( 𝑛 ), series 

resistance (𝑅𝑠 ), and shunt resistance (𝑅𝑠ℎ ), the study scrutinizes the consistency between 

calculated and measured output currents. This endeavour revolves around minimizing the 

encountered errors, with the error minimization puzzling problem framed as the objective 

function shown in Eq. (7). Root mean square error (RMSE), a widely accepted benchmark 

statistical measure in numerous works [17, 18, 27-33], is the chosen measuring tool to assess 

this error. Formulated as Eq. (8), RMSE emerges as a pivotal index for quantifying accuracy. 

𝑓𝑠𝑑𝑚(𝑉𝑠𝑑𝑚, 𝐼𝑠𝑑𝑚, 𝐷𝑣) = (𝐼𝑝ℎ −  𝐼𝑠 [𝑒𝑥𝑝 (
𝑉𝑠𝑑𝑚+ 𝐼𝑠𝑑𝑚𝑅𝑠

𝑛𝑁𝑠𝐾𝑇

𝑞

) − 1] − (
𝑉𝑠𝑑𝑚+ 𝐼𝑠𝑑𝑚𝑅𝑠

𝑅𝑠ℎ
) − 𝐼𝑠𝑑𝑚)              (7) 

𝑅𝑀𝑆𝐸𝐶𝐴𝐿 =  √
1

𝑁
∑ 𝑓𝑠𝑑𝑚(𝑉𝑠𝑑𝑚𝑖 , 𝐼𝑠𝑑𝑚𝑖 , 𝐷𝑣)2𝑁

𝑖=1                                                                                                      (8) 

 

Where: [𝐷𝑣] = [𝐼𝑝ℎ, 𝐼𝑜, 𝑛, 𝑅𝑠, 𝑅𝑠ℎ] is the decision variable, 𝑁 = The number of data taken 

for all parameter, 𝑉𝑠𝑑𝑚𝑖 is the ith  estimated value for the voltage, 𝐼𝑠𝑑𝑚𝑖 is the ith  estimated value 

for the current. 

Hence, it can be summarised as a set of the following objectives: 

i. To find [𝐷𝑣] which accurately describes the model parameter for the actual module 
output. 

ii. To find 𝑓𝑠𝑑𝑚(𝑉𝑠𝑑𝑚, 𝐼𝑠𝑑𝑚, 𝐷𝑣) which can represent the error compared to the experimental 
dataset. 

iii. To find 𝑅𝑀𝑆𝐸𝐶𝐴𝐿 which is statistically able to judge the model parameter. 

3. OVERVIEW OF THE POA  

This section introduces a novel algorithm named the POA, employing a puzzle game-

based approach to ascertain the optimal solar PV module parameters that minimize the root 

mean square error. This algorithm draws inspiration from the strategic tactics used to triumph 

in puzzle-solving scenarios, positioning it within the family of game-based algorithms. Much 

like puzzle games such as Sudoku or Candy Crush, the arrangement of boxes or parameters 

significantly influences the speed of achieving success. The outcome of such games hinges 

upon the positions and values of these boxes, akin to how the objective function embodies the 

game results in engineering problems. In the context of a PV plant, these boxes correspond to 

the parameters that need optimization. In puzzle games, players are tasked with altering the 

positions of these boxes to achieve victory. Likewise, in the POA, the algorithm initializes 

parameters randomly within their specified operational bounds. Each solution corresponds to 

a distinct population, dictating the values and positions of the variables. The algorithm starts 

by randomly initializing a population of possible solutions, each expressing a unique 

configuration of PV module parameters. These solutions, or 'puzzle pieces,' are estimated 
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based on their suitability, which is figured out by how well they minimize the current output's 

root mean square error (RMSE). Like puzzle games, where players manipulate pieces to fit 

correctly, the POA iterates by adjusting and reordering parameters to optimize the overall 

system performance. The algorithm progressively refines the solution, employing strategies 

such as crossover, mutation, or other heuristic methods, ultimately converging toward the 

optimal configuration for maximum energy output. Beyond its conceptual foundation, POA 

is a practical optimization tool for complex, nonlinear problems such as solar PV system 

parameter tuning. The goal in this context is to enhance system performance by minimizing 

output current error through fine-tuning parameters like photocurrent (Iph), diode saturation 

current (Is), series resistance (Rs), shunt resistance (Rsh), diode ideality factor (n)—an inherently 

difficult task due to fluctuating weather conditions and nonlinear system behavior. To tackle 

this, POA incorporates a set of core mechanics: search space exploration to identify optimal 

regions, fitness evaluation based on output accuracy, stochastic processes to maintain 

diversity and avoid premature convergence, iterative improvements for solution refinement, 

and global search strategies to escape local optima. These techniques enable POA to navigate 

the optimization landscape effectively, making it a robust approach for real-world PV system 

challenges. The POA can be better understood through a simple, step-by-step visual. Imagine 

each PV parameter (like Iph, Is, Rs, Rsh, and n) as a puzzle piece. At first, the pieces are randomly 

scattered, showing the starting point of the algorithm. Different solutions try to fit the pieces 

together as the process begins—some fit well, others don't—just like POA testing various 

combinations to reduce error. Over time, solutions learn from each other, sharing helpful 

changes, which speeds up the process. Gradually, the puzzle comes together with fewer gaps, 

symbolizing how the error gets smaller. In the end, the completed puzzle shows the optimized 

parameters, proving how POA can find the best solution faster and more accurately than other 

methods. This visual makes it easier to understand how POA works step by step. 

3.1. Mathematics of POA 

The POA – flow chart of which is depicted on Fig. 3 - is a population-based method 

inspired by puzzle games. In POA, each solution is treated as a puzzle, where the puzzle pieces 

represent the problem's variables. The more wisely the pieces fit, the higher the score, which 

is determined by the objective function value. The algorithm uses guidance from other 

members of the population, especially the best solution, to improve its results. In the proposed 

POA, which is a population-based algorithm, each population member is a feasible candidate 

to the optimization problem of variables' values. The population in the POA algorithm is 

mathematically characterized in Eq. (9). 
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where: V is the population of the puzzle, Vi is the puzzle in the ith number, N is the population 

number contained in the puzzle, m denotes the total count of variables, vid denotes the value 

of the dth variable in ith puzzle. 
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Fig. 3. Flowchart of the presented POA. 

 

3.1.1. Identification of best member: 

In the population matrix, each member offers a solution to the problem. Therefore, the 

objective function value is found. Hence, the number of populations will be the number of 

objective functions. The objective function (F) is written as Eq. (10).  

1

1
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Where fi is the function value in the ith puzzle. Based on the values in the F matrix, the 

best members are selected by taking the minimum function value.  

The connection between the objective function and POA can be viewed as simpler to 

offer a more precise understanding. The POA uses the objective function to evaluate how well 

a solution—an arrangement of parameters—performs. The objective function is a 

mathematical expression that needs to be minimized or maximized, depending on the goal. 

For instance, in a PV system, the objective might be to reduce the root mean square error to 

achieve the most efficient setup. Like solving a puzzle game, POA tries different values to see 

which one works best to find the optimal configuration. It tests different combinations and 

uses the objective function to score each one, ultimately seeking the arrangement that yields 

the lowest error and, thus, the best performance. This algorithm unfolds across a series of 

steps, outlined as follows. 
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3.2. Initialization  

Initial parameter values have been set within their respective minimum and maximum 

operational limits, following a practice like other optimization algorithms, as indicated by             

Eq. (11). The size of the population is denoted as 'row', while the count of variables is referred 

to as 'column'. Once the initialization matrix is established, the determination of the objective 

function comes into play, with its computation being contingent upon the variable values.  
                        

𝑃𝑎𝑟𝑎 =  𝑃𝑎𝑟𝑎𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑎𝑟𝑎𝑚𝑎𝑥 − 𝑃𝑎𝑟𝑎𝑚𝑖𝑛)                                                                          (11)  
 

The objective function in Eq. (12) is established according to the parameter value derived 

from the initialized set. Identifying the best value hinges on evaluating the objective or fitness 

function. In the context of a minimization problem, the 'Best Member' in Eq. (13) within the 

pool refers to the value that attains the minimum. 
 

𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑛. = 𝑓(𝑃𝑎𝑟𝑎)                                                                                                                                                (12) 
 

𝐵𝑒𝑠𝑡 𝑀𝑒𝑚𝑏𝑒𝑟 = 𝑀𝑖𝑛. (𝑂𝑏𝑗. 𝐹𝑢𝑛𝑐𝑡𝑛. )                                                                                                                   (13)         

3.3. Phase of the Best Member 

The initial phase entails the revision of every population member, guided by input from 

fellow members. Following the identification of the top-performing member, a fresh solution 

emerges by drawing inspiration from this standout individual. The best member imparts their 

insights to the rest, facilitating the creation of a novel solution. Initially, a parameter is 

calculated using Eqs. (14) to (17) by comparing the objective functions of the best member and 

a specific solution. Upon multiplying this parameter by a random value, a new solution comes 

into being, which is subsequently incorporated into the existing solution value. 
 

𝐵𝑒𝑠𝑡 𝑚𝑒𝑚𝑏𝑒𝑟 =  𝑃𝑎𝑟𝑎𝑖                          𝑖 ∈  {1,2,3 … … 𝑁}                                                         (14)  
 

𝐼 = 𝑟𝑜𝑢𝑛𝑑(1 + 𝑟𝑎𝑛𝑑)                                                                                                                                             (15) 
 

𝑀𝑚𝑖,𝑑 =  {
(𝐵𝑒𝑠𝑡 𝑀𝑒𝑚𝑖,𝑑 − 𝐼 × 𝑃𝑎𝑟𝑎𝑖,𝑑),          𝑂𝑏𝑗. 𝐹𝑢𝑐𝑡𝑛.𝑔 ≤ 𝑂𝑏𝑗. 𝐹𝑢𝑐𝑡𝑛.𝑖            

(𝑃𝑎𝑟𝑎𝑖,𝑑 − 𝐼 × 𝐵𝑒𝑠𝑡 𝑀𝑒𝑚𝑖,𝑑),                                                 𝑒𝑙𝑠𝑒            
               (16) 

 

𝑃𝑎𝑟𝑎𝑖
𝑛𝑒𝑤 =  𝑃𝑎𝑟𝑎𝑖 + 𝑟𝑎𝑛𝑑 × 𝑀𝑚𝑖                                                                                                               (17) 

3.4. Phase of Interaction Between Particles 

During this stage, each solution undergoes an update through mutual interactions. As 

the wisdom of the best member permeates every solution, a subsequent cycle of mutual 

interactions refines these solutions once more, as outlined in Eq. (18). 
 

𝑃𝑎𝑟𝑎𝑖,𝑑𝑗 
𝑛𝑒𝑤 =  𝑃𝑎𝑟𝑎ℎ,𝑑𝑗

           {

ℎ ∈ 1,2, … . … … … … . … 𝑃𝑜𝑝−𝑠𝑖𝑧𝑒 
𝑗 ∈ 1,2, … . … 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 𝑝𝑢𝑧𝑧𝑙𝑒𝑠
𝑑 ∈ 1,2, … … . … 𝑛𝑜−𝑜𝑓−𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

}                                           (18) 

 

Upon attaining a fresh solution, the objective function is computed. A comparison is 

made between the newly acquired and obtained fitness values during initialization. The 

solution associated with the minimum objective function value is reserved for the subsequent 

iteration. Subsequently, a new solution is chosen for the ensuing iteration employing Eq. (19). 
 

𝑃𝑎𝑟𝑎𝑖 =  {
𝑃𝑎𝑟𝑎𝑖

𝑛𝑒𝑤, 𝑜𝑏𝑗. 𝑓𝑢𝑛𝑡𝑛𝑖
𝑛𝑒𝑤⟨𝑜𝑏𝑗. 𝑓𝑢𝑛𝑐𝑡𝑛.𝑖 

𝑃𝑎𝑟𝑎𝑖      𝑒𝑙𝑠𝑒                                               
                                                                            (19)  
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4. RESULTS ANALYSIS 

4.1. Optimization  

In this research, the POA was explained using a flowchart illustrated in Fig. 3, and its 

implementation was realized in MATLAB 2015(b). The proposed POA methodology has been 

executed across four distinct PV modules to determine optimal parameter values that 

minimize the error in the current output. Consequently, the assessment of root mean square 

error succeeded. This comprehensive investigation contained three separate polycrystalline 

PV modules, namely Photo watt PWP201, STP6-120/36, Kyocera KC200GT and one thin-film 

module, the Shell ST40. The proposed algorithm's efficacy has been confirmed by verifying all 

relevant parameters, encompassing photocurrent, diode saturation current, series resistance, 

shunt resistance, and ideality factor. The POA is applied to four different types of solar PV 

modules to find the best settings to minimize errors in the current output. The results have 

been verified by comparing them with the existing literature, ensuring the accuracy of the 

POA. Table 1 has assembled the particulars of the aforementioned PV modules, and the 

ensuing sections explore distinct case studies. 

 

4.1.1. Case Study I:  Photo watt PWP201 PV Module 

Utilizing the proposed algorithm, the optimal parameters for a 12-watt Photowatt-

PWP201 PV module have been successfully determined. The root mean square error (RMSE) 

associated with these parameters has been compared against RMSE values obtained from 

other established optimization algorithms. Table 2 presents a comprehensive overview of the 

five parameters and the associated RMSE values derived from the POA algorithm, which are 

then contrasted with those achieved through prior optimization algorithms. Table 2 shows 

that the root mean square error (RMSE) attained through SA [39] surpasses the results from 

other reported methods, although the proposed POA algorithm stands as an exception. 

Notably, the proposed POA algorithm exhibits the highest accuracy, yielding an impressive 

RMSE of 1.85E-04. This level of precision outperforms various alternative algorithms, 

including DE, ISCE, EHA-NMS, Rcr-IJADE, ABC-TRR, TLABC, MPCOA, FPA, ABC-DE, 

Newton, GAMNU, GACCC, SA, FADE, LMSA, among others. The convergence behavior of 

the objective function (output current error) over iterations is illustrated in Fig. 4(a), while      

Fig. 4(b) depicts the relationship between RMSE and iteration for the PWP201 PV module. 
 

  
(a) (b) 

Fig. 4. The PWP201 module: a) variation of the objective function versus iteration; b) the relationship between 

RMSE and iteration. 
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Table 2. Parameter retrieval from the Photo watt-PWP 201 module using the proposed POA, alongside 
alternative methods and RMSE comparison. 

Year of 
report 

Methodology 𝐼𝑝ℎ 𝐼𝑠 𝑅𝑠 𝑅𝑠ℎ 𝑛 RMSE 

Current 
POA 

(proposed) 
1.04000 2.00000E-07 1.25000 22.97000 1.30000 1.857100E-04 

2019 
DE 

 [17] 
1.03353 2.12479E-06 0.03471 19.37196 1.30017 2.422747E−03 

2018 
ISCE  
[27] 

1.03051 3.48226E-06 0.03337 27.27729 1.35119 2.425075E−03 

2016 
EHA-NMS 

[28] 
1.03051 3.48226E-06 0.03337 27.27728 1.35119 2.425075E−03 

2013 
Rcr-IJADE 

[29] 
1.03051 3.48226E-06 0.03337 27.27728 1.35119 2.425075E−03 

2018 
ABC-TRR 

[30] 
1.03051 3.48226E-06 0.03337 27.27728 1.35119 2.425000E−03 

2018 
TLABC  

[31] 
1.03056 3.47150E-06 0.03338 27.02599 1.35087 2.425070E−03 

2014 
MPCOA 

[32] 
1.03188 3.37370E-06 0.03342 23.60258 1.34740 2.425100E−03 

2015 
FPA  
[33] 

1.03209 3.04754E-06 0.03382 22.53811 1.33698 2.742500E−03 

2022 
FADE 

[18] 
1.03051 3.48226E-06 1.20127 27.27728 1.35100 2.425070E-03 

2013 
ABC-DE  

[34] 
1.03180 3.27740E-06 0.03351 23.47915 1.34430 3.885500E−03 

1986 
Newton  

[35] 
1.03180 3.28760E-06 0.03349 15.26250 1.34583 5.601000E−01 

2022 [36] 1.03345 2.94840E-06 1.22176 19.90390 1.33392 2.164000E-03 

2021 
GAMNU 

[37] 
1.03077 3.01623E-06 1.21912 25.17430 1.33604 2.382420E-03 

2017 
GACCC  

[38] 
1.03051 3.48226E-06 1.20127 27.27738 1.35119 2.425000E-03 

2012 
SA  
[39] 

1.03310 3.66420E-06 1.19890 23.14815 1.51720 1.700000E-03 

2023 
LMSA  

[19] 
1.03051 3.47971E-06 1.20149 981.98232 1.35100 2.425125E-03 

                                                                                               

Beyond the diverse array of optimization algorithms and the assessment of PV 

parameter extraction, validating accuracy through simulation outcomes holds pivotal 

significance [40]. Within this study, not only were the optimized parameters derived via the 

POA algorithm verified, but they were also subjected to mathematical simulations for 

precision assessment. The POA algorithm to address the optimization objective, the achieved 

RMSE, was notably lower than the values reported in the existing literature.  

 

4.1.2. Case Study II: STP6-120/36 PV module 

Another PV module, the STP6-120/36, with a power output of 120 Watts and operating 

at 25°C, has also undergone parameter optimization using the proposed algorithm. The RMSE 

associated with these optimized parameters has been juxtaposed against RMSE values 

obtained from other recognized optimization algorithms.  Detailed in Table 3, are the five 

parameters governing the Single Diode Model (SDM) of the STP6-120/36 module, along with 
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the corresponding RMSE values derived from the proposed POA, have been meticulously 

compared against alternative algorithms. 

 
Table 3. Comparative analysis of parameters in single diode model and RMSE for the STP6-120/36 module in 

contrast to established algorithms. 

Year of 
report 

Method 𝐼𝑝ℎ 𝐼𝑠 𝑅𝑠 𝑅𝑠ℎ 𝑛 RMSE 

Current Proposed 7.471500 1.00000E-06 0.005000 9.9000 1.27050996 2.72000E-07 

2019 
DE 

[17] 
7.483000 0.88680E-06 0.005382 10.5309 1.18720000 1.40910E-02 

2022 FADE [18] 7.472530 2.33499E-06 0.004590 22.2200 1.27265000 1.66006E-02 

2016 [41] 7.483800 1.20000E-06 0.004900 9.7450 1.20720000 1.78790E-02 

2018 
ISCE 

[27] 
7.472530 2.33450E-06 0.004595 22.2199000 1.26010348 1.66006E−02 

 

Derived from experimental data, the root mean square error (RMSE) is determined to be 

0.014091 [17], reflecting a lower value than that achieved by other established optimization 

algorithms, except for the POA approach. Remarkably, the proposed algorithm attains an 

impressively very small RMSE of 2.72E-07, significantly outperforming the figures 

documented in the current literature.  

The convergence dynamics of the objective function (output current error) across 

iterations are illustrated in Fig. 5(a), while Fig. 5(b) illustrates the relationship between RMSE 

and the number of iterations for the single diode model of the STP6-120/36 PV module.  

  
(a) (b) 

Fig. 5. The STP6-120/36 module: a) convergence of the objective function over iterations; b) the relationship 
between RMSE and iteration. 

 

                                                                                                           

4.1.3. Case Study III: Kyocera KC200GT PV module    

The third case study involves the Kyocera KC200GT module of 200 Watts, wherein the 

proposed algorithm was employed and subsequently validated against existing literature. All 

five parameters have been meticulously presented, accompanied by their corresponding 

RMSE values.  

In a related study, [42] reported an RMSE value of 0.01821364, outperforming [36], [20], 

and [21]. However, the proposed POA method holds an even more significant advantage 

among the five, as evidenced by Table 4. Following applying the POA to the single diode 
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model (SDM) of the KC200GT module, an unprecedented level of efficacy was observed, 

attaining an RMSE value of 0.012124, as highlighted in Table 4. 

Fig. 6 (a) exhibits the characteristics between the objective function and the number of 

iterations. RMSE characteristics with the number of iterations have been revealed in Fig. 6 (b). 
 

Table 4. Comparative evaluation of parameter optimization for the Kyocera KC200GT PV module, along with the 
corresponding RMSE, compared to established algorithms. 

 

  
(a) (b) 

Fig. 6. The KC200GT module: a) convergence of objective function over iterations; b) relationship between 
RMSE and iteration. 

 

4.1.4. Case Study IV: Shell ST40 

Expanding beyond crystalline PV modules, the evaluation now extends to the Shell 

ST40, a thin-film module with a capacity of 40 Watts and composed of 36 series-connected PV 

cells. This step aims to reaffirm the accuracy of PV parameters recognized through the POA 

algorithm. The application of POA to this module seeks to uncover the minimal value of the 

output current error. The optimal parameters deduced from the POA are then pitted against 

the findings from [40] and [21]. Upon parameter extraction via the POA, the RMSE value is 

astonishingly tiny, at 9.93E-13. Table 5 compares various PV parameters derived from the 

POA, SCT and COA methods. Furthermore, the convergence dynamics of the objective 

function versus iteration are visualized in Fig. 7. Finally, a concise comparative analysis of 

POA with other metaheuristic (MH) algorithms is presented herewith. 

 

4.1.5. Comparative Analysis 

This section presents the proposed POA, which undergoes rigorous statistical testing 

through a series of distinct runs (30 for each case/algorithm) to obtain the optimum value of 

solar parameters. The average rankings for the proposed algorithms across all three solar PV 

cell/module problems (Photo watt PWP201, STP6-120/36, and Kyocera KC200GT) are 

Year of 
report 

Method 𝐼𝑝ℎ 𝐼𝑠 𝑅𝑠 𝑅𝑠ℎ 𝑛 RMSE 

Current 
Proposed 

POA 
8.25000000 5.0E-10 0.24400000 779.00000 1.299886 0.012124 

2022 [36] - - - - - 0.271894 

2021 WHHO [42] 8.21860582 1.43601E-09 0.24093983 774.212315 1.05528589 0.01821364 

2018 HFAPS [20] 8.19924700 1.54161E-07 0.23955200 1448.259000 1.434220 0.04986300 

2020 COA[21] 4.66251942 8.71739E-07 0.15231283 2000.000000 1.000000 0.02844810 
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presented in Tables 2, 3 and 4. The outcomes prove the superiority of the POA algorithm over 

other MH algorithms in addressing all three solar PV cell/module problems. The comparison 

of the proposed algorithm with different MH algorithms is outlined in Tables 2, 3 and 4. 

Overall, POA performs better than other algorithms across all three crystalline solar PV 

cells/modules. Moreover, after crystalline PV modules, a thin film Shell ST40 is considered to 

showcase the POA algorithm's effectiveness further. 

Table 5. Comparison of parameters for the Shell ST40 module with SCT [40] and COA [21]. 

Estimated variable By POA By SCT By COA 

𝑅𝑠 [Ω] 1.2000 1.5362 0.5000000 

𝑅𝑠ℎ [Ω] 359.82280 355.03 400.00000 

𝑛 (dimensionless) 1.45 1.13 2.2884533 

𝐼𝑝ℎ [A] 2.690 2.6915 2.6638928 

𝐼𝑠 [A] 1.5E-08 1.3E-08 0.5E-08 

RMSE 9.93E-13 - 4.71343E-02 

 

 
Fig. 7. Convergence of the objective function over iterations for the Shell ST40 module. 

 

Table 5 represents the estimated variables by POA with the parameters obtained by the 

SCT and COA methods. Also, the RMSE value found from POA for this thin film module is 

very low, and the convergence plot is shown in Fig. 7. In summary, in the POA versus MH 

algorithms comparison, the POA algorithm consistently achieves lower RMSE value in all the 

above solar PV cell/module problems. These results demonstrate the POA algorithm's 

superior performance to existing MH methods in resolving PV cell/module problems. 

4.2. Simulation Result Analysis 

The accurate value of PV parameters is necessary to simulate PV modules to achieve the 

exact P-V and I-V characteristics [26]. The manufacturer datasheet (reference datasheet) does 

not clearly reveal the required parameter value. POA optimization technique helps to solve 

this issue.  

To further verify the POA's efficacy over the PV parameter estimation, the optimized 

parameters have been fully utilized to simulate the performance parameters of all the PV 

modules. Ultimately, open circuit voltage, short circuit current, maximum power, voltage and 

current at maximum power are found and compared with their reference module data. 

Comparing with the reference data, it is observed that the overall percentage relative error 
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(RE) for all the modules in maximum power and short circuit current is below 1%. Percentage 

RE in open circuit voltage for PWP201, KC200GT PV, Shell ST40 and STP6-120/36 module is 

0.1311, 0.3040, 2.1459, and 2.0716, respectively.  

The performance parameters found from the simulation are very close to the reference 

module data. Tables 6-9 compare PV performance parameters for all four modules. 
 

Table 6. Comparison of performance parameters after POA optimization in PWP201module. 

  

 
Table 7. Comparison of PV parameters after POA optimization in KC200GT PV module. 

Parameter Reference  
Simulated result after 

optimization 
AE RE % RE 

PMPP [W] 200 199.7 0.3 0.001500 0.1500 

VMPP [V] 26.3 26.4 -0.1 0.003802 0.3800 

IMPP [A] 7.61 7.563 0.047 0.006176 0.6176 

ISC [A] 8.21 8.207 0.003 0.0003654 0.0365 

VOC [V] 32.9 32.8 0.1 0.0030395 0.3040 

                                
 

Table 8. Comparison of PV parameters after POA optimization in Shell ST40 PV module. 

Parameter Reference  
Simulated result after 

optimization 
AE RE % RE 

PMPP [W] 40 39.94 0.06 0.0015 0. 15 

VMPP [V] 16.6 16.60 0 0 0 

IMPP [A] 2.41 2.406 0.004 0.0016597 0.16597 

ISC [A] 2.68 2.671 0.009 0.0033582 0.3358 

VOC [V] 23.3 22.8 0.5 0.0214592 2.1459 

 

            
Table 9. Comparison of PV parameters after POA optimization in STP6-120/36 module. 

Parameter Reference  
Simulated result after 

optimization 
AE RE % RE 

PMPP [W] 120 119.400 0.6 0.005 0.5 

VMPP [V] 18 17.600 0.4 0.022222 2.2222 

IMPP [A] 6.67 6.783 -0.113 0.016942 1.6942 

ISC [A] 7.33 7.330 0 0 0 

VOC [V] 21.24 20.800 0.440 0.0207156 2.0716 

5. CONCLUSIONS 

This study explores the practical implementation of the POA for PV parameter 

extraction, focusing on four prominent commercial PV modules as benchmarks. Specifically, 

the assessment encompasses the Photowatt-PWP201, STP6-120/36, and Kyocera KC200GT 

polycrystalline PV modules, chosen to validate the optimized parameters and their 

corresponding output current error (RMSE). Beyond crystalline modules, the thin-film Shell 

        Parameter Reference 
Simulated result after 

optimization  
AE RE % RE 

PMPP [W] 12 11.90 0.10 0.008333 0.8333 

VMPP [V] 12.6 12.8 -0.2 0.015873 1.5873 

IMPP [A] 0.89789 0.930 0.0321 0.035762 3.5762 

ISC [A] 1.03 1.028 0.002 0.0019417 0.1942 

VOC [V] 16.778 16.8 -0.022 0.00131124 0.1311 
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ST40 module was also studied to compare various PV parameters with established literature. 

The RMSE values, produced by the POA application, on both crystalline and thin-film PV 

modules, show significantly lower output current errors than other established optimization 

algorithms. This substantiates the superior accuracy of POA in identifying optimal PV 

parameters within the framework of a single-diode PV module. 

On top of that, considering the optimized parameter, all the modules' performance 

characteristics were observed in the MATLAB simulation to show the further efficacy of POA. 

A comparison of all performance parameters indicates a good alignment between simulated 

values and manufacturer data. Consequently, the POA is an effective tool for determining the 

optimal PV parameters of a PV module. Its application supports precise modeling, facilitating 

the effective monitoring of robust PV systems. In future work, the POA could be extended to 

other PV module types - like multi-junction solar cells, organic solar cells, perovskite solar 

cells, etc. - integrated with real-time data for performance optimization, and combined with 

machine learning or other advanced techniques for improved accuracy. The POA can be 

modified for real-time solar power plants by incorporating dynamic reconfiguration 

techniques to minimize shading effects and mismatch losses to maximize power output. 

Additionally, considering module ageing and degradation, the algorithm's computational 

efficiency could be enhanced for large-scale applications and long-term performance 

predictions could be explored. Future research could also investigate multi-objective 

optimization frameworks to address cost, reliability, and environmental factors in PV systems. 
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