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Abstract— Renewable energy sources and energy efficiency has emerged as the backbone of sustainable energy 
solutions in response to the rising tide of concern over energy security and climate change. Efforts to decrease 
power losses are part of this. This paper investigates the application of the Cheetah optimizer, a modern 
metaheuristic optimization algorithm, for the optimal sizing and placement of decentralized generation units 
such as shunt capacitors in radial distribution networks. The primary objectives are to minimize power losses 
and enhance voltage profiles under varying load conditions. Unlike conventional methods, Cheetah Optimizer 
employs three innovative strategies with different randomization techniques to achieve a superior balance 
between exploration and exploitation. The algorithm's performance is validated on the IEEE 33-bus and IEEE 
69-bus distribution test systems. This investigation primarily adds value by applying the methodology to the 
Adrar electricity distribution network in southern Algeria, demonstrating the effectiveness of these 
methodologies in real-world systems. Comparative analysis demonstrates that the proposed approach achieves 
significant improvements in loss reduction and voltage stability compared to state-of-the-art algorithms. Key 
findings indicate that the Cheetah optimizer delivers robust performance across different network scenarios, 
with a reduction in power losses by up to 37.34 % and 66.11 % on test systems and enhanced voltage stability by 
increasing the minimum voltage to permissible levels. Sensitivity analysis further confirms the algorithm’s 
reliability under varying parameter settings. These results underscore the potential of the proposed approach 
for real-world implementation in optimizing distribution networks. 

 
Keywords— Distribution network; Renewable energy; Cheetah optimizer; Losses optimization.   

     

1. INTRODUCTION  

In recent years, the electric power business has undergone numerous modifications. The 

emergence of smart grids is advantageous not only to society as a whole, including customers 

and various stakeholders, but also to all participants in the electric power sector [1]. Shunt 

capacitors (SCs) and distributed generators (DGs) are crucial components in implementing 

smart distribution systems. To enhance system efficiency and provide high-quality power to 

customers, the smart grid necessitates the use of integrated solutions for all its components [2].  

Active power loss and line loading reduction; reactive power need mitigation and voltage 

profile improvement are just a few of the potential benefits to the power system that could 

result from appropriately sized and optimally placed distributed generators. Numerous 

researchers have suggested various optimization methods, including traditional, AI, and 

hybrid intelligent system approaches, as potential solutions to this issue [3]. Installing an 
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inductor and a capacitor in radial distribution networks can reduce power loss and improve 

the voltage profile. Consequently, this will result in a decrease in the amount of electrical power  

from the feeder. Unsuitable allocation for the capacitor or inductor will lead to a decrease in the 

benefits of the system and affect the system's operation control. However, the optimal number, 

size, and locations of distributed generators and shunt capacitors have been the subject of much 

research in the last two decades. 

Recent studies have proposed additional goals to optimize the problem of sizing and 

placement of distributed generators, including enhancing voltage stability, reducing 

operational expenses,  and minimizing greenhouse gas emissions. The optimization problem is 

typically approached as a single-objective using analytical approaches [4] or heuristic and meta-

heuristic methods, such as the equilibrium optimization algorithm [5, 6], the coyote algorithm 

[7], and the particle swarm optimization (PSO) [8]. 

In a recent paper [9], the authors used Mixed Integer Linear Programming (MILP). This 

method determines the stability of the voltage in radial distribution networks. In Ref [10], the 

authors solved the problem using a multi-objective method based on the Strong Pareto 

evolutionary algorithm (SPEA2). The authors determined the optimal network reconfiguration 

and integration of renewable distributed generator, taking into account the time sequence 

variation in load. The authors have proposed an improved sine-cosine algorithm [11] to address 

simultaneous network reconfiguration and distributed generator allocation in radial 

distribution networks. Afterwards, researchers developed MPSO algorithms for network 

reconfiguration and distributed generator integration [12]. However, the Improved Cat Swarm 

Optimization for Simultaneous Allocation of DSTATCOM and distributed generators in 

Distribution Systems has shown promising results [13]. The Rider Optimization Algorithm for 

Optimal distributed generator is suggested by [14]. The authors of [15] used an improved 

MOPSO algorithm for the optimal sizing and placement of distributed generation. In [16], the 

authors used the Slime Mould Algorithm. This method determines the impact of electric vehicle 

charging stations on radial distribution systems. Authors in [17] solved the optimal 

reconfiguration and renewable distributed generation using the Salp Swarm Algorithm (SSA). 

Over the past two decades, researchers have extensively studied the ideal quantity, 

dimensions, and placements of shunt capacitors. The authors of the study by [18] used a 

combined optimization approach to determine the optimal capacitor allocation in radial 

distribution networks. The study by [19] employed the particle swarm optimization and real-

Coded Genetic Algorithm (RCGA) techniques for capacitor placement and selection. By 

minimizing the equation for loss savings, we can identify the ideal solution. The study by [20] 

employed the constraint-factor particle swarm optimization to determine the ideal placement 

of shunt capacitors in radial distribution networks. The work by [21] introduced bio-inspired 

optimization algorithms for the optimal allocation of capacitor banks in radial distribution 

systems, aiming to minimize real power loss and maximize network savings. The multi-

objective water cycle algorithm for solving the capacitor placement problem in radial 

distribution networks has been demonstrated by [22]. The referenced paper [23] presents the 

mixed-integer conic optimization technique, which determines the optimal loss reduction and 

capacitor placement in radial distribution networks. Ref [24] presents the optimal capacitor 

placement in distribution systems for power loss reduction and voltage profile improvement. 

Several advanced optimization techniques have been developed to address the 

challenges of integrating distributed generation into distribution networks. The Hybrid PIPSO-
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SQP Algorithm has been proposed for real power loss minimization in radial distribution 

systems with optimal distributed generators placement [25]. Similarly, the Improved Northern 

Goshawk Optimization Algorithm effectively configures renewable energy distributed 

generators while considering load and generation uncertainties [26]. For comparative analysis, 

various particle swarm optimization and Differential Evolution algorithms have been utilized 

for the optimal placement of distributed generators in radial distribution systems [27]. The Bat 

Algorithm has also been employed for the allocation of solar-based distributed generators to 

enhance network performance [28]. A combined approach involving gridable electric vehicles 

and dispersed generation has been designed to further minimize power losses in distribution 

networks [29]. Additionally, an improved Golden Jackal Optimization Algorithm has been 

introduced for simultaneous integration of multiple capacitors and multi-type distributed 

generators, addressing single and multi-objective optimization problems [30]. The Boosting 

Prairie Dog Optimizer has demonstrated its efficacy in planning wind and solar distributed 

generators under various dynamic load models [31]. A novel heuristic approach has been 

developed for the optimal allocation of active and reactive power, improving overall network 

efficiency [32]. The study by [33] employed the Improved Multi-Objective Function and Info 

Optimization Algorithm for optimal allocation of distributed generation and distribution static 

compensator. Finally, the Imperialist Competitive Algorithm and ETAP software using for 

optimal integration of PV-based distributed denerators and shunt capacitors for 69 bus system 

[34]. To provide a clearer overview of the existing methods, Table 1 categorizes previous studies 

based on their datasets and techniques. 

Numerous methods have been proposed, ranging from conventional analytical 

techniques to advanced heuristic and metaheuristic algorithms. However, existing studies 

often fail to comprehensively address research gaps, such as computational complexity, 

scalability, and adaptability to real-world constraints. Lack of integrated approaches combining 

distributed generator and shunt capacitors optimization for real-world networks. Some 

research gaps can be identified as Insufficient emphasis on computational efficiency and real-

time applicability and limited studies addressing practical constraints such as thermal line 

limits and varying load profiles. 

This document develops and applies the optimization technique to determine the optimal 

locations and sizes of the distributed generator (PV) and Shunt capacitors for various load 

scenarios, evaluating the performance of the proposed methods. Additionally, we conduct 

simulations on a distribution system, specifically the IEEE 33-bus and IEEE 69-bus networks, 

to demonstrate its effectiveness. A comparison of the results obtained with those of other 

existing techniques  proved the superiority of the proposed methods in terms of reducing 

power losses and improving the voltage profile. The authors made a significant contribution to 

this document as the first researchers to work on the real ADRAR network and, more 

importantly, by obtaining good verification results for the objective function in our simulation 

study after using the improved method Cheetah Optimizer (CO).  

The main contributions of this paper are summarized as followed: The Cheetah 

Optimizer method is applied to the IEEE 33-Bus and IEEE 69-Bus distribution networks, as well 

as ADRAR distribution network, with the integration of shunt capacities, minimizing power 

losses and improving the voltage profile; the variation of the load comparing the results 

obtained with those of the basic case and the insertion of distributed generations with a power 

factor equal to one. 
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Table 1. Summary of previous methods for distributed generator and shunt capacitors optimization. 

Ref. IEEE test system Objective function 
Optimization 

method 

[4] 
23, 34 and 38 bus radial 

distribution 
Optimal size and power factor of DG unit (DIAA) 

[5] 
16, 33 and 69 bus radial 

distribution 
power loss, voltage deviation index (EOA) 

[6] 33 bus radial distribution power loss, reliability index, reconfiguration (EOA) 

[7] 
69 and 119 bus distribution 

systems 
Optimal DG placement, reduce real power loss (COA) 

[8] 33 and 69 bus test systems 
Optimal locations and size of the DG, minimizing the 

power distribution loss. 
(PSO) 

[9] 33 and 69 bus radial network 
Reconfiguration, voltage stability index in the 

distributed generation (DG) 
(MILP) 

[10] 33 bus test systems DG location and sizing and network reconfiguration. (SPEA2) 

[11] 
33 and 69 bus distribution 

systems 
Reconfiguration, optimal locations and size of the DG (ISCA) 

[12] 
33 and 69 bus distribution 

systems 
Optimal network reconfiguration, optimal integration 

of DG 
(MPSO) 

[13] 69 bus distribution systems 
Optimal allocation of DSTATCOM, DG and maximize 

power loss reduction 
(ICAO) 

[14] 33 bus distribution systems 
Optimal DG placement, power loss sensitivity factor 

(PLSF) 
(ROA) 

[15] 
33 and 69 bus, Tunisian 

Distribution system. 
DG placement and sizing to reduce power loss and 

improve the voltage profile 
(MOPSO) 

[16] 
33 and 69 bus distribution 

systems 
RDG/BESS/EVCS placement and sizing to reduce 

power loss 
(SMA) 

[17] 
33 and 69 bus distribution 

systems 
Network reconfiguration and DG allocation problem (SSA) 

[18] 
69 and 85 bus East Delta 

Network Egyptian network 

Optimal allocation of shunt capacitors, voltage loss 
sensitivity factor (VLSF) and reactive power loss 

sensitivity factor (QLSF) in radial distribution networks 
(COA) 

[19] 
33 and 69 bus distribution 

systems 
Capacitor sizes and their optimal placements (GA-PSO) 

[20] 
33 and 69 bus distribution 

systems 
Reducing power loss, and operating costs, improving 

voltage profiles, and enhancing stability 
(CFPSO) 

[21] 
34 and 85 bus radial 
distribution systems 

Optimal placement of capacitors (BIOA) 

[22] 
33 and 94 bus Portuguese 

distribution systems 
Optimal capacitor allocation, maximize the voltage 

stability, minimize the power losses 
(MOCQA) 

[23] 
16 and 33 bus in distribution 

grids 
Capacitor placement and network reconfiguration (MICO) 

[24] 
34 and 85 bus East Delta 

Network Egyptian network 

Optimal capacitor placement, power loss reduction and 
voltage profile improvement 

 
(HO) 

[25] 
33, 69 and 118 bus in radial 

distribution systems 
Real Power Loss Minimization, Optimal Placement of 

DG 
PIPSO-SQP 

[26] 
33 and 69 bus distribution 

systems 
Optimal DG location, capacity, and power factor to 

minimize energy losses and voltage deviations 
(INGO) 

[27] 
33 and 69 bus distribution 

systems 
Minimize real power losses, injected power from DG (DE-PSO) 

[28] 33 bus distribution systems Minimize power loss of radial distribution system. (BA) 

[29] 
Real network distribution 

systems 
Optimal size of EVs and DGs, reduced power loss and 

improved voltage profile 
(EGOA) 

[30] 
69 and 118 bus in radial 

distribution systems 
Enhance the voltage profiles, boost stability, and 

minimize the total active power loss 
(GJOA) 

[31] 
33 bus distribution systems 
with dynamic load models 

Optimal size of PV and WT, reduced power loss and 
improved voltage profile 

(BPDO) 

[32] 
33, 69 and 119 bus in 
distribution systems 

Optimal allocation of DG and capacitor banks. (NHA) 
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The following section describes the problem formulation. The third section concerns 

cheetah optimization. The results and discussion section are described in section four. Section 

five is dedicated to the conclusion. 

2. PROBLEM FORMULATION 

2.1. Load Flow using Forward/ Backward Sweep  

Radial distribution networks have certain challenging characteristics, including 

distributed generation, radial meshed grids, and high R/X ratios. These factors lead to failure 

of the Newton-Raphson, Gauss-Seidel, and other convergent load flow algorithms with the 

distribution networks [18]. Thus, this paper analyzes the power flow in the tested distribution 

networks using an innovative technique termed backward/forward sweep [35]. We layer the 

network in several directions, starting from the source node. The computation for the forward 

sweep starts from the source node and proceeds to the designated branch. The computation of 

the backward sweep begins from the last sorted node and continues back to the source node 

[18]. Fig. 1 illustrates the power flow equations for radial distribution networks. 

 
Fig. 1. Single line diagram of the radial distribution system. 

 

The power balance equation must be satisfied [34] : 
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where, PGi and QGi are power generations of generators at bus i. PDi and QDi are the loads at bus 

i. Ploss,i and Qloss,i are the active and reactive power losses. 

Between lines i and i + 1, the active and reactive power losses of the ith line are provided 

as [18]: 

𝑃𝑙𝑜𝑠𝑠(𝑖,𝑖+1) = 𝑅𝑖,𝑖+1 (
𝑃𝑖,𝑖+1

2 +𝑄𝑖,𝑖+1
2

|𝑉𝑖|2 )   (3) 

𝑄𝑙𝑜𝑠𝑠(𝑖,𝑖+1) = 𝑋𝑖,𝑖+1 (
𝑃𝑖,𝑖+1

2 +𝑄𝑖,𝑖+1
2

|𝑉𝑖|2 )   (4) 

The total active loss can be determined by utilizing Eq. (5): 

𝑃𝑇𝑙𝑜𝑠𝑠 = ∑ 𝑃𝑙𝑜𝑠𝑠(𝑖+1)
𝑛−1
𝑖=1 = ∑ (𝐼(𝑖+1))

2𝑛−1
𝑖=1 𝑅𝑖   (5) 

The total reactive loss can be determined by utilizing Eq. (6): 

𝑄𝑇𝑙𝑜𝑠𝑠 = ∑ 𝑄𝑙𝑜𝑠𝑠(𝑖+1) = ∑ (𝐼(𝑖+1))
2𝑛−1

𝑖=1 𝑋𝑖
𝑛−1
𝑖=1    (6) 

 

where, n is the total number of nodes. 
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Distribution networks install shunt capacitors to inject reactive power and improve the 

voltage profile. Substations utilize Distributed Generation to inject active energy into 

networks, stabilizing the voltage and meeting the load during peak hours. 

2.2. Objective Function 

In general, adding capacitors to the distribution network can improve the voltage profile 

while decreasing current flow across the lines. Additionally, integrating distributed generators 

minimizes energy losses, lowers the cost of power loss, and increases the network's energy 

efficiency. However, installing capacitors raises the cost of the investment. One of the current 

study's objectives is to reduce total active and reactive energy losses under various limitations 

without taking into account the capacitor cost. The objective function is defined by Eq. (7) : 

𝑀𝑖𝑛 𝐹 = 𝑀𝑖𝑛 𝑆𝑙𝑜𝑠𝑠 = 𝑀𝑖𝑛 ∑ 𝑆𝑙𝑜𝑠𝑠 𝑖
𝑛
𝑖=1    (7) 

where,  Sₗₒₛₛ is the total apparent power loss (kVA), where n is the number of branches, and Sₗₒₛₛᵢ 

represents the power loss in branch 𝑖 (kVA). 

 𝑆𝑙𝑜𝑠𝑠 𝑖 = 𝑅𝑖 ∗ |𝐼𝑖|2 + 𝑋𝑖 ∗ |𝐼𝑖|2   (8) 

where Rᵢ is the resistance of the network branch (Ohm), Xᵢ is the reactance of the network branch 

(Ohm), and Iᵢ is the current intensity in branch 𝑖 (A). 

2.3. Constraints 

The objective functions mentioned above are subject to the following operational 

constraints. 

2.3.1. Tensions Limits 

Each node's bus voltage magnitude must be restricted to its permissible range. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥   (9) 

where, Vmin and Vmax are the minimum and maximum voltage amplitude values for each bar 

set, respectively  Vmax=1.05 p.u and Vmin=0.90 p.u 

2.3.2. Current Constraints 

𝐼𝑖 < 𝐼𝑖
𝑚𝑎𝑥   (10) 

where, 𝐼𝑖
𝑚𝑎𝑥 is current permissible for branch i within safe limit of temperature. 

2.3.3. Power Distributed Generation Limits 

𝑃𝐷𝐺,𝑚𝑖𝑛 ≤ 𝑃𝐷𝐺,𝑖 ≤ 𝑃𝐷𝐺,𝑚𝑎𝑥   (11) 

 where, PDG𝑚𝑖𝑛 and PDG𝑚𝑎𝑥 are the minimum and maximum active power that can be consumed 
by the load. 
with, 

PDG𝑚𝑖𝑛, 33 nodes=200 KW and PDG𝑚𝑎𝑥, 33 nodes =3.7 MW 

PDG𝑚𝑖𝑛, 69 nodes=200 KW and PDG𝑚𝑎𝑥, 69 nodes =3.8 MW 

PDG𝑚𝑖𝑛, Adrar=200 KW and PDG𝑚𝑎𝑥, Adrar =3.84 MW 

2.3.4. Distributed Generation Location 

2 ≤ 𝐺𝐸𝐷𝑛 ≤ 𝐺𝐸𝐷𝑛,𝑚𝑎𝑥   (12) 
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where, GEDn is the location of the GED in node and GEDn,max symbolizes the number of nodes 

that are candidates for DG location. 

2.3.5. Shunt Capacitor Limits 

𝑆𝐶𝑚𝑖𝑛 ≤ 𝑆𝐶 𝑖 ≤ 𝑆𝐶𝑚𝑎𝑥   (13) 

where, SC𝑚𝑖𝑛 and SC𝑚𝑎𝑥 are respectively the minimum and maximum capacity of the reactive 
power produced by the shunt capacitors. 
with, 

SC𝑚𝑖𝑛, 33 nodes=150 KVAr and SC𝑚𝑎𝑥, 33 nodes =2.3 MVAr 

SC𝑚𝑖𝑛, 69 nodes=150 KVAr and SC𝑚𝑎𝑥, 69 nodes =2.69 MVAr 

SC𝑚𝑖𝑛, 33 nodes=150 KVAr and SC𝑚𝑎𝑥, 33 nodes =4.32 MVAr 

2.3.6. Shunt Capacitor Location 

2 ≤ 𝑆𝐶𝑛 ≤ 𝑆𝐶𝑛,𝑚𝑎𝑥   (14) 

where, SCn is the location of the SC in node and SCn,max symbolizes the number of nodes that 

are candidates for SC location. 

3. CHEETAH OPTIMIZATION METHOD 

The cheetah (Acinonyx jubatus) is a prominent feline species that is the swiftest terrestrial 

creature. It inhabits the central regions of Iran and Africa [36]. The cheetah can achieve speeds 

exceeding 120 kilometers per hour. The cheetahs possess physical attributes such as a lengthy 

tail, elongated and slender legs, a lightweight body, and a flexible spine, which contribute to 

their agility and speed. Cheetahs are agile creatures with the ability to move silently and swiftly. 

They possess distinctive spotted coats and are skilled at hunting. However, these visually-

oriented predators are unable to sustain their high-speed movements for extended periods of 

time. Therefore, the duration of the chase must be shorter than 30 seconds [37]. 

Furthermore, their velocity decreases significantly from 93 km/h or 58 mph to 23 km/h 

or 14 mph in just three steps once they have captured the victim. In order to compensate for 

their observation limitations, cheetahs carefully survey their surroundings from elevated 

positions such as tiny branches or slopes to locate their prey. In addition, these large felines can 

seamlessly camouflage themselves among tall and arid vegetation because of their distinctive 

fur patterns [38]. These predators typically prey on Thomson’s gazelles, impalas, antelopes, 

hares, birds, rodents, and young offspring of larger herd animals. Initially, the predators 

approach their prey with a deliberate and stealthy gait, assuming a low and concealed position  

to minimize detection. They then halt in a concealed location, patiently awaiting the prey's 

approach. When their prey detects their presence, predators stop their hunting activities. The 

specified minimum distance is around 60-70 meters or 200-230 feet. However, if effective 

concealment is not possible, we set the distance at 200 meters or 660 feet. 

The pursuit time is precisely 60 seconds, with an average distance ranging from 173 meters to 

559 meters, or 568 feet to 1834 feet. The cheetah strikes the prey's rump with its forepaw, causing 

the victim to lose its balance and ultimately bringing it down with considerable force. This 

causes the prey to attempt to flee [39]. The strong tail of the cheetah aids its agile movements, 

enabling it to make abrupt turns with ease [38, 40]. In general, it is simpler to hunt animals that 

stray far from their herds or display less caution [41, 42]. The Cheetah Optimizer algorithm is 

inspired by the hunting strategies of cheetahs, known for their extraordinary speed, agility, and 
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stealth. These strategies are mathematically formulated to mimic two key behaviors: "sit-and-

wait" stealth tactics and high-speed chases. The "sit-and-wait" strategy is modeled through 

randomization and reduced step sizes, enabling the algorithm to perform localized exploration 

with precision. This minimizes the risk of alerting prey, analogous to avoiding premature 

convergence in optimization. The high-speed chase behavior is captured through adaptive 

step-size updates and leader-follower dynamics, which enhance the algorithm's ability to 

explore global optima efficiently. These biological strategies are integrated into the Cheetah 

Optimizer algorithm's search phases, ensuring a balance between exploration and exploitation.   

3.1. Mathematical Model and Algorithm 

During the cheetah's survey of its environment, it can perceive potential prey. Upon 

spotting its prey, the cheetah may assume a stationary position and patiently await the prey's 

approach before initiating its assault. The attack mode consists of two phases: rushing and 

capturing. The cheetah may cease hunting for various reasons, including its limited energy 

reserves and the rapid movement of its prey. After ten days, the cheetah may return home to 

rest and prepare for another hunting expedition. The cheetah may select one of these techniques 

[43] by evaluating the prey, its condition, the surrounding region, and the distance to the prey. 

In essence, the Cheetah optimizer algorithm relies on the strategic use of different hunting 

methods during hunting intervals (iterations). 

3.1.1. Search Strategy 

Cheetahs engage in searching activities, such as scanning and active seeking, within their 

territory (search space) or the surrounding vicinity, in order to locate their prey. To 

mathematically represent the seeking strategy of cheetahs, we use the variable 𝑋𝑖,𝑗
𝑡  to indicate 

the current location of cheetah i (where i ranges from 1 to n) in arrangement j (where j ranges 

from 1 to D). Here, n represents the number of cheetahs in the population, and D represents the 

dimension of the optimization issue [44]. 

The proposed equation for updating the position of Cheetah I in each arrangement is a 

random search (Eq. 15). It takes into account the cheetah's current position and an arbitrary step 

size. 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + �̂�𝑖,𝑗
−1. ∝𝑖,𝑗

𝑡    (15) 

The variables 𝑋𝑖,𝑗
𝑡+1 and 𝑋𝑖,𝑗

𝑡  represent the next and current places, respectively, of cheetah 

i in arrangement j. The index t represents the current duration of hunting, whereas T represents 

the maximum duration of hunting. The parameters  �̂�𝑖,𝑗
−1  and ∝𝑖,𝑗

𝑡 are used to control the 

randomization and step length for cheetah i in arrangement j. The second word refers to the 

randomization term, which involves the use of normally distributed random numbers from a 

normal distribution, denoted as �̂�𝑖,𝑗 . The step length αti,j, typically more than zero for most 

applications, can be set as 0.001 × t/T. This is because cheetahs are known to be slow-walking 

searchers [44]. Fig. 2a, illustrates the search strategy. 

3.1.2. Sit-and-Wait Strategy 

While in search mode, the prey may become visible within the cheetah's field of view. In 

this scenario, any motion made by the cheetah has the potential to alert the prey to its presence, 

potentially resulting in the prey's escape. To address this issue, the cheetah may opt to employ 
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an ambush strategy, which involves positioning itself on the ground or concealing itself amid 

the foliage, to approach the prey at close proximity. Thus, in this state, the cheetah remains 

stationary and patiently awaits the approach of its prey, Fig. 2b. This behavior can be 

represented or simulated in the following manner [44]:  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡     (16) 

 
Fig. 2. Graphical representation of Cheetah optimizer strategies [32]. 

 

The variables  𝑋𝑖,𝑗
𝑡+1 and 𝑋𝑖,𝑗

𝑡  represent the updated and current positions, respectively, of 

cheetah i in arrangement j. This technique necessitates that the Cheetah optimizer algorithm 

refrain from altering all cheetahs concurrently within each group. By doing so, it enhances the 

likelihood of successful hunting (finding a superior solution) and hence aids in avoiding early 

convergence.  

3.1.3. Attack Strategy 

Cheetahs employ two essential factors, speed and flexibility, to launch an attack on their 

prey. When a cheetah chooses to initiate a chase, it rapidly accelerates towards its prey at top 

speed. Eventually, the victim becomes aware of the cheetah's assault and starts to flee. The 

cheetah swiftly chases its victim along the interception path, relying on its sharp eyesight, as 

depicted in Fig. 2c. Put simply, the cheetah tracks the prey's position and alters its direction of 

movement to intercept the prey's path at a specific location. Due to the cheetah's ability to reach 

high speeds over short distances, the prey must quickly alter its location in order to survive. 

This is illustrated in Fig. 2d, where the cheetah's next position is close to the prey's previous 

position. Furthermore, as depicted in Fig. 2d, it is likely that one cheetah does not engage in an 

attack strategy that aligns with the typical hunting behavior of cheetahs. The cheetah utilizes 

its speed and agility to capture its prey during this phase. During group hunting, individual 
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cheetahs may modify their positions in response to the location of the prey and the leader or 

nearby cheetahs. In essence, the many methods of hunting employed by cheetahs may be 

precisely described using mathematical definitions [44]:  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝐵,𝑗

𝑡 + �̂�𝑖,𝑗
−1. 𝛽𝑖,𝑗

𝑡    (17) 

The variable 𝑋𝐵,𝑗
𝑡   represents the current position of the prey in arrangement j. Put simply, 

it refers to the present optimal state of the population. The variables �̂�𝑖,𝑗
−1 and 𝛽

𝑖,𝑗
𝑡  represent the 

turning factor and interaction factor, respectively, for the cheetah i in arrangement j. The reason 

why 𝑋𝐵,𝑗
𝑡  is employed in Eq (17) is because, during an offensive maneuver, cheetahs employ a 

high-speed rushing tactic to swiftly approach the prey's location. Therefore, this work 

computes the updated location of the i-th cheetah in attack mode, taking into account the 

current position of the prey [44, 45]. In the second term, the turning factor represents the 

interaction between cheetahs or between a cheetah and a leader during the capturing mode.𝛽
𝑖,𝑗
𝑡   

Mathematically, this component can be defined as the subtraction of the neighborhood 

cheetah's location, 𝑋𝑘,𝑗
𝑡  (where k ≠ i), from the i-th cheetah's position, 𝑋𝐵,𝑗

𝑡 .  

The turning factor �̂�𝑖,𝑗  in this paper is a random number that is equal to the 

|𝑟𝑖,𝑗|
exp (

𝑟𝑖,𝑗

2
)
sin (2𝜋𝑟𝑖,𝑗).  

The values of 𝑟𝑖,𝑗 are generated using a conventional normal distribution, which follows 

a normal distribution. This element reflects the agile maneuvers of cheetahs when they are in 

pursuit of prey [42].  

The Cheetah Optimizer algorithm shown in Algorithm 1 [44] distinguishes itself from 

existing metaheuristic approaches through several innovative features. First, the algorithm 

introduces a dual-phase hunting mechanism combining random exploratory moves and 

targeted pursuit, which enhances its capability to navigate multi-modal optimization 

landscapes. Second, its adaptive parameter tuning mechanism dynamically adjusts the 

randomization factor and step length based on the iteration count, ensuring optimal 

convergence rates. Furthermore, the incorporation of "sit and wait" and "attack" strategies 

prevents stagnation by resetting solutions that fail to improve over a defined period, addressing 

the issue of premature convergence effectively. 

4. SIMULATIONS AND DISCUSSION 

4.1. Tests Systems 

To validate the cheetah optimization, the method has been applied to three test systems: 

  IEEE 33-bus standard radial distribution 

 IEEE 69-bus standard radial distribution 

 ADRAR distribution network (South of Algeria). 

All distribution networks are evaluated in various scenarios to achieve the defined 

objective function of this study. In the simulation part, there are three cases to study for the 

IEEE 33-Bus, IEEE 69-bus and  Adrar distribution network:  

 Case I : system includes shunt capacitors 

 Case II : optimal integration of Shunt capacitors/ distributed generators with           

simultaneous load variation 

 Case III : optimal integration of distributed generators  units with an unity power factor. 
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Algorithm 1. The Cheetah optimization. 

1: Define th problem data, dimension (D), and the initial population size (n) 

2: Generate the initial population of cheetahs Xi (i=1,2…. n) and evaluate the fitness of each cheetah 

3: Initialize the population’s home, leader and prey solutions 

4: t ← 0 

5: it ← 1 

6: MaxIt ← desired maximum number of tierations 

7: T← 60 X[D/10] 

8:     while it ≤ MaxIt do 

9:                 Select m (2≤ 𝑚 ≤ 𝑛) members of cheetahs randomly 

10:               for each member i ∈ m do  

11:                Define the neighbor agent of member i 

12:                          for each arbitrary arrangement j∈  {1,2…. D} do 

13:                             Calculate [�̂�, �̌�, ∝, 𝛽, 𝐻] 

14:                             𝑟2, 𝑟3 ←random numbers are chosen uniformly from 0 to 1 

15:                                  if 𝑟2 ≤ 𝑟3 then 

16                                    𝑟4 ← a random number is chosen uniformly from 0 to 3 

17:                                     if H≥ 𝑟4 then 

18:                                      Calculate new position of member I in arrangement j using Eq. (17) 

19:                                            else 

20:                                        Calculate new position of member I in arrangement j using Eq. (15) 

21:                                           end if 

22:                                       else 

23:                                        Calculate new position of member I in arrangement j using Eq. (16) 

24:                                      end if 

25:                                  end for 

26:                         Update the solutions of member I and the leader 

27:                         end for 

28:                         t←t+1 

29:                        if t >rand X T and the leader position doesn’t change for a time, then 

30:                Implement the leave the prey and go back home strategy and change the leader position 

31:                            Substitute the position of member I by the prey position 

32:                            t ← 0 

33:                        end if 

34:                        it← it +1 

35:                        Update the prey (global best) solution 

36:       end while 

 

These different examples show how the best placement and size of capacitor shunts and 

distributed generation units can change the parameters of a distribution network, such as 

power losses and voltage profiles. Furthermore, the implementation of the proposed method 

Cheetah optimizer should enable a comparison of the findings of the current project with 

previously published results in the relevant literature. This study uses forward/backward 

Ssweep [35] to address the OPF problem. To ensure the robustness and efficiency of the 

Cheetah Optimizer (CO), a sensitivity analysis was conducted on the IEEE 33-bus and IEEE 

69-bus systems. The analysis involved varying two key parameters—the step length (α) and 

the randomization factor (r)—within predefined ranges to evaluate their impact on 

convergence speed, solution accuracy, and computational time. Since the cheetah is known as 

a slow walker, the step size was initialized with a small value, and an adaptive epsilon was 
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added to refine the search process as iterations progressed. This adaptive approach ensures a 

gradual transition from global exploration to local exploitation, enhancing the algorithm’s 

ability to locate optimal solutions without premature convergence. The results, summarized 

in Table 2, show that varying α, the population size (n), the number of Cheetahs (m), and the 

maximum number of iterations (Maxiter) directly influences the trade-off between 

computational efficiency and solution quality. Notably, when α=0.0005 (Case 3), the CO 

algorithm achieved the lowest power loss (121.10 kW) but required significantly more 

computational time (24.28 s) due to increased exploitation. Conversely, a higher α (e.g., 0.022 

in Case 6) reduced computational time (325.17 s) but resulted in a higher power loss (155.3 

kW), indicating reduced solution accuracy. These findings confirm that the step size directly 

affects the balance between search diversification and convergence speed. 
 

Table 2. Algorithm’s performance under varying parameter settings. 
Parameter α n m Maxiter Time [s] Ploss [kW] PDG [kW] 

1 0.0097 5 3 10 1.42 195.98 7097.6 

2 0.0087 10 5 20 4.43 168.72 5727.7 

3 0.0005 20 10 30 24.28 121.10 1213 

4 0.0167 40 15 40 94.74 117.11 3564.3 

5 0.0153 50 20 50 1853.62 108.76 3169.2 

6 0.022 55 25 60 325.17 155.3 4755 

7 0.0023 60 30 70 512.99 115.9 1522.5 

 

Additionally, the randomization factor r was modeled using a normal distribution 

r∼N(0,1), ensuring controlled randomness in search behavior. This stochastic element 

prevents the algorithm from stagnating in local optima while maintaining a structured 

exploration process. The results indicate that the best trade-off between exploration and 

exploitation was achieved with moderate values of α and r following a Normal distribution, 

which led to faster convergence and improved optimization performance across all tested 

cases. 

Based on these insights, Table 2 presents the final parameter configurations chosen for 

all test systems (IEEE-33 bus, IEEE-69 bus, and ADRAR). The optimized values n=50, m=20, 

and Maxiter=50 provided the best balance between computational efficiency and solution 

accuracy, ensuring effective performance under different network conditions. These findings 

highlight the importance of adaptive parameter tuning in metaheuristic optimization, 

reinforcing the CO algorithm’s applicability to real-world power distribution networks. 

The Cheetah optimizer parameters in this simulation study are established as outlined 

in Table 3. 
 

Table 3. Cheetah optimizer parameters for three tests systems. 

Parameter 
Test system 

IEEE-33 BUS IEEE-69 BUS ADRAR 

Number of populations n = 50 n = 50 n = 50 

Maximum iterations Max_iter = 50 Max_iter = 50 Max_iter = 50 

Number of search agents m = 20 m = 20 m = 20 
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4.2. Results and Discussion for IEEE 33-Bus Radial Distribution Networks 

The IEEE small-scale radial distribution networks standard, which has 32 branches and 

33 buses, is the first test network. A single-line diagram of the tiny DS is shown in Fig. 3. Total 

reactive and active loads at nominal load are 2.3 MVAr and 3.715 MW, respectively, at 12.66 

kV and 100 MVA base values. The load and line data for the test network are given in [43]. The 

findings of the tide calculation at nominal load indicate that the system without distributed 

generators and shunt capacitors installation has a reactive network loss of 143.13 kVAr and an 

active network loss of 211 kW.  Bus 18 has the lowest voltage magnitude of 0.9038 p.u, and a 

voltage deviation of 0.1338 p.u. 

 

 
Fig. 3. IEEE 33-Bus radial distribution system. 

4.2.1. Case I : Optimal Integration of Shunt Capacitors 

The results in Table 4 show the positive effect of adding shunt capacitors to reduce active 

losses in a 33-node distribution network. The addition of a single shunt capacitor of 1391 kVAr 

reduces active losses to 145.54 kW, which is a decrease of 31.03% compared to the base case.  

 
 

Table 4. Comparison of optimal results obtained by Cheetah optimizer and Cf-PSO for a 33-node network. 

 
Base 
case 

1 SC 2 SCs 3S Cs 4 SCs 

SC size [kVAr] 
Bus [20] 

/ 
1266  
 30 

465, 1035  
 12, 30 

388, 544, 1037 
13, 24, 30 

431, 301, 432, 1035  
 7, 14, 24, 30 

SC size [kVAr] 
Bus [CO] 

/ 
1391 

29 
458.7, 1013.8 

12, 30 
359.1, 533.4, 1012 

13, 23, 30 
416.4, 327, 462.1, 1062.6 

6, 12, 24, 30 

Ploss (kW) [20] 211 151.40 141.86 138.28 136.85 

Ploss (kW) [CO] 211 145.54 135.84 133.13 132.2 

RPloss (%) [20] / 28.24 32.78 34.46 35.15 

RPloss (%) [CO] / 31.03 35.62 36.90 37.34 

Qloss (kVAr) 
[20] 

143.13 103.91 96.49 94.28 93.78 

Qloss (kVAr) 
[CO] 

143.13 97.77 90.57 
89.08 88.49 

Vmin (p.u) 
Bus [20] 

0.9038  
/ 

0.9165 
/ 

0.9303 
/ 

0.9317 
/ 

0.9340 
/ 

Vmin (p.u) 
Bus [CO] 

0.9131 
18 

0.9268 
18 

0.9356 
18 

0.9368 
18 

0.9374 
17 
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By adding two shunt capacitors of 458.7 kVAr and 1013.8 kVAr, the active losses drop to 

135.84 kW, representing a reduction of 35.62%. Compared to the first case, this configuration is 

more efficient, suggesting that the positioning and distribution of shunt capacitors play a role 

in optimizing losses. With three shunt capacitors of 359.1 kVAr, 533.4 kVAr, and 1012 kVAr, 

the active losses are reduced to 133.13 kW, corresponding to a decrease of 36.90%. The addition 

of shunt capacities continues to reduce active losses. The insertion of four shunt capacitors of 

416.4 kVAr, 327 kVAr, 462.1 kVAr, and 1062.6 kVAr reduces active losses to 132.2 kW, 

representing a reduction of 37.34%. This configuration shows the best reduction among the 

tested cases. These results illustrate that increasing the number of shunt capacitors and 

optimizing their distribution allows for a gradual reduction in active losses. Fig. 4, 

demonstrates the voltage profiles of IEEE 33-bus. The voltage profile improves as the number 

of SCs increases. The insertion of shunt capacitors increases the minimum voltage from 0.9131 

p.u to 0.9374 p.u, resulting in improved voltage stability. 

 

 
Fig. 4. Voltage distribution in the 33-bus system for different cases. 

 

The proposed Cheetah optimizer method, aimed at minimizing power losses, is 

objectively compared to the results in recent literature and to the case studies presented in 

Table 4 for the IEEE 33-bus distribution network.  

The proposed Cheetah optimizer was validated against established techniques such as 

the Bat Algorithm, moth flame optimization algorithm hybrid sine cosine algorithm, the 

bacterial foraging optimization, flower pollination algorithm, cuckoo search algorithm and the 

Highly Effective Algorithm (MSFS), among others. In the majority of instances, the reduction 

in the percentage of power loss observed by the Cheetah optimizer in Table 5 exceeds that of 

existing techniques.   

Figs. 5a and 5b compare the active and reactive power loss across all four scenarios. 
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Fig. 5. Comparison of power loss for 33-bus IEEE: a) active power loss; b) reactive power loss. 

Table 5. Comparison of power losses with different methods for three cases of the 33-bus system. 

Case Method 
SC size 
(kVAr) 

Location 
Bus 

Ploss 
[kW] 

Ploss 

[%] 

Base case  / / 211 / 

Case one 
1 SC 

Analytical [46] 
BA [47] 

MFO-SCA [48] 
CSA [49] 
PSO [20] 

CF-PSO [20] 
CO (proposed) 

1000 
1800 
1258 
1200 
1649 
1266 
1391 

33 
30 
30 
30 
29 
30 
29 

164.60 
161.48 
151.37 
151.52 
156.57 
151.40 
145.54 

22.83 
23.86 
28.26 
28.18 
24.46 
28.25 
31.03 

Case two 
2 SCs 

Analytical [46] 
WIPSO-GSA[50] 

CSA [49] 
SCA [51] 

MFO-SCA [48] 
PSO [20] 

CF-PSO [20] 
NCB-HM [32] 

HM [52] 
MSFS [53] 

CO (proposed) 

850, 860 
470, 1060 
1000, 400 
350, 1000 
465, 1063 
465, 1063 
465, 1035 
405, 1052 
430, 1040 

465.2, 1063.3 
458.7, 1013.8 

7, 29 
12, 30 
30, 13 
14, 30 
12, 30 
12, 30 
12, 30 
13, 30 
12, 30 
12, 30 
12, 30 

146.64 
141.84 
142.07 
142.55 
141.84 
141.86 
141.86 
141.9 
141.94 

141.843 
135.84 

30.50 
32.77 
32.66 
32.44 
32.77 
32.78 
32.78 
32.74 
32.72 
32.77 
35.62 

Case three 
3 SCs 

BFOA [54] 
CSA [49] 

MFO-SCA [48] 
PSO [20] 

CF-PSO [20] 
FPA [55] 

NCB-HM [32] 
CPM [56] 
CPM [57] 
HM [52] 

MSFS [53] 
CO (proposed) 

349.6, 820.6, 277.3 
450, 400, 950 

382, 334, 1009 
388, 544, 1037 
388, 544, 1037 
450, 450, 900 

383, 386, 1000 
500, 500, 1000 
359, 520, 1016 
360, 510, 1020 

436.2, 538.4 1015 
359.1, 533.4, 1012 

18, 30, 33 
11, 24, 30 
13, 24, 30 
13, 24, 30 
13, 24, 30 
13, 24, 30 
13, 25, 30 
12, 24, 30 
13, 24, 30 
13, 24, 30 
12, 24, 30 
13, 23, 30 

144.04 
138.54 
138.91 
138.28 
138.28 

139.075 
138.65 
138.61 
138.37 
138.37 
138.31 
133.13 

31.73 
34.33 
34.16 
34.47 
34.47 
34.08 
34.28 
34.30 
34.41 
34.41 
34.44 
36.90 

4.2.2. Case II : Load Variation with Multiple Distributed Generators   

Table 6 presents the performance of the proposed Cheetah optimizer across three 

different load levels and three distributed generators. Table 6 reveals that the test system's 
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nominal load reduces the base power loss (kW) from 202.68 to 17.45 kW. In the light load 

scenario, the active loss drops to 17.32 kW from the base power loss of 47.07 kW.  

The same observation for the peak load, or Cheetah optimizer, results in power active 

losses reduced to 190.21 kW, compared to the base case of 575.39 kW. Table 6 presents a 

comparison between the proposed Cheetah optimizer method and the parameter improved 

particle swarm optimization hybrid sequential quadratic programming result from the 

literature to illustrate the performance of the proposed method. The table reveals that at all 

load levels, the Cheetah optimizer outperforms the parameter Improved Particle Swarm 

Optimization in terms of loss reduction and voltage profile improvement. 

Table 6. Optimization of losses with three levels of load in the presence of three distributed generators in the       
33-bus system. 

Case Method 
DG size 

[kW] 

Bus 

location 

Ploss 

[kW] 

Qloss 

[kVAR] 

Vmin 

[p.u] 

Bus 

location 

Base case 

50% 
 - - 47.07 31.35 0.9583 18 

Base case 

100% 
 - - 202.68 135.17 0.9131 18 

Base case 

160% 
 - - 575.39 384.34 0.8528 18 

Case one 

50% 

Light 

PIPSO-SQP 

[25] 

 
CO 

(proposed) 

445.98 

504.54 

486.08 

372.34 

532.85 

554.21 

12 

30 

24 

14 

30 

24 

17.97 

 

 

17.32 

 

12.34 

 

 

31.35 

 

0.9824 

 

 

0.9846 

18 

 

 

33 

Case two 

100% 

Nominal 

PIPSO-SQP 

[25] 

 
CO 

(proposed) 

1053.63 

1091.38 

801.81 

754.9 

1104.1 

1069 

30 

24 

13 

14 

24 

30 

 

72.78 

 

 

71.45 

 

50.66 

 

 

49.4 

 

0.9687 

 

 

0.9686 

 

 

33 

 

 

33 

Case three 

160% 

Peak 

PIPSO-SQP 

[25] 

 
CO 

(proposed) 

1062.58 

1233.54 

1645.55 

1229.5 

1801.2 

1760.8 

14 

31 

6 

14 

24 

30 

208.94 

 

 

190.21 

145.26 

 

 

131.65 

0.9505 

 

 

0.9501 

18 

 

 

33 

 

 

Figs. 6 and 7 show the reduction in power losses and the improvement in the voltage 

profile for the three load conditions, respectively. However, reduction in power losses and 

improvement in voltage profile for the three load conditions demonstrate the superiority of 

the proposed Cheetah optimizer. Fig. 7 also shows an improvement in the minimum bus 

voltage (Vmin) at all load levels (light, nominal, and peak) from 0.9583, 0.9132, and 0.8528 to 

0.9846, 0.9686, and 0.9501 p.u. These values respect the voltage constraints. 
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Fig. 6. Comparison of active power loss for different load conditions with three distributed generators.  

 

 
Fig. 7. Voltage distribution in the 33-bus system for various load conditions. 

4.2.3. Case III : Optimal Integration of Distributed Generators  with Unity Power Factor  

We assume that the distributed generators in this example contribute only active power 

to the network and have power factors of 1.0. We use the Cheetah optimizer algorithm to 

optimize the distributed generator dimensions and positions to minimize active power loss. 

We obtained detailed information by optimizing the configuration of different distributed 

generator numbers using the suggested Cheetah Optimizer algorithm, as shown in Table 7. 

This information comprises the distributed generators location and capacity, the power loss 

Ploss and Qloss, the reduction of active and reactive losses RPloss, and indicators such as the 

minimum system voltage magnitude. Installing one, two, or three distributed generators 

reduces active losses for the Cheetah Optimizer method by 48.45%, 59.20%, and 66.11%, and 

for improved northern goshawk optimization algorithm by 42.9%, 58.2%, and 64.6%, 

respectively. The more distributed generators in the network increases, the more significant 

the reduction in losses becomes. Moreover, the integration of distributed generators into the 

network can also improve the system's voltage profile.  
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Table 7. Comparison of optimal results obtained by Cheetah optimizer and improved northern goshawk 
optimization algorithm for a 33-node network at the unity power factor. 

 Base case 1 DG 2 DGs 3 DGs 

DG size [kW] 

Bus [26] 
/ 

2590.25 

6 

851.5, 1157.63 

13, 30 

1053.7, 1091.37, 801.67 

30, 24, 13 

DG size [kW] 

Bus [CO] 
/ 

3169.2 

6 

1117.6, 907 

30, 13 

1043.2, 1080.9, 806.8 

30, 24, 13 

Ploss [kW] [26] 211 111.03 87.17 72.79 

Ploss [kW] [CO] 211 108.76 86.07 71.51 

RPloss [%] [26] / 47.38 58.69 65.5 

RPloss [%] [CO] / 48.45 59.20 66.11 

Qloss [kVAr] [26] 143.13 81.71 59.81 50.68 

Qloss [kVAr] 

[CO] 
143.13 78.59 58.60 49.40 

Vmin [p.u] 

Bus [34] 

0.9038 

18 

0.9424 

18 

0.9685 

33 

0.9687 

33 

Vmin (p.u) 

Bus [CO] 

0.9131 

18 

0.9593 

18 

0.9680 

33 

0.9684 

33 

 

Fig. 8 demonstrates the voltage profiles of the IEEE 33 bus system. The voltage profile 

improves as the number of distributed generators increases. The insertion of the distributed 

generators increases the minimum voltage from 0.9131 p.u to 0.9684 p.u resulting in improved 

voltage stability. The effectiveness of Cheetah Optimizer is validated by comparing it with the 

optimal solutions of improved northern goshawk optimization, northern goshawk 

optimization, differential evolution and particle swarm optimization (DAPSO), enhanced 

grasshopper optimization algorithm (EGOA), and bat algorithm, as illustrated in Table 8. 

When one, two, or three distributed generators are configured in the distribution system, the 

losses incurred by the Cheetah Optimizer algorithm are inferior to those of the improved 

northern goshawk optimization, northern goshawk optimization, differential evolution and 

particle swarm optimization, enhanced grasshopper optimization algorithm, and bat 

algorithm methodologies, which illustrates the superiority of the Cheetah Optimizer 

algorithm in addressing the optimal distributed generation allocation problem. 

 
Fig. 8. Voltage distribution in the 33-bus system for different cases 

In Figs. 9a and 9b, we can see a comparison of the active and reactive power loss across 

all three scenarios. 
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Fig. 9. Comparison of power loss for IEEE 33-bus: a) active power loss; b) reactive power loss. 

Table 8. Comparison of the results obtained by the Cheetah optimizer algorithm and other algorithms for the 33-
bus system at the unity power factor. 

Case Method 
DG size 

[kW] 
Bus location 

 
Ploss 

[kW] 
Ploss 

[%] 

Base case  - - 211 - 

Case one 
1 DG 

CO (proposed) 
INGO [26] 
NGO [26] 

DAPSO [27] 
BA [28] 

EGOA [42] 

3169.2 
2590.25 
1695.98 

1212 
816.3 
902.9 

6 
6 
7 
8 

15 
17 

108.76 
111.03 
120.98 
127.17 
137.2 

141.12 

48.45 
47.38 
42.66 
39.73 
34.98 
33.12 

Case two 
2 DGs 

CO (proposed) 
INGO [26] 
NGO [26] 

DAPSO [27] 
BA [28] 

EGOA [29] 

1117.6, 907 
851.5, 1157.63 

1351.23, 804.53 
1227, 738 

952.4, 952.4 
962.3, 184.5 

30, 13 
13, 30 
28, 13 
13, 32 
15, 25 
17, 18 

86.07 
87.17 
89.04 
95.93 

112.88 
128.56 

59.20 
58.69 
57.8 
54.54 
46.5 
39.07 

Case three 
3 DGs 

CO (proposed) 
 

INGO [26] 
 

NGO [26] 
 

DAPSO [27] 
 

BA [28] 
 

EGOA [29] 
 

1043.2, 1080.9 806.8 
1053.7, 1091.37, 801.67 

995.29, 814.62 
1258.84 

681, 600, 
719 

816.3, 952.35 
952.35 

674.81, 171.04 
1032.31 

30, 24 
13 

30, 24 
13 

30, 13 
3 

10, 18 
31 

15, 25 
30 

17, 18 
31 

71.51 
 

72.79 
 

78.63 
 

92.55 
 

75.05 
 

87.31 

66.11 
 

65.5 
 

62.73 
 

56.14 
 

64.43 
 

58.62 

4.3. Results and Discussion for IEEE 69-Bus Radial Distribution Networks 

The IEEE radial distribution networks standard, which has 68 branches and 69 buses, is 

the second test network. A single-line diagram is shown in Fig. 10. Total reactive and active 

loads at nominal load are 2.69 MVAr and 3.8 MW, respectively, at 12.66 kV, and 100 MVA base 

values.  
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Fig. 10. IEEE 69-Bus radial distribution system. 

The test network's load and line data are presented in [25]. The results of the flow 

calculation at nominal load show that the system without shunt capacitors installation has an 

active network loss of 225 kW and a reactive network loss of 102.15 kVAr. The bus 67 has the 

lowest voltage magnitude of 0.9091 p.u. 

4.3.1. Case I : Optimal Integration of Shunt Capacitors 

In the present scenario, the shunt capacitors only deliver reactive power into the 

network. The net active power loss achieved by the Cheetah optimizer, improved golden 

jackal optimization algorithm (IGJO), original golden jackal optimization (GJO), Hybrid 

MFOSCA,WeevilOA, skill optimization algorithm (SOA) and Tasmanian devil optimization 

(TDO) is nearly the same for one, two, and three shunt capacitors, i.e., 152.01, 146.421, and 

145.11 kW, as shown in Table 9. 

Table 9. Comparison with different methods for integration of capacitor banks for the 69 bus system. 

Case Method 
SC size 
[kVAr] 

Location 
Bus 

Ploss 

[kW] 
Ploss 

[%] 
Vmin 
[p.u] 

Base 
case 

- - - 225 - 0.9091 

Case 
one 
1 SC 

CO (proposed) 
IGJO [30] 
GJO [30] 

WeevilOA [30] 
SOA [30] 
TDO [30] 

Hybrid MFOSCA  
[48] 

1329.90 
1329.99 
1330.00 
1329.99 
1329.99 
1329.99 
1330.00 

61 
61 
61 
61 
61 
61 
61 

152.01 
152.04 
152.04 
152.04 
125.04 
152.04 
152.04 

32.44 
32.44 
32.44 
32.44 
32.44 
32.44 
32.44 

0.9307 
0.9307 
0.9307 
0.9307 
0.9307 
0.9307 

- 

Case 
two 

2 SCs 

CO (proposed) 
IGJO [30] 
GJO [30] 

WeevilOA [30] 
SOA [30] 
TDO [30] 

Hybrid MFOSCA 
 [48] 

361.4, 1276.8 
361.08, 1275.05 
360.64, 1275.03 
361.08, 1275.05 
361.08, 1275.05 
361.08, 1275.08 

361, 1275 

17, 61 
17, 61 
17, 61 
17, 61 
17, 61 
17, 61 
17, 61 

146.42 
146.44 
146.44 
146.44 
146.44 
146.44 
146.44 

34.92 
34.91 
34.91 
34.91 
34.91 
34.91 
34.91 

0.9312 
0.9311 
0.9311 
0.9311 
0.9311 
0.9311 

- 

Case 
three 
3 SCs 

CO (proposed) 
IGJO [30] 
GJO [30] 

WeevilOA [30] 
SOA [30] 
TDO [30] 

Hybrid MFOSCA  
[48] 

381.7, 243.8, 1225.7 
391.62, 252.24, 1232.41 
392.87, 252.28, 1231.80 
384.58, 259.40, 1232.41 
388.77, 270.94, 1230.03 
391.31, 252.09, 1232.55 

389, 253, 1253 

11, 21, 61 
11, 17, 61 
11, 17, 61 
11, 15, 61 
10, 15, 61 
11, 17, 61 
11, 17, 61 

145.11 
145.12 
145.12 
145.29 
145.34 
145.12 
145.12 

 

35.50 
35.49 
35.49 
35.42 
35.40 
35.498 
35.498 

 

0.9313 
0.9314 
0.9314 
0.9314 
0.9314 
0.9314 

- 
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 Nonetheless, the Cheetah optimizer method results in the lowest possible power loss, 

which is achieved by deploying shunt capacitors. It can be seen that all optimization methods 

give equal minimum voltage values across diverse scenarios. 

Fig. 11 demonstrates the voltage profiles of IEEE 69-bus. The voltage profile improves 

as the number of shunt capacitors increases. The insertion of shunt capacitors increases the 

minimum voltage from 0.9091 p.u. to 0.9314 p.u, resulting in improved voltage stability.         

Fig.  12 compares the active power loss across three scenarios for different algorithms.  

 

 
Fig. 11. Voltage distribution in the 69-bus system for different cases. 

 

 

Fig. 12. Comparative active power loss for 69-bus IEEE. 

4.3.2. Case II : Load variation with two shunt capacitors  

Table 10 presents the performance of the proposed Cheetah optimizer across three 

different load levels and two shunt capacitors. Table 10 reveals that the test system's case one 
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(100% load) reduces the base power loss (kW) from 225 to 146.42 kW. In case two (75% load), 

the active loss drops to 81.55 kW from the base power loss of 121.01 kW. Figs. 13 and 14 show 

the active power losses and the voltage profile for the three load conditions, respectively. 
 

Table 10. Losses optimization with three load levels in the presence of 2 shunt capacitors s in the 69-bus system. 

Case Method 
SC size 
[kVAr] 

Location 
Bus 

Ploss 
[kW] 

Qloss 

[kVAR] 
Vmin 
[p.u] 

Location 
Bus 

Base case 
100% 

 / / 225 102.15 / / 

Base case 
75% 

 / / 121.01 55.087 / / 

Base case 
50% 

 / / 51.59 23.54 / / 

Case one 
100% 

 

COA [18] 
 

CO (proposed) 

300 
1200 
363.7 
1275.1 

17 
61 
17 
61 

146.87 
 

146.42 

/ 
 

68.22 

0.928 
 

0.9311 

/ 
 

65 

Case two 
75% 

 

COA [18] 
 

CO (proposed) 

0 
900 

69.40 
909.55 

17 
61 
18 
61 

83.053 
 

81.55 

/ 
 

38.06 

0.9459 
 

0.9484 

/ 
 

64 

Case three 
50% 

 

COA [18] 
 

CO (proposed) 

0 
600 

133.53 
671.71 

17 
61 
18 
61 

35.757 
 

34.47 

/ 
 

16.14 

0.9657 
 

0.9671 

/ 
 

65 

 
 

 
Fig. 13. Comparison of active power loss for different load conditions with two shunt capacitors. 

The same observation for case three (50% load), or Cheetah optimizer, results in a 

reduced value of power active losses of 34.47 kW, compared to the base case of 51.59 kW. To 

illustrate the performance of the proposed method, Table 9 presents a comparison between 

the proposed Cheetah optimizer and the combined optimization approach (COA) result from 

the literature. The table reveals that at all load levels, the Cheetah optimizer outperforms the 

combined optimization approach in terms of loss reduction and voltage profile improvement. 

4.3.3. Case III : optimal integration of distributed generator with unity power factor (UPF)  

The Cheetah optimizer algorithm optimizes the position and capacity of one, two, and 

three units of distributed generators to reduce active power loss.  
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Fig. 14. Voltage distribution in the 69-bus system for different load conditions. 

The voltage distribution becomes more uniform, approaching 1 p.u., and the voltage 

magnitudes of all buses fall within the range specified in this study. This demonstrates that the 

Cheetah optimizer method remains effective even when dealing with more complex 

optimization issues. Table 11 displays the full outcomes of using the Cheetah optimizer 

algorithm to set up 1, 2, and 3 distributed generators in the IEEE 69-bus test system. This shows 

that a smart distributed generator configuration in the IEEE 69-bus system can significantly 

lower active power loss. This mirrors the case of what happened in the IEEE 33-bus system 

simulation: configured distributed generators lower both active and reactive network losses, 

and raise the minimum voltage. Installing one, two, or three distributed generators lowers 

active network loss by 63.026%, 68.155%, and 69.268%, respectively. The minimum voltage 

increases from 0.9092 to 0.9684, and 0.9790. 

Table 11. Comparison of optimal results obtained by Cheetah optimizer and improved northern goshawk 
optimization for a 69-node network at the unity power factor. 

 Base case 1 DG 2 DGs 3 DGs 

DG size [kW] 
Bus [30] 

- 
1872.70 

61 
531.48, 1781.47 

17, 61 
526.66, 380.51, 171.97 

11, 17, 61 

DG size [kW] 
Bus [CO] 

- 
1885 
61 

1782.8, 534.4 
61, 17 

526.4, 308.2, 1719.1 
11, 18, 61 

Ploss [kW] [30] 225 83.22 71.67 69.42 

Ploss [kW] [CO] - 83.19 71.65 69.40 

Ploss [%] [30] - 63.01 68.146 69.145 

Ploss [%] [CO] 225 63.026 68.155 69.268 

Qloss [kVAr] [30] 102.15 - - - 

Qloss [kVAr] 
[CO] 

102.15 40.50 35.92 34.95 

Vmin [p.u] 
Bus [30] 

0.9091 
- 

0.9683 
- 

0.9789 
/ 

0.9790 
/ 

Vmin [p.u] 
Bus [CO] 

0.9092 
67 

0.9684 
27 

0.9790 
65 

0.9790 
65 

 

Table 12 compares the simulation results of the Cheetah optimizer method with those of 

the Improved golden jackal optimization algorithm, original golden jackal optimization, 
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hybrid Moth Flame Optimization and algorithm and Sine Cosine Algorithm, 

The modified prairie dogs optimizer, and prairie dog optimizer algorithms. This research 

proposes the Cheetah optimizer approach, which, when used with the same number of 

distributed generators, results in lower active network loss than previous algorithms.  Figs. 15 

and 16 show the improvement in the voltage profile for the three conditions and the reduction 

in power losses, respectively. 

 

 
Fig. 15. Voltage distribution in the 69-bus system for different cases. 

 

 
Fig. 16. Comparative active power loss for 69-bus IEEE. 
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Table 12. Comparison of the results of the Cheetah optimizer algorithm with other algorithms for the 69-bus 
system at the unity power factor. 

Case Method 
DG size 

[kW] 
Location 

Bus 
Ploss 

[kW] 
Ploss  

[%] 

Base case  / / 225 / 

Case one 
1 DG 

CO (proposed) 
IGJO [30] 
GJO [30] 

Hybrid MFOSCA [48] 
mPDO [31] 
PDO [31] 
NHA [32] 

1885 
1872.70 
1872.71 
1872.73 
1872.70 
1862.25 
1823.00 

61 
61 
61 
61 
61 
61 
61 

83.19 
83.223 
83.223 
83.224 
83.223 
83.226 
83.30 

63.026 
63.012 
63.012 
63.012 
63.012 
63.010 
62.978 

Case two 
2 DGs 

CO (proposed) 
IGJO [30] 
GJO [30] 

Hybrid MFOSCA [48] 
mPDO [31] 
PDO [31] 
NHA [32] 

1782.8, 534.4 
531.48, 1781.47 
531.22, 1782.14 
531.12, 1781.5 

531.483, 1781.470 
457.643, 1732.553 

520.00, 1733.00 

16, 17 
17, 61 
17, 61 
17, 61 
17, 61 
17, 61 
17, 61 

71.65 
71.675 
71.675 
71.674 
71.675 
72.021 
71.80 

68.155 
68.144 
68.144 
68.144 
68.144 
67.990 
6.089 

Case three 
3 DGs 

CO (proposed) 
IGJO [30] 
GJO [30] 

Hybrid MFOSCA [48] 
mPDO [31] 
PDO [31] 
NHA [32] 

526.4, 308.2, 1719.1 
526.66, 380.51, 1718.97 
525.52, 380.54, 1719.26  
526.44, 380.27, 1719.8 

526.668, 380.510, 1718.970 
309.420, 306.146, 1785.549 

471.00, 312.00, 1689.00 

11, 18, 61 
11, 17, 61 
11, 17, 61 
11, 17, 61 
11, 17, 61 
12, 16, 61 
12, 21, 61 

69.40 
69.42 
69.42 
69.42 
69.427 
70.48 
69.70 

69.268 
69.14 
69.14 
69.14 

69.143 
68.673 
69.022 

4.4. Results and Discussion for Real-Word ADRAR Distribution Network 

      Since the Cheetah optimizer optimization method gives the best results when applied to 

the two previous test networks ‘‘IEEE 33-bus’’ and ‘‘IEEE 69-bus,’’ and when compared to 

previous works, the following study consists of validating the performance of this technique 

by analyzing its response when applied to a real distribution system such as the ADRAR 

network taken in our case study. The ADRAR distribution system is considered  the third test 

system in this study. Additionally, it represents the ADRAR distribution network of the SDS 

(Southern Electricity Distribution Company). The test system named ADRAR network 

composed of one transformer, 14 buses, 13 lines, and 7 loads, as it is shown in Fig. 17.  

 
Fig. 17. ADRAR 14-Bus radial distribution system. 

 

  Total reactive and active loads at nominal load are 4.32 MVAr and 3.84 MW, 

respectively, at 30  kV and 80 MVA base values.  

4.4.1. Case I : optimal integration of shunt capacitors 

In the present scenario, the shunt capacitors just deliver reactive power into the network. Table 

13, shows the impact of an optimal location of shunt capacitors using the cheetah optimization 

on the ADRAR power distribution system. The results of the power flow using BFS at nominal 
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load show that the system devoid of shunt capacitors installation has an active network loss of 

13.602 kW and a reactive network loss of 37.228 kVAr. Bus 13 has the lowest voltage magnitude 

of 0.9141 p.u. After optimal sizing and placement  of shunt capacitors units with the Cheetah 

optimizer method, we can conclude that a single shunt capacitor placed on bus 10 of the 

network with a size of 258.16 kVAr saves 6.76 kW in active power losses and enhances the 

minimum voltage with a percentage of 5.97 % compared to the base case. In case II, the 

placement of two shunt capacitors on buses 11 and 2 in the ADRAR network, with sizes of 

143.67 kVAr and 157.25 kVAr respectively, saves 7.05 kW in active power losses, with a 

percentage enhancement of the minimum voltage equal to 6.6%. In the third case, placement of 

three shunt capacitors on buses 12, 3, and 8 of the network with a size of 91.268, 87.281, and 

121.969 kVAr respectively saves 7.131 kW in active power losses with a percentage 

enhancement of the minimum voltage equal to 6.63%. 

Table 13. Comparison with different methods for integration of capacitor banks for ADRAR network. 

Case Method 
SC size 

[kVAr] 

Bus 

location 

Ploss 

[kW] 

Ploss 

[%] 

Qloss 

[kVAr] 

Vmin 

[p.u] 

Bus 

location 

Base case  / / 13.602 / 37.228 0.9141 13 

Case one 

1 SC 

CO 

(proposed) 
258.16 10 6.842  18.205 0.9738 13 

Case two 

2 SCs 

CO 

(proposed) 

143.67 

157.25 

11 

2 
6.552  17.779 0.9801 14 

Case three 

3 SCs 

CO 

(proposed) 

91.268 

87.281 

121.969 

12 

3 

8 

6.471  17.665 0.9804 14 

 

Fig. 18 demonstrates the voltage profiles of ADRAR distribution network with 14-bus. 

The voltage profile improves as the number of shunt capacitors increases. The insertion of 

shunt capacitors increases the minimum voltage from 0.9141 to 0.9804, resulting in improved 

voltage stability. 

 

Fig. 18. Voltage distribution in ADRAR 14-bus system for different cases of shunt capacitors. 
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4.4.2. Case II : optimal integration of distributed generator with unity power factor   

In the present scenario, the distributed generator only delivers active power into the 

network. Table 14 shows the impact of an optimal location of distributed generators using the 

cheetah optimization algorithm on the ADRAR power distribution system. In the first case, a 

single shunt capacitor placed on bus 8 of the network with a size of 252.178 kVAr saves 6.986 

kW in active power losses and enhances the minimum voltage with a percentage of 2.29% 

compared to the base case.  

Case II, placement of two distributed generators on buses 8 and 10 in the ADRAR 

network with a size of 153.132 kVAr and 129.3101 kVAr respectively saves 7.194 kW in active 

power losses with a percentage enhancement of the minimum voltage equal to 2.66 %. In third 

case, placement of three distributed generators on buses 8, 3, and 11 of the networks with a 

size of 116.191, 85.609 and 96.581 kVAr respectively saves 7.436 kW in active power losses with 

a percentage enhancement of the minimum voltage equal to 2.71%. 
 

Table 14. Optimal results of Cheetah optimizer for ADRAR network at the unity power factor. 

Case Method 
DG size 

[kW] 

Location 

Bus 

Ploss 

[kW] 

Ploss 

[%] 

Qloss 

[kVAr] 

Vmin 

[p.u] 

Location 

Bus 

Base case  / / 13.602 / 37.228 0.9141 13 

Case one 

1 DG 

CO 

(proposed) 
252.178 8 6.616  17.368 0.9370 13 

Case two 

2 DGs 

CO 

(proposed) 

153.132 

129.310 

8 

10 
6.408  16.858 0.9407 13 

Case three 

3 DGs 

CO 

(proposed) 

116.191 

85.609 

96.581 

8 

3 

11 

6.166  16.546 0.9412 13 

 

Fig. 19 demonstrates the voltage profiles of ADRAR distribution network with 14-bus. 

The voltage profile improves as the number of distributed generators increases. The insertion 

of distributed generation increases the minimum voltage from 0.9141 p.u to 0.9412 p.u, 

resulting in improved voltage stability.  

The application of the CO method to the ADRAR distribution network represents a 

significant validation in a real-world context; however, it is essential to consider the practical 

challenges encountered during its implementation. Among these challenges, computation 

time is a crucial factor, influenced by the network size and the complexity of the optimization 

process. Performance improvements could be achieved by refining the metaheuristic 

parameters or integrating computational acceleration techniques. Furthermore, adaptability 

to variable load profiles remains a major issue, as the optimization is performed based on 

specific conditions at a given moment. A potential improvement would involve integrating 

predictive models based on machine learning to anticipate demand fluctuations and 

dynamically adjust optimization strategies. Thus, while the obtained results demonstrate the 

effectiveness of the method, a deeper analysis of these limitations and potential solutions 

would enhance the robustness and relevance of the proposed approach. 
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Fig. 19. Voltage distribution in ADRA 14-bus system for different cases of distributed generators. 

 

The results obtained in this study highlight the superior performance of the Cheetah 

optimizer algorithm in reducing power losses and improving voltage profiles compared to 

other optimization methods such as the particle swarm optimization and the Salp Swarm 

Algorithm. This superiority can be attributed to the Cheetah optimizer algorithm’s 

mechanism, which enables efficient search space navigation while preventing premature 

convergence. Specifically, the Cheetah optimizer method achieves greater loss reductions by 

adapting its step size and search intensity dynamically, allowing it to explore global optima in 

the early iterations and refine solutions in later stages. A key trade-off observed is between the 

number of iterations and solution accuracy. While a higher iteration count generally improves 

solution precision, excessive iterations may lead to diminishing returns in loss reduction. In 

our experiments, Cheetah optimizer demonstrated rapid convergence within 50 iterations, 

achieving power loss reductions of up to 37.34% for IEEE 33-bus and 35.50% for IEEE 69-bus 

with minimal computational overhead. Beyond this threshold, improvements were marginal, 

indicating an optimal balance between computational efficiency and solution quality. 

Additionally, the integration of adaptive mechanisms, such as the "sit and wait" strategy, 

enhances the algorithm’s robustness against local optima, further justifying its effectiveness in 

real-world power distribution networks. These findings suggest that Cheetah optimizer is 

particularly well-suited for large-scale systems where computational efficiency and high 

solution accuracy are equally critical. 

5. CONCLUSIONS 

This study has introduced a Cheetah optimizer technique for the optimal sizing and 

allocation of shunt capacitors and distributed generation units, focusing on the reduction of 

both active and reactive power losses as well as the enhancement of voltage profiles. The 

efficacy of Cheetah optimizer was evaluated and confirmed; additionally, results of this study 

indicated that the proposed methodology yields enhanced performance with optimal 
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outcomes within all scenarios and constraints. The proposed method was implemented on 

various test systems, including the "IEEE 33-Bus" radial distribution system, the "IEEE 69-Bus" 

radial distribution system, and the ADRAR distribution network in Southern Algeria. The 

proposed Cheetah optimizer is a meta-heuristic optimization method inspired by the foraging 

behavior of cheetahs in their natural habitat. This study encompasses the following 

simulations: Case I involves the integration of one, two, or three shunt capacitors; Case II 

examines a variable load with three distinct load levels using three distributed generators for 

the IEEE 33-bus network and two shunt capacitors for the IEEE 69-bus network and Case III 

entails the insertion of one, two, or three distributed generators. The outcomes obtained from 

the proposed Cheetah optimizer are compared with the results of bat algorithm, moth flame 

optimization algorithm, hybrid sine cosine algorithm, cuckoo search algorithm, constriction-

factor particle Swarm Optimization, parameter improved particle swarm optimization, hybrid 

sequential quadratic programming, improved northern goshawk optimization, northern 

goshawk optimization, enhanced grasshopper optimization algorithm, improved golden 

jackal optimization algorithm, tasmanian devil optimization, and coyote optimization 

algorithm. The obtained numerical results indicate that proposed Cheetah optimizer 

performance surpasses the aforesaid approaches. 
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