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Abstract— This investigation introduces a novel approach for data-driven control and optimization of direct 
current (DC) motors. The strategy utilizes MATLAB/Simulink to simulate the behavior of a DC motor, allowing 
for precise estimation of its dynamics. The motor’s input voltage and resulting speed are crucial factors that are 
recorded and subsequently used for the system identification process. By utilizing the functionalities of the 
system identification toolkit, a systematic analysis of recorded data is performed, resulting in the transfer 
function for the motor. Utilizing a non-linear Autoregressive with Exogenous Inputs (NARX) network, trained 
simultaneously with the data, enhances the system’s ability to make accurate predictions. This approach offers 
a clear benefit for engineers and researchers in this field by equipping them with a mechanism for real-time DC-
motor monitoring and performance forecasting. Besides, the proposed data-driven approach aids in regulating 
the dynamics of the motor mimicked by the transfer function of the motor, whereas the Proportional-Integral-
Derivative (PID) controller is based on the core ideas of classical control theory. Considering the complexity of 
the motor and non-linearity, the dual technique has been utilized in this research. The Genetic Algorithm (GA) 
uses controller gains to maximize motor performance and acquire optimized results under various operating 
conditions. This all-encompassing strategy not only ensures excellent control, but also emphasizes the 
adaptability and freedom of the proposed methodology. The simulation results and practical relevance for large-
scale application in DC motor systems show the efficiency and robustness of the proposed control model, which 
surpasses standard techniques and is adaptive to dynamic features. The proposed control model demonstrates 
significant improvements in system response with optimized control parameters yielding faster rise time, 
reduced settling times, and minimal overshoot, highlighting its robustness and adaptability for large-scale 
applications. 

 
Keywords— DC motor; Genetic algorithm; Autoregressive with exogenous inputs network; PID controller; 
Machine learning; System identification. 
     

1. INTRODUCTION  

Model creation and application are standard procedures in several disciplines. A model 

is viewed through the prism of the mathematical relationship between system variables in the 

control and systems engineering domain. A dynamic system model can be applied to fault 

detection, control, prediction, optimization, and simulation [1]. The accuracy of system 

modeling is crucial to representing the dynamic of the system. System models can be modeled 

using two primary methods: physics-based modeling (analytical modeling) [2] and data-driven 

modeling [3]. Physics-based modeling, also known as analytical modeling, represents the 

system using differential, algebraic equations, transfer functions, or state-based representations 
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relying on physics laws and principles [4]. On the other hand, data-driven modeling involves 

extracting data from a real or physical-based system and using system identification techniques 

to select a model structure [3] as shown in Fig. 1. This approach estimates parameters based on 

the relationship between input and output data. Data-driven modeling is especially 

advantageous when it is challenging to model the system dynamic mathematically, or the 

system behavior is unknown. In such cases, one does not need an in-depth understanding of 

the system to model it analytically [1]. This advantage of data-driven modeling forms the core 

motivation behind this research.  

 
Fig. 1. System modeling approaches [3]. 

The research [5] discusses the use of System Identification (SI) modeling techniques to 

model underwater remotely operated vehicles (ROVs) for marine industries, specifically 

underwater exploration and surveying. MATLAB's SI toolbox was used for the analysis. Step 

and multiple-step inputs were recorded, and the model with the best fit was selected. The initial 

model showed a high percent overshoot and steady-state error, but a proportional-integral-

derivative (PID) controller reduced these errors. However, the potential research gap is the lack 

of exploration of using metaheuristic algorithms to optimize the parameters of the controller, 

which could offer improved performance in a more dynamic underwater environment. To 

approximate the behavior of the DC motor, the research by [6] suggests a grey-box modeling 

approach that integrates qualitative and quantitative knowledge. The internal resistance and 

inductance values of the stator are fitted using linear regression to create the mathematical 

model. The aim is to find a correlation between the voltage applied to the armature and the 

rotational speed attained by the DC motor. The study emphasizes the value of system 

identification as well as its drawbacks. There is a limited exploration of alternative noise 

reduction techniques for improving measurement accuracy in DC motor systems.  

The research [7] discusses the system identification process and Proportional-Integral 

controller design for a motor and presents appropriate results from open-loop tests. The article 

outlines the comprehensive process of developing a permanent magnetic DC motor prototype 

for speed control applications. The microprocessor is the primary module of the prototype; it 

also includes a transistor-based motor driving circuit and an infrared sensor for feedback. The 

prototype can accept analog and pulse width modulation inputs and has an adjustable output 

direct voltage. There is a lack of exploration of the PMDC motor prototypes under varying 

operational environments, which could impact their robustness in industrial applications [8]. 
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The paper [9] presents the identification and instantaneous speed regulation of a DC motor 

using transient response analysis. It describes designing a PI speed controller that can 

accommodate shifting loads and counter-electromotive force and handle singularity at zero 

speed. Because the control system has enough tracking and regulating capabilities, it is suitable 

for engineering applications. The model with estimated parameters is verified by contrasting 

the model's response with that of the real motor. However, the research gap is due to a lack of 

consideration for the effects of magnetic saturation on the motor’s performance and control 

system design. [10] employs fractional and first-order integer models to identify mathematical 

representations of a DC motor. The authors used the GA to optimize the fractional order 

models' parameters. The outcomes demonstrate that the fractional models have fitted better 

than the first-order integer model, with the least parameterized fractional model producing the 

best result. It only focuses on the direct method of closed-loop identification without exploring 

other methods for evaluating other fractional model structures. The project's objective [11] is to 

generate the input and output data through sensor placement and design to model a 350-watt 

brushless DC motor mathematically. Engine speed is the output data, whereas current and 

voltage are the measured input data. The System Identification Toolbox in MATLAB produces 

a mathematical model as a transfer function. There is a lack of investigation into the limitations 

and accuracy of the System Identification toolbox in various operating conditions. The study 

by [12] analyses using the adaptive Tabu-Search approach for PID speed controller design and 

system identification for brushless DC motors. The recommended design technique was 

compared with the conventional Ziegler-Nichols approach, which outperforms the traditional 

Ziegler-Nichols approach regarding speed output performance because it considers the control 

signal at every stage of the design process. There is a limited exploration of how the ATS 

method compares to other artificial techniques like genetic algorithms (GA) and particle swarm 

optimization (PSO) in diverse control scenarios.  

Data-driven control is a system-based methodology that relies on real data rather than 

mathematical models to make choices and adjust control methods. It gathers real data via 

sensors or observations [13]. Modern industrial processes are becoming more complex, so 

controller design may not be possible even using readily available physical models. To 

overcome this problem, data-driven control theory and implementations have been created [3]. 

The PID controllers are extensively employed because of their robustness, practicality, and 

dependability. Process automation is essential in engineering and industry. These controllers 

feature an easily understood three-parameter structure (proportional, integral, and derivative), 

which has inspired more studies on tuning parameters and alternative designs to enhance their 

functionality [14]. Metaheuristic techniques have been investigated as an alternative to fine-

tuning PID controller gains to maximize performance [15]. Non-linear, non-convex, and 

restricted problems can be resolved using the GA [16].  

The study [17] shows how to use the GA to adjust a PID controller for droplet size control 

in microfluidics. This improves process response by lowering overshoot and settling time. 

There is a lack of exploration into the performance of the GA-tuned PID controller under 

varying operational conditions. It was discovered that the optimal objective function criterion 

for the GA yielded the lowest fitness value and the best system response [18]. There is a lack of 

experimental verification of the adaptive PID controller. To gain more precise control over 

stepper motor speed, the study by [19] suggests merging fuzzy PID parameters with GA. The 

technique increases the precision of motor speed control by improving response time, reducing 
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overshooting, and shortening regulation times. However, there is a lack of exploration of the 

algorithm's performance in varying operational conditions. The study by [20] suggests a novel 

method for controlling the speed and position of a DC servo motor termed a GA-tuned PID 

controller. It was discovered that the suggested GA-tuned PID controller performs better in 

terms of time requirements like settling time and rising time compared to the ZN-tuned PID 

controller and PID controller in the literature. It lacks identification techniques and a data-

driven approach. The study by [16] optimizes parameters. It enhances the performance of PID 

controllers in a Peruvian water tank facility using a simplified GA, demonstrating superior 

gains compared to MATLAB's auto PID-tune tool. A potential research gap in this paper is the 

lack of experimental testing of the GA-tuned PID controller in a multipurpose plant 

environment. 

The study [21] assesses the effectiveness of non-linear autoregressive with exogenous 

inputs, a black-box modeling approach, on crosstalk modeling, especially on crosstalk brought 

on by random pulse width modulation. Measurement input and output data are used to build 

the NARX model, and its performance is contrasted with a Spice-based SACAMOS model. 

Despite being less flexible than the Spice model, it is shown that the NARX model accurately 

represents the signal on the victim cable with a minimal mean squared error value. The study 

is a first step in evaluating the behavior of electromagnetic interference and crosstalk in 

complex systems using the NARX framework. However, there is a limited evaluation of the 

NARX framework’s performance in more complex systems under varying conditions beyond 

the fixed system and specific crosstalk scenarios studied. Some papers are tabulated in Table 1, 

targeting different application areas using SI and control algorithms for comparison purposes.  

Table 1. Review of some relevant literature. 

Ref. Application area Methodology Advantages Limitations 

[5] 

Remotely 

operated vehicle 

(ROV) 

System identification 

(SI) and PID controller 

Achieves 84.7% 

accuracy using SI 

No metaheuristic 

algorithm was used 

[6] DC motor 

Grey box modeling, 

linear and heuristic 

methods 

84% fitness and low 

prediction error 

Limited exploration 

of other noise 

reduction techniques 

[14] 

Automatic 

voltage regulator 

(AVR) 

V-Tiger PID and PSO 

V-tiger PID enhances 

transient response and 

robustness 

Limited optimization 

techniques explored 

[16] 
Multipurpose 

water tank plant 
PID tuning using GA 

Superior control 

performance by GA-

PID 

No real-time testing 

[22] Li-ion battery 
NARX and artificial 

neural network (ANN) 

High accuracy and 

adaptability 

Needs SOC 

calculation for each 

cell 

 

It is evident from the literature material that has been evaluated that many studies have 

implemented various control strategies for DC motors: PID control [14], fuzzy logic controllers 

[23], neural networks [24], and sliding mode control, but still, there remains a lack of 

comprehensive approaches that integrate system identification with NARX modeling and GA 

optimization for the PID control. Existing studies focus on one or two aspects of DC motor 

control but do not leverage the combination of data-driven techniques, machine learning, and 
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optimization algorithms to model and authenticate the system accurately and increase the 

control performance of DC motors under varying conditions. Traditional PID control is based 

on trial-and-error tuning, which consumes more time, and the response is also not very good. 

In contrast, fuzzy logic and neural networks provide improved responses. Still, they require 

significant computational resources and are difficult to tune. Stating the limitations of existing 

methods, there is a need for a more integrated and comprehensive approach that can accurately 

model the system dynamics and optimize the control parameters effectively. This research 

addresses this gap by combining data-driven system identification from real data of the 

Simulink Simscape model with NARX modeling. GA optimization offers a more robust, 

accurately modeled, and improved response for a DC motor control. 

This study designs and develops the Simulink Simscape model of a DC motor and 

employs a DC motor input voltage and the corresponding speed as the input and output, 

respectively. The research uses the system identification procedure to accomplish the transfer 

function of data-driven DC motor control and authenticate it by comparing it with the standard 

DC motor transfer function using the same values utilized in the Simulink Simscape model. 

This study also utilized the NARX model to model the DC motor system. The results of the 

Simulink model, the transfer function obtained from the System identification toolbox, and the 

NARX model were compared to authenticate the results. This study also designs the PID 

controller, and its gains were optimized using a GA to improve the system's performance. The 

results illustrate how effective the suggested method is, and modeling and simulations are used 

to authenticate it. 

The contributions of this research include:  

 The validation of the obtained transfer function by comparing it with the general DC 

motor transfer function model. 

 The training of the NARX model with the different levels of inputs from NARX (1,1) to 

NARX (5,5) to select the best out of the results.  

 Complicated steps of input were chosen to ensure the robustness of the procedure.  

 Reduction of error compared to that in the stated literature. 

 The employment of a GA optimizes the gains of the controller and improves the 

efficiency of the result. 

Following the introduction, the paper is organized as follows: Section II provides a 

detailed description of the system modeling process, including the design and simulation of 

the DC motor in Simulink. Section III focuses on the SI techniques used to identify and validate 

the transfer function of the DC motor. In Section IV, the NARX modeling approach and its 

application to DC motor control have been discussed. Section V presents the PID controller 

design and optimization using a GA. Finally, Section VI concludes the paper by summarizing 

the key findings and discussing future research direction. 

2. FUNDAMENTAL MACHINE MODEL 

DC motors are electromechanical devices that convert direct current electrical energy into 

mechanical energy. They come in various forms, including steppers [19], brushless [25], and 

brushed motors [26]. They are commonly utilized because of their high efficiency, low power 

consumption, and controllable design [23, 27]. DC motors have extensive applications in 

various fields of control systems, including robotics [28], transportation, and industrial 
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applications, because of their efficiency and dynamic qualities [29]. On the other hand, issues 

like fluctuations in the dynamics of the load, disruptions, erratic and changing inputs, and 

unknown parameters might arise in a Permanent Magnet DC (PMDC) motor system [3]. PMDC 

motors are employed in several industries, including robotics and consumer electronics. Their 

parameters are crucial to get excellent performance in simulation models. The aging and 

depreciation of parameters cause them to change over time, which lowers performance. 

Various strategies have been employed to update motor settings to address this issue [30]. 

Accurate torque and position control are commonly achieved with DC servomotors [25, 27]. 

Additionally, their use is expanding in robotics because of their inexpensive cost, excellent 

control performance, and simplicity in construction [30]. As seen in Fig. 2, the properties of a 

DC motor include resistance, inductance, and the back electromotive force voltage. 
 

 
Fig. 2. Circuit diagram of a PMDC motor [31]. 

 

The mathematical model of the PMDC motor is provided below in accordance with 

Kirchhoff's law as shown in Eq. (1) below: 

𝑉𝑠 − 𝑀 = 𝐿𝑎 (
𝑑𝑖

𝑑𝑡
) + 𝑅𝑎𝑖            (1) 

where, 𝑅𝑎  and 𝐿𝑎  denote the resistance and electric inductance, respectively. 𝑉𝑠  and 𝑖 denote 

the input voltage and current of the DC motor, respectively. 𝑀  represents the back 

electromotive force voltage, which is directly proportional to the motor's velocity [32]. 

𝑀 = 𝐾𝑎𝜃̇              (2) 

given that, 𝐾𝑎 represents the voltage constant of the motor and 𝜃̇ denotes the angular velocity 

of the DC motor’s rotating shaft. 

2.1. System Description 

Data-driven control is a system-based approach whereby decisions and technique 

adjustments are made using actual data from sensors or observations. It addresses the challenge 

of designing controllers in complex industrial processes where physical models may not be 

readily available [13]. Figure 3 depicts a flow chart that shows a step-by-step procedure for 

generating data to be used in the system identification toolbox to produce the transfer function 

and to be used for training and testing the NARX model. After developing the model in 

MATLAB (Simscape), the motor's input voltage and corresponding output speed are saved. 

The data set (input voltage and output speed) are now used as variables in the system 

identification toolbox to generate the transfer function of the system. The same data set is also 

used to train and test the NARX model to get the responses.  

 

2.2. Simscape Model  

Creating mathematical equations based on physical principles to design complex multi-

domain models is unnecessary because the blocks of the Simscape library correspond to real-

world physical components [3]. 
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Fig. 3. Flow chart of the transfer function generation and the NARX model training. 

Simscape is a part of Simulink that is used to create a component-based model of the 

systems. Figure 4 depicts the block diagram of the system model developed using Simulink 

(Simscape). The primary benefit of the Simscape model is its rapid modification capabilities 

without requiring knowledge of the system's equations. 

 
Fig. 4. Block diagram of the SIMSCAPE model. 

 Table 2 lists the DC motor components and their corresponding values. The damping 

coefficient (𝛽) was chosen to be very small so that the damping would not significantly impede 

the motor’s performance. Also, the moment of inertia (𝐽) was selected very small so that the 

motor can quickly adapt to the control signals.  
 

Table 2. List of the components used with their values [8]. 

Symbol Component Value 

𝛽 Damping coefficient 0.01 N.m/[rad/s] 

𝐽 Moment of inertia 0.01 kgm2 

𝐿 Inductance 0.1 H 

𝑅 Resistance 1 Ω 

𝐾 Torque Constant 1 
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This type of PMDC motor has small values of the damping coefficient and moment of 

inertia used in various kinds of applications such as robotics (small-scale robots), academic 

projects, electromechanical actuators, computer fans, small pumps, hard disk drives, electronic 

toy cars, and drones. The values of the components were adopted from the experimental data 

presented in [8]. 

3. ALGORITHM BACKGROUND 

3.1. NARX  

The Non-linear autoregressive exogenous input (NARX) framework is utilized in time-

series modeling [33]. It is a parallel arrangement of linear and non-linear blocks constructed 

based on the linear autoregressive exogenous input (ARX) framework in time series modeling 

[21, 34]. This framework modeled complicated non-linear behavior using a wavelet or sigmoid 

function. NARX networks can predict one-time series using the feedback input, the prior values 

of the same time series, and the external time series [35]. The standard architecture of the NARX 

is depicted in Fig. 5 below. The variables 𝑥(𝑡)  and 𝑦(𝑡)  represents the input and outputs, 

respectively, 𝑤(𝑡) represents the learned weight values connecting the neurons of the model, 𝑏 

is the bias term added to the weighted sum before applying the activation function. At the same 

time, the ratio (1: 2) indicates that there is one neuron at the output layer and 2 number of 

delays. Additionally, the 10 signifies the number of hidden layers in the model [24].  

Linear models such as Auto-Regressive Moving Average (ARMA) and Linear Regression 

(LR) are widely used for time series prediction [22]. For short-term projections, Box and Jenkins' 

stochastic time series prediction model, ARMA, is entirely accurate [24]. ARMA, however, is 

inappropriate for non-linear systems, such as boilers in power plants. [36] presented the NARX 

model as a solution to this. NARX represents the following random processes: 

𝑦(𝑘) = 𝑓[ 𝑦(𝑘 − 1), 𝑦(𝑘 − 2 ), … , 𝑦(𝑘 − 𝑛)]                                                                                            (3) 

𝑥(𝑘), 𝑥(𝑘 − 1), 𝑥(𝑘 − 2), … , 𝑥(𝑘 − 𝑚) + ɛ𝑘                         (4) 

where, 𝑥 is the externally determined variable, 𝑦 is the variable of interest, and the error term 

is ɛ𝑘. An ANN may simulate the non-linear function 𝑓.  

 

Fig. 5. NARX standard architecture [3]. 

3.2. The GA 

The GA is a computational method that uses stochastic and adaptive search optimization. 

It is based on the process of intrinsic selection [20]. It has gained recognition as a highly effective 

and efficient method for solving optimization problems. It starts with an initial population with 
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a certain number of chromosomes. Each chromosome represents a potential solution to the 

issue at hand, and its performance is assessed using a fitness function [37]. The simplified GA 

architecture is shown in Fig. 6. 

 
Fig. 6. A simplified flow chart of the GA [16]. 

The algorithm has three primary phases: Selection, Crossover, and Mutation. Using these 

three fundamental procedures allows for the generation of new individuals who may exhibit 

superior qualities compared to their progenitors. This method iterates through several 

generations until it reaches the optimal solution to the problem, at which point it ends [38, 39]. 

Metaheuristic methods have been put out recently to ascertain the PID controller gains. 

Compared to traditional approaches, the PID controller optimization process benefits from 

employing metaheuristic algorithms, which reduce tuning time and increase the possibility of 

finding optimal gains [40]. Metaheuristic algorithms are optimization strategies that imitate 

ethological, biological, chemical, or even physical events to solve complicated issues that are 

typically challenging for deterministic approaches to handle[41]. Though the most widely used 

categorization criterion is based on the many sources of inspiration, there is generally no one 

standard for categorizing metaheuristic optimization algorithms [42]. 

3.3. The PID Controller  

A PID controller is an industrial control system's most common feedback controller. It is 

widely used because it is easy to implement and has a wide range of stability. The Schematic 

Diagram of PID is shown in Fig. 7. The PID block diagram demonstrates how the controller 

incorporates proportional, integral, and derivative actions to provide a control signal that 

minimizes the error over time, guaranteeing that the system's output achieves and sustains its 

desired setpoint [43]. The output of the controller is given by: 

𝑈(𝑡) = 𝐾𝑃𝑒𝑥(𝑡) + 𝐾𝑖 ∫ 𝑒𝑥 (𝑡)𝑑𝑡 + 𝐾𝑑𝑒̇𝑥(𝑡)          (5) 

where 𝑈(𝑡)  is the control signal, 𝑒𝑥(𝑡) is the error signal at a time 𝑡 , and 𝐾𝑝, 𝐾𝑖, 𝐾𝑑  are the 

proportional, integral, and derivative gains, respectively. 
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Fig. 7. Schematic diagram of a PID controller [17]. 

4. SYSTEM MODELING 

4.1. Identification Procedure 

System identification in MATLAB entails deriving an approximated mathematical model 

of a system from experimental data. The program offers built-in toolboxes for this procedure, 

covering preprocessing and estimating. The toolkit lets one choose mathematical operations for 

the algorithm and enter experimental data straightforwardly. It also serves to assess the 

performance of the projected system model. Several mathematical techniques in the System 

Identification Toolbox estimate models using input-output data [44]. The data undergoes 

preprocessing, which involves methods like filtering, detrending, and normalizing to remove 

any extraneous noise or bias. The toolkit offers several model structures, such as transfer 

functions, state-space models, and polynomial models. The user may select the most 

appropriate model structure by evaluating the system's characteristics [5]. The toolbox employs 

techniques like the prediction-error method (PEM) or subspace methods to estimate model 

parameters. This is achieved by reducing the discrepancy between the measured outputs and 

the expected outputs of the model. After evaluating the model, it may be verified using other 

approaches available in the toolbox, such as cross-validation or residual analysis, to confirm its 

accuracy [45]. 

The toolbox is employed to produce the transfer function of the modeled system. The 

data used is extracted from the Simscape model, where the input and output are the voltage 

and speed of the DC motor. Table 3 shows the performance parameters of the system 

identification toolbox after finding the transfer function extracted from the results generated by 

the toolbox. The toolbox calculates the parameters while generating the transfer function [46]. 

The system was simulated for 10s in a time step of 0.01, and the data set of 1000 samples was 

recorded.  
Table 3. Performance parameters from the SI toolbox. 

Parameters Units [%] 

Fit to estimation 96 

Final prediction error (FPE) 1.053 

Mean square error 1.042 

Number of iterations 5 

 

Figure 8 is a double y-axis plot that depicts the input of the system (in blue) and the 

respective system's response (in red). The input voltage and corresponding DC motor speed 

were measured and imported into the MATLAB workspace so that the system identification 
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toolbox could access the information. The system identification toolbox was then used to 

generate the system's transfer function. 
 

 
Fig. 8. Response of input voltage and output speed. 

 

The transfer function generated is given by: 

𝐺(𝑆) =
975.5

𝑆2+11.14𝑆+985.7
             (6) 

The transfer function was validated using the general transfer function relation of a DC 

motor, which is written in Eq. 4 as:  

𝐺(𝑆) =
𝜔(𝑠)

𝑉(𝑠)
=

𝐾

(𝐽𝑠+𝛽)(𝐿𝑠+𝑅)+𝐾2            (7) 

Substituting the values of the components from Table 1, the transfer function is found to 

be: 

𝐺(𝑆) =
1000

𝑆2+11𝑆+1010
             (8) 

 

As a result, the transfer function that results from using the system identification toolbox 

and the one that is calculated are approximately the same. This shows that the transfer function 

generated is an accurate representation of the system. 

4.2. NARX Techniques 

After getting the transfer function of the model, the NARX Neural Network is employed 

to identify the DC motor. The network was trained based on the Levenberg-Marquardt 

algorithm using the input voltage and output speed generated from the model. The training 

and testing parameters are represented in Table 4. 

Table 4. The NARX training parameters. 

Parameter Value 

Number of hidden layers 10 

Simulation time 10 s 

Time step 0.01 s 

Delay 2 units 

Figure 9 shows the blocks of the imported NARX model, transfer function, and DC motor 

Simscape model connected in parallel to compare their responses. The network was trained 

using 70% of the stored data, validated 15%, and tested using the remaining 15%. The NARX 
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model was trained using different levels of input orders to obtain the best model. The range of 

input orders is from NARX (1,1) to NARX (5,5), with NARX (2,2) providing the best response 

after training. Figure 10 displays the varying voltage that is applied to the system in order to 

get the output. At the same time, the respective responses of the DC motor black box model, 

the transfer function, and the NARX model are depicted in Fig. 11. 

 
Fig. 9. Blocks of the imported NARX model, transfer function, and DC motor Simscape model for the response 

comparison. 
 

 

Fig. 10. Varying reference voltage given to the plant. 

 

 
Fig. 11. Responses of the black-box model, transfer function, and NARX model. 
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5. CONTROLLER DESIGN 

The PID is the most popular and efficient regulator that offers high precision for 

regulating various processes [4]. The output signal produced by the PID controller is 

computed using the following formula in Eq. (2). PID controllers are preferred due to their 

simplicity, reliability, and fast-rising time [47], which is used for the proposed model in this 

research. The controller coefficients must be configured for the plant model to be correctly 

regulated. Numerous tuning techniques, including the Ziegler-Nichols approach, a manual 

setup method, and an auto-tuning method in MATLAB, are used to tune the PID controller. 

Figure 12 illustrates the block diagram of the transfer function model with the PID controller. 

 
Fig. 12. Block diagram of the system with the PID controller. 

The controller was tuned using an automatic tuning procedure, and a set of the PID gains 

and the respective Filter coefficient value were saved. Table 5 depicts the controller gains 

obtained (where 𝑁 is the filter coefficient), and Fig. 13 shows the response received after the 

tuning.  
Table 5. Controller gains obtained after tuning 

Parameter Value 

𝐾𝑃 8.45 

𝐾𝐼  27.51 

 𝐾𝐷 0.56 

N 64,550.57 

 

Defining a fitness function is typically required when utilizing heuristic methods to 

optimize a problem. One way to gauge the optimum of specific solutions is to look at their 

fitness function [23]. Several fitness functions have been employed to adjust the PID controller 

settings. The rising time (𝑇𝑟), overshoot (𝑀𝑃), settling time (𝑇𝑠), and steady-state error of the 

motor output is used to construct several fitness functions. This investigation uses the Integral 

Time Absolute Error (ITAE) function as the fitness function in [23, 38]. 

 

 
Fig. 13. Response of the system when PID is auto-tuned. 
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6. TUNING THE CONTROLLER GAINS USING THE GA 

The response generated when the PID controller was automatically tuned has some 

overshot. A GA is utilized to get the optimized PID controller gains. Twenty-five generations 

are used with 50 populations, employing the minimization of ITAE as the objective function. 

Figure 14 shows a graph showing the best fitness of GA, with the best fitness value of 0.2936 

and the mean fitness value of 0.2941. Table 6 shows the optimized controller gains obtained 

with the filter coefficient of N=63988 and the best ITAE value of 0.3102. 
 

 
Fig. 14. Convergence graph of the best and mean fitness. 

Table 6. Optimized controller gains obtained. 

GA property Value/method 

Population size  50 

Number of generations 25 

Gains (𝐾𝑃 , 𝐾𝐼 , 𝑎𝑛𝑑 𝐾𝐷)  95.007, 119.972 and 8.219 

Filter coefficient (N) 63988 

Objective function  ITAE 

 

Figure 15 represents the output speed response obtained from the system when the 

controller is auto-tuned and when the controller is tuned using GA (by employing ITAE as an 

objective function). It can be observed from the graphical results that the best response (based 

on the given reference) is obtained when the PID parameters are tuned using GA. 

 
Fig. 15. The controlled transfer function response. 
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The performance indices obtained when the PID controller is auto-tuned and when it is 

tuned using GA are summarized in Table 7 below. With reference to the values of the 

performance matrices, there is a significant decrease in the settling time, the transient time, 

and the overshot of the system. Hence, it can be concluded that the response obtained when 

the PID was tuned with GA is more accurate. 

Table 7. Performance metrics 

Performance metric Auto-tuned GA-PID 

Rise time [s] 2.001 2.000 

Settling time [s]  1.889 1.042 

Overshoot [%] 1.822 1.335 

Transient time [s] 1.889 1.001 

 

The suggested method successfully employs Simscape modeling, NARX neural 

network, PID controller, and GA to efficiently model, control, and optimize the DC motor 

system. The approach simplifies complex multi-domain systems and allows for quick updates 

without the need for complicated mathematical calculations by leveraging Simscape's 

component-based blocks. The model's dependability was confirmed by successfully 

determining a transfer function using System Identification MATLAB's toolbox, which closely 

matches theoretical assumptions. The NARX (2,2) neural network configuration performs well 

in handling non-linear behavior, providing enhanced predictive power and a more profound 

comprehension of the system's dynamics. The optimization of PID controller gains by GAs 

effectively minimizes Integral Time Absolute Error (ITAE) and improves system performance, 

surpassing auto-tuning approaches in lowering overshot and boosting stability. This method 

incorporates advanced modeling, prediction, and optimization techniques to create a precise 

and reliable control system for DC motors, therefore expediting the control design process and 

providing significant insights for future research. The findings underscore the efficacy of 

integrating data-driven methodologies with traditional control systems, significantly 

benefiting both industrial and academic applications. 

7. CONCLUSIONS 

This study successfully demonstrates the implementation of a comprehensive data-

driven control technique that effectively modulates the behavior of DC motors across a variety 

of operating settings. Practical uses for the provided approach abound in control system design 

and offer great promise for academic study. It enables careful analyses of DC motor system 

underlying dynamics and controller design techniques. Control engineers and students 

especially need this resource with its simplicity of access and straightforward design. It offers 

a sensible way to grasp and succeed in the complexity of DC motor control. 

In summary, the techniques and findings described in this context establish the basis for 

future data-driven control and optimization advancements. This will bring about a new age 

of improved efficiency and accuracy in DC motors. The findings, derived from continuous 

improvement and originality in the study, can significantly revolutionize the subject, 

stimulating progress and creativity across several industrial and academic fields. Notably, the 

GA-PID optimization resulted in significant performance improvements, achieving a rise time 

of 2.00 s, a settling time of 1.042 s, and reducing overshoot to 0.487%, demonstrating the 

effectiveness of the proposed control methodology.  
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