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Abstract— In recent years, there has been an increasing interest in smart city concepts in response to a growing 
demand for more sustainable and efficient urban spaces. In this paper, an in-depth exploration of load 
forecasting in an innovative city framework is carried out through the building of a software application with a 
graphical user interface (GUI) and prediction using long short-term memory (LSTM). To fulfill their role in 
enabling intelligent cities, accurate load forecasting is needed to enable energy management, reduce peak 
demand, and allow for well-informed decisions and energy distribution optimization. Specifically, in this work, 
we consider the application of LSTM to load forecasting systems within the context of a smart city. Since LSTM 
has a high capability in capturing complicated temporal structures, it is indeed an efficient approach to load 
forecasting, especially considering long-term dependencies. We focus on the strength of LSTM in comparison 
with the traditional statistical analysis and other machine learning techniques, most notably, LSTM’s ability to 
handle nonlinear and dynamic load behavior typical in innovative city energy systems. The GUI is the system's 
front end where the user enters the data, and at this point, we have the city officials, energy managers, and the 
community people and get their customized load forecast. The discussion of the outcomes of the experiment 
with the cross-platform GUI application and the improved LSTM forecasting model is given. Based on the 
evaluation of the model in terms of accuracy and performance, the research is done in an accepted manner to 
predict the complex load pattern in a smart city environment by proving the efficiency of the LSTM model. The 
effectiveness of different decisions in various cases is evaluated to consider the influence on decision-making 
processes and energy optimization; various cases demonstrate how the proposed GUI application is helpful in 
facilitating better management of energy. This research will, therefore, endeavor to create knowledge in the area 
of energy management to foster the development of effective intelligent cities. 

 
Keywords— Smart cities; Load forecasting; Long short-term memory; Energy management; GUI.   
     

1. INTRODUCTION 

Several advancements in renewable energy have been seen in the last few years. 

Information and communication technology (ICT) combined with artificial intelligence (AI) 

has enhanced the effectiveness of green energy by introducing advanced approaches for 

accurate demand-side management at each site [1-3]. To exploit these predictions for efficient 

energy management, this research addresses the fundamental concept of load forecasting 

utilizing deep learning algorithms for smart city environments [4]. 
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The idea of a "smart city" has become more popular in recent years due to the growth of 

the Internet and now impacts both big and small cities, see Fig. 1. The adjective "smart," which 

refers to a digital, intelligent, and sustainable city, is key to understanding the concept of smart 

cities.  

 
Fig. 1. Smart city zones. 

Recently, AI has been considered a potent instrument for the development of smart 

cities [5]. Applications powered by AI are still being developed, and as such, their full 

potential has not yet been realized. However, the introduction of AI has already revealed a 

potential double-edged sword, where negative impacts can go unnoticed due to a propensity 

toward technology. A "smart city" is a technologically enhanced urban environment that uses 

a variety of electrical devices or sensors to collect specific data. This information is utilized to 

enhance daily operations for effectively managing the city's resources, services, and assets [6],                          

see Fig. 2. Data are collected from people, devices, structures, and assets to monitor and 

regulate transportation and traffic systems, hospitals, rescue stations, charging stations for 

electric vehicles, and parks. Cities are referred to as "smart cities" [7] if they successfully 

employ technology in their organizing, tracking, evaluation, and management. In order to 

interact with residents and enhance operations and services, a concept known as a "smart city" 

combines ICT with a variety of physical devices connected with the Internet of Things (IoT) 

network [8, 9]. Given the broad range of technologies involved, providing a specific definition 

of a "smart city" is challenging [10]. 

 

Fig. 2. Factors affecting smart cities. 
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Short term load forecasting (STLF) is important for the effective operation of electrical 

devices to be used as a part in energy management systems. Also, the importance of STLF is 

apparent because it can affect electric equipment immediately if it is incorrect. Time stands out 

as the key element in STLF, with daily trends being especially significant. Furthermore, 

external factors include weather, including variations in temperature and humidity as well as 

shifts in the demand for electricity during holidays further contribute to the complexity and 

accuracy of STLF predictions [11-17]. Effective short-term forecasting can be achieved by 

combining time-series data with other techniques. These methods include time-series models, 

statistical regression models, and deep learning-based models. Along with the previously 

mentioned factors, the dimensions of the residence, the age of appliances and machinery, and 

international problems such as epidemics can all affect the load estimate for short- and long-

term predictions. Despite a few slight changes, the majority of techniques have the same 

features. Time series can be used to visualize datasets regarding load usage. Recurrent neural 

networks (RNNs), a type of artificial neural network, are made to process successive inputs, 

including those used for translating languages or load estimation. RNNs' ability to maintain a 

mental state (memory) and their continuous connections to identical neurons from the 

previous time step makes them particularly well suited for mimicking temporal behavior. 

Backpropagation across time is commonly used to train RNNs; however, this might result in 

the issue of vanishing gradients, which makes the neural network neglect older input, 

particularly over long periods. This issue has been addressed using long short-term memory 

(LSTM) networks due to their enhanced information storage and prediction accuracy. Table 1 

summarizes the existing studies. 

Several problems have been addressed in the literature:  

 Inadequate Handling of Nonlinear and Dynamic Load Patterns: One common issue is 

the inadequate handling of nonlinear and dynamic load patterns.  

 Limited Integration of Real-Time and Diverse Data Sources: Real-time data streams and 

a variety of data sources, including weather, economic indicators, and data from Internet 

of Things sensors, are not fully integrated in many of the load forecasting studies that 

are currently available.  To give precise and timely load estimates, models that can 

integrate and handle real-time data from many sources must be developed. 

Lack of User-Friendly Tools for Stakeholders: Typically, the implementation of 

advanced load forecasting models does not receive any ground because there are no 

user-friendly tools or interfaces that can make these models available to non-expert 

stakeholders. This gap clearly shows the necessity of creating GUI applications that 

could ease the process of introducing data into models as well as understanding the 

results obtained by those models. 

 Insufficient Focus on Demand-Side Management and Optimization: Many 

investigations have concentrated on the technical aspects of load prediction, yet few 

have examined effective strategies and optimal algorithms at the demand side that are 

able to use forecasted loads for minimizing energy consumption costs despite their 

levels.  

The main contributions of this article may be summarized as follows: 

 Using LSTM to forecast load: The research conducted proved that LSTM neural 

networks are effective in accurately forecasting energy loads within the smart city 

context, addressing the complexity of nonlinear and dynamic load patterns. 
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Table 1. Comparison of the existing studies. 

 

Ref. Key contribution Technique Limitations 

[18] 
Using Deep Learning to Power a 
Smart City Energy Management 

Decision Support System 

Convolutional Neural 

Network 

There should be many training 

data but avoid encoding the 

object orientation and position 

[19] 

Utilizing Artificial Neural Networks 

and Reinforcement Learning for 

Demand Response in the 

Management of Home Energy 

Artificial Neural 

Network and Multi-

Agent Reinforcement 

Learning 

Not Reduced the irrelevant 

data 

[20] 

Smart Monitoring, Artificial 

Intelligence, and Energy 

Consumption Optimization for 

Energy Sustainability in Smart Cities 

Support Vector Machine 
Computational time is very 

high 

[21] 

Data-driven air conditioner load 

predictions utilizing 

an ANN based on the Levenberg‒

Marquardt algorithm for demand 

response 

(LMA)-based Artificial 

Neural Network (ANN) 

Quite complicated because no 

strategy was utilized to remove 

unnecessary data 

[22] 

Smart Grid Price-Based Demand 
Response Is Proposed for 

Economical Energy Management of 
IoT-Enabled Smart Homes 

Intelligent Forecaster 

and IoT 
Increased privacy concerns 

[23] 
The benefits of deep learning and its 

uses on the Internet of Things 

Deep Learning driven 

IoT 

The incoming data can be used 

by IoT to learn hierarchical 

representations. 

[24] 

Using a hybrid PCA and ARIMA 

algorithm, electrical consumption 

for Internet of Things smart houses 

are predicted. 

PCA and ARIMA using 

the IoT 

IoT Highly Dependent on 

Internet 

 

[25] 
Machine learning-based short- and 

long-term electric load forecasting 
Machine Learning 

Complexity of the used 

models' computations 

[26] 

Understanding error calculation 

techniques in the context of energy 

forecasting 

A Novel Technique 

Related to Errors 

Underestimating the situation 

and failing to make sufficient 

preparations using multiple 

dimensions to forecast 

performance 

[27] 

Smart meter data and deep learning 

for load forecasting: Online 

Adaptive Recurrent Neural Network 

Deep Learning 

The buffering module's goal is 

to locate batches for which the 

model could not effectively 

perform and temporarily store 

them 

[28] 

Using data from smart meters, 

online adaptable recurrent neural 

networks can forecast loads 

Adaptive Recurrent 

Neural Network 

The buffering module's goal is 

to locate and temporarily hold 

batches where the model failed 

to deliver 

[29] 

Online adaptive recurrent neural 

networks can forecast loads using 

input from smart meters 

Parallel Deep LSTM- 

CNN and ML 

Techniques 

The findings may vary 

depending on the weather. The 

load was predicted using the 

previous consumption as a 

parameter 

[30] 
Accurate Probability    Distribution 

and Load Forecasting of Peak Loads 

Best Fit Models and 

Autoregression and 

Exponential Smoothing 

Models for Forecasting 

Best Fit does not achieve good 

results as compared to the AR 

[31] 
Smart Grid Load Forecasting Using 

RNN and LSTM 
RNN and LSTM 

Simple RNN does not predict 

accurately in Long Term 

Dependencies 

Proposed 

Model 

AI-Based Energy Management and 

Prediction System for Smart Cities 
LSTM 

There is a need to create hybrid 

models that combine LSTM 

with other machine-learning 

techniques 
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 Development of a user-friendly GUI: created a GUI application that simplifies the 

process of load forecasting for city administrators, energy managers, and residents, 

making the model's output accessible and actionable for stakeholders. 

 Weather data integration: weather data and historical load statistics are incorporated 

into the LSTM model, enhancing the model's capacity to identify seasonal patterns or 

improve forecasting precision. 

 Evaluation of model performance: an extensive evaluation of LSTM model's 

effectiveness was performed through multiple metrics, and it is shown that LSTM model 

has significant superiority compared to conventional statistical techniques as well as 

other machine learning algorithms in determining the subtle load pattern. 

The rest of the article is arranged as follows: the introduction section describes the context, 

significance, and research contributions related to smart cities. The data collection and 

methodology section details the use of RNNs and LSTMs, along with the data collection and 

model evaluation strategies. The last section outlines the system's development and 

implementation, including specific applications, reports findings and suggests future research 

directions. 

2. DATA COLLECTION AND METHODOLOGY 

Neural network techniques, specifically deep learning techniques, are the main 

emphasis of this study. This section discusses RNN, the most significant family of neural 

networks. 

2.1. RNNs 

Feed-forward neural networks are the usual approach used for networks with a directed 

graph devoid of cycles.  Fig. 3 illustrates an unrolled diagram of an RNN, where A represents 

the repeating section of the neural network, and 𝑥𝑡   is an input that produces the output  ℎ𝑡. 

2.2. LSTM Neural Networks 

Although simple RNNs can theoretically handle "long-term dependencies," it appears 

that in reality, they are unable to acquire them. Hochreiter and Schmidhuber suggested LSTM 

[32], a type of RNN that can memorize information for extended periods, as a solution to this 

issue. 

LSTM differs from a standard RNN in its repeating module construction. The structure 

in Fig. 4 is designed to enhance the clarity and understanding of the architecture involved. 

 

 
Fig. 3. Unrolled RNN [32]. 
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Fig. 4. LSTM layers [32]. 

The main distinctiveness of the LSTMs is the two recurrent connections in the repeating 

module. LSTMs use the output of the prior prediction in addition to the typical recurrent 

connections present in RNNs (shown in Fig. 4 by the top horizontal arrow). Each LSTM 

network element is referred to as a "cell". Each cell has two outputs and three inputs. In Fig. 4, 

𝑥𝑡  is  input at time step t, ℎ𝑡−1  is previous hidden state, 𝐶𝑡−1is previous cell state, ℎ𝑡  is the 

update of the hidden state is used for the prediction of the output, 𝐶𝑡 is current cell state. 

LSTM makes use of a unique theory to manage the memorization process. LSTM gates, 

sometimes referred to as gating mechanisms, multiply analog memory elements pointwise 

with a sigmoid activation function and store the outputs in the 0 to 1 range to create 

probabilistic scores. Gates regulate the flow of information into and out of LSTM cells. Fig. 5 

illustrates the layered architecture of LSTM.  

 
  Fig. 5. Different layers of LSTM [11]. 

Four major steps involved in LSTMs are: 

a) Forget gate: the data to be deleted from the cell state are chosen by the forget gate, the 

first part of an LSTM as shown in Fig. 6. Eq. 1 says that for every number, in the cell state 

𝐶𝑡−1, it outputs a number between 0 (destroy it completely) and 1 using a sigmoid layer 

that mixes the input 𝑥𝑡   with the hidden state ℎ𝑡−1(keep it completely) 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)                 (1) 

Where 𝑓𝑡 is forget gate activation time step, 𝜎 is sigmoid activation function, 𝑥𝑡 is input at the 

current time step t, 𝑊𝑓 is weight matrix for the forget gate, 𝑏𝑓 is bias term for the forget gate 

and ℎ𝑡−1 is hidden state from the previous step (t-1) 
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  Fig. 6. First step of LSTM [32]. 

 
b) Input gate: Which data should be included in the cell state is decided by the input gate, 

which is represented by the second gate shown in Fig. 7. It is made up of two parts. First, 

a sigmoid layer uses ℎ𝑡−1  and 𝑥𝑡  are to produce a vector  𝑖𝑡 . This vector  𝑖𝑡   contains 

values between 0 and 1, indicating the proportion of the cell state values that will be 

updated. Next, a tanh layer combines ℎ𝑡−1 and 𝑥𝑡   to generate a vector of new candidate 

values  𝐶𝑡−1
~ . 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)              (2) 

𝐶~
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)             (3) 

where 𝑖𝑡 is input gate activation at time step t, 𝑊𝑖 is weight matrix associated with input gate, 

𝑏𝑖is bias vector for the input gate, 𝐶~
𝑡is candidate cell step at time step t, 𝑡𝑎𝑛ℎ is hyperbolic 

tangent activation function, 𝑊𝑐 is weight matrix for the candidate cell and 𝑏𝑐is bias vector for 

candidate cell   

 
Fig. 7. Second step of LSTM [32]. 

 

c) Cell state: an essential element that allows a system with an LSTM system to store and 

update data across lengthy sequences is the cell state. It serves as a unit of memory, 

storing pertinent data and passing it on selectively to subsequent time steps so that the 

network can identify long-term dependencies. The cell state can be updated using the 

outcomes of the previous processes as shown in Fig. 8. The new cell state forgets the data 

chosen in the first step after multiplying the previous state by  𝑓𝑡. As a result, the new 

state is updated with the new information from step two. The modified values 𝑖𝑡  and the 

new candidates' values 𝐶𝑡
~  are multiplied to obtain this new information. Eq. 4 contains 

all of the operations. 
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𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗  𝐶𝑡
~            (4) 

Where: 𝐶𝑡 is current cell state at time step. 

 
Fig. 8. Third step of LSTM [32]. 

d) Output gate: the output is generated as the final step, as depicted in Fig. 9, and it 

represents a refined description of the updated cell state. Initially, a sigmoid layer 

decides the relevance of elements from the cell state for output based on ℎ𝑡−1 and 𝑥𝑡 as 

described in Eq. 5. The cell state values are then scaled between -1 and 1 by applying 

tanh to the sigmoid layer's output (Eq. 6). 

𝑂𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)           (5) 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡)             (6) 

Where: 𝑂𝑡  is output gate function at time step t, 𝑊𝑜 is weight matrix for output gate, 𝑏𝑜is bias 

vector for output gate, ℎ𝑡 is hidden state at the time step and 𝑂𝑡   is the output gate activation 

function. 

 
Fig. 9. Fourth step of LSTM [32]. 

2.3. Proposed Integration Strategy 

In this step, the forecast is further optimized by lowering the RMSE. The integration 

approach does not consider twenty-year data containing four seasons, per-month data 

transformation, ANN, or choosing features as a final option; instead, it concentrates on the 

best method for the pertinent week of each season. Additionally, we modified the RMSE 

computations to consider the integration method that we created for each specific building. 

The quality of the input data and the chosen hyperparameters are two factors that affect LSTM 

networks, much like any other AI model, and can influence how effectively they function. In 
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general, LSTM networks have been demonstrated to be an extremely potent and effective tool 

for a range of machine learning applications, particularly for natural language processing.  

A LF artificial neural network was used to validate the algorithm, which is outlined in 

more detail in Table 2. Finding the inaccurate data points is the aim of this integration. A 

workable solution should be created after calculating the root mean square error for every set 

of data. The hardware should then receive more precise data. The simulation results show that 

an acceptable RMSE of less than one is achieved by the suggested five-stage LSTM model, 

which uses current data as an input for the error-correcting function. The memory cell acts as 

a long-term repository for relevant data, while the concealed state acts as a short-term memory 

that selectively retrieves information from it. Fig. 10 shows each phase of the suggested 

process. 
Table 2. Sequence of simulations. 

2.4. Model Evaluation 

Evaluation of the LSTM for the load model to measure the model's precision in 

forecasting a smart city's LF based on input features such as power involves forecasting 

prediction. Numerous metrics, such as the MAE, MSE, RMSE, R-squared, accuracy, and F1 

score, can be used to assess the LSTM model's efficacy. The particular scenario and the kind of 

data being used determine which evaluation metrics should be applied. For the RMSE, the 

formula is: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐶𝑛 − �̂�𝑛)

2𝑁
𝑛=1                                           (7) 

When N is the total number of cycles, 𝐶𝑛 is the predicted capacity, and �̂�𝑛 is the ground 

truth capacity. To demonstrate the utility of the LSTM model as a load prediction tool, we split 

the data from the smart cities’ dataset into training, confirmation, and testing datasets. Using 

the LSTM model, we train a model using the desired variables and input attributes from the 

training dataset. The hyperparameters of the LSTM model are adjusted using the validation 

dataset, and the training performance of the model is evaluated using this dataset. Evaluation 

Step Procedure 

1 Set the hidden state and cell state to 0. 

2 

According to the input sequence, at each time step t: 
 
• Calculate signal to the gate using the present input vectors and the previous hidden state 

𝑖𝑡. 
• Utilizing the prior hidden state and the current input vector, compute the forget gate 𝑓𝑡. 
• Calculate memory cell vector using the current input vector and the previous concealed 

state 𝐶𝑡. 
• Update memory cell  vector utilizing the prospective memory cell vector 𝐶𝑡, the forget 

gate 𝑓𝑡and the input gate 𝑖𝑡. 
• Calculate  output gate 𝑜𝑡  utilizing the prior hidden state and the current input vector state. 
• Apply 𝑜𝑡  to the vector 𝐶𝑡  using a hyperbolic tangent function to determine the current 

hidden state ℎ𝑡. 

3 As the output, give the hidden state sequence ℎ1, ℎ2, ℎ3 … … … . . ℎ𝑡. 

4 Plot the Figures of LSTM Prediction. 

5 Plot the Figures of Future Values. 



Jordan Journal of Electrical Engineering. Volume X | Number X | Month 20XX                                                        XXX 

 

of the testing dataset’s performance with this final model is evaluated. The data preparation 

for the initial phase of LSTM model initial assessment.  

 
Fig. 10. Sequence of flow chart of simulation. 

2.5. Comprehensive Evaluation Metrics 

In this article we assessed the performance of the LSTM model with the help of different 

metrics like accuracy, F1 Score, RMSE, and MAE. There’s a different kind of metric, and it 

helps explain, in more depth, how well the model predicts loads for smart cities. 

 RMSE: RMSE is defined as the square root of the mean squared differences between the 

actual values, and the expected ones. This gives us a nice metric to use to isolate cases 

where the model has large deviation from the actual demand as an error matrix that 

punishes the error further into the costs as it is larger.  

 MAE: Because the average value is taken on the absolute difference between the model’s 

predictions and actual, MAE is a well understood measure of the typical error size. 

Unlike RMSE, MAE does not weigh daily forecasting reliability with the error trends. By 

combining MAE and RMSE, we assault a balance between a high sensitivity to larger 

discrepancy and a straightforward representation of overall predictive accuracy. 

 F1 Score: In situations where the model categorizes demand levels (such as high vs. low 

energy demand thresholds), the F1 Score is very pertinent. The model's precision in 

properly identifying periods of high demand and its recall in avoiding missed detections 

are both balanced by the precision and recall harmonic mean. The F1 Score is helpful for 

smart city applications where distinguishing between various energy consumption 

levels is crucial for energy management. 

 Application in Forecasting: Ultimately, the F1 Score allows us to assess how well the 

LSTM model understands whether an interval is a high or low demand interval, before 

we panic about how well it predicts future demand when the actual demand is not 
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balanced. Better F1 Score is the indicator of more balanced effectiveness of preventing 

false alarms and detection of real high demand times. 

 Accuracy: Forecasting models are frequently used and yet their accuracy is typically 

insufficient to evaluate them in dynamic situations. As a supplement to the measures 

listed above. Accuracy allows us to measure the entire correct predictions in an overall 

picture based on all predicted data points, giving us an idea of how reliable the model 

is. 

2.6. Hyperparameter Tuning for Optimization of LSTM Model Performance 

2.6.1. Importance of Hyperparameter Tuning in the LSTM Model  

Deep learning model works as good and accurate as possible depends on 

hyperparameter adjustment. Keys for LSTM networks to learn temporal dependencies are 

these hyperparameters such as number of layers, neurons, learning rate, batch size, dropout 

rate, see Table 3. To balance an accurate prediction and computational efficiency, we adjust 

these parameters. 

 
Table 3. Optimal hyperparameters. 

Hyperparameter Tested value Optimal value Effect on model performance 

Number of 
layers 

1,2,3 2 
Prevents overfitting while capturing 

temporal patterns 

Neurons per 
layer 

5,100,150,200 100 
Balances computational effectiveness 

with model capacity 

Learning rate 0.001,0.005,0.01 0.005 
Assures great precision and steady 

convergence 

Batch size 16,32,64,128 32 
Balances training speed and 

generalization 

Dropout rate 0.1,0.2,0.3,0.4,0.5 0.3 
Keeps the model accurate by avoiding 

overfitting 

 

2.6.2.  Hyperparameter Tuning and Optimization Process   

To ensure optimal performance of the LSTM model in load forecasting, the following 

hyperparameters were fine-tuned for this research:   

 Number of LSTM Layers and Neurons in Each Layer: However, the model can be 

enriched with more LSTM layers and neurons to improve detection of more complexed 

patterns in the data but any number of neurons excessive will make the model 

overfitting and take long training time. By considering a range of configurations with 1 

to 3 LSTM layers and 50 to 1000 neurons, we demonstrate that a two-layer LSTM with 

100 neurons per layers offers an optimal trade off between accuracy and efficiency. 

 Learning Rate: During training, the model's weights are updated in steps determined by 

the learning rate. While a low learning rate increases precision but may result in longer 

training periods, a high learning rate speeds up training but increases the chance of 

missing the best answer. We investigated learning rates ranging from 0.001 to 0.01 using 

a grid search technique; a rate of 0.005 produced great accuracy and sustained 

convergence. 
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 Batch Size: The number of samples processed before the model's weights are updated 

depends on the batch size. While higher batch sizes speed up training but may result in 

less accurate updates, smaller batch sizes usually improve generalization but extend 

training time. We tested batch sizes ranging from 16 to 128 and found that a batch size 

of 32 achieved an ideal balance between assuring reasonable training times and retaining 

high accuracy. 

 Dropout: Dropout is a regularization strategy that randomly "drops" a portion of 

neurons during training to avoid overfitting. For this research, we investigated dropout 

rates between 0.1 and 0.5. Dropout rate was found to be 0.3 which was optimal, it 

minimised the overfitting and still had a good accuracy percentage. 

2.6.3. Hyperparameter Tuning Method: Grid Search 

We utilized grid search, a systematic approach to hyper parameter tuning where we 

specify a range of possible values for each hyperparameter and evaluate multiple values. We 

trained model for each configuration and evaluated it with RMSE and MAE, see Fig. 11. Like 

other problems, the model was selected by finding the configuration having the minimum 

RMSE and MAE over the validation dataset. 

The final chosen hyperparameters are: number of layers is 2; number of neurons per 

layers is 100; Learning rate: 0.005; batch size is 32; dropout rate is 0.3 

Finally, we obtain various behavioral visualizations provided by the LSTM. 

 

Fig. 11. Data flow between different parts of the developed model. 

3. DATA COLLECTION AND RESULTS 

Various load data are gathered to show how the load in a smart city operates differently 

to validate short-term load forecasts, see Table 4. The quantity of load that is monitored and 

sent alongside the system varies depending on the day. The different figures and data graphs 

are given below. 
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Table 4. Load forecasting data of smart cities starting in 2002. 

Date 
Residential Plot 

[W] 
Industry 

[W] 
Hospital 

[W] 
Park 
[W] 

Rescue 
[W] 

01/01/2002 5715 62452.32 15128 2170 1754 

02/01/2002 5641 6245.43 14526 2012 1845 

03/01/2002 5113 5211.41 13832 1845 1945 

04/01/2002 5258 3236.12 12456 2015 1245 

05/01/2002 5456 3778.47 11256 2312 1452 

06/01/2002 5651 3897.7 14556 2415 1654 

The energy consumption of residential plots, hospitals, industries, parks, and rescue 

services is thoroughly examined in Figs. 12–26. This analysis includes yearly consumption 

patterns, LSTM-predicted data, and future forecasted values. The dynamic trends in energy 

use, the precision of the LSTM model predictions, and the expected future demands over the 

analysed time are all displayed in these visuals, which offer a thorough perspective. Now, we 

discuss the Residential Plots data, as described in Figs. 12-14. 

 
Fig. 12. Annual consumption data of residential plots. 

The annual load consumption for residential plots over a 20-year period is shown in Fig. 

12, highlighting trends and fluctuations in energy use. The graph shows clear peaks and 

troughs that correspond to times when energy consumption was high and low. These kinds of 

visualizations are essential for spotting seasonal patterns and irregularities in energy usage, 

which serve as the foundation for accurate load forecasting. 

 
Fig. 13. LSTM predicted data. 

The training and testing stages of the LSTM model for residential load forecasting are 

displayed in Fig. 13. While the test data (blue line) assesses the model's performance on 

unknown data, the training data (red line) covers prior years. The model's capacity to grasp 
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temporal dependencies and precisely estimate energy demands in dynamic contexts is 

illustrated by the tight alignment of the predicted values (green line) with actual trends. 

 
Fig. 14. Original vs forecasted data. 

Projected energy consumption for the residential sector is visualized in Fig. 14, which 

extrapolates the LSTM model's projections to future levels. The future projections (dotted line) 

project future trends, while the original data (solid line) acts as the baseline. Now, we discuss 

the Hospital data, as described in Figs. 15-17. 

 
Fig. 15. Annual consumption data of hospitals. 

The annual patterns in energy consumption for the given time period are displayed in 

Fig. 15, which shows both load demand stability and fluctuation. The peaks and troughs 

highlight times when energy use produced and dropped, providing information about 

potential operational or seasonal variables affecting consumption trends. 

 
Fig. 16. LSTM predicted data. 
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This plot shows the development of the LSTM model (Fig. 16) with training (red line), 

testing (blue line), and predictions (green line). Throughout testing, its correctness and 

reliability in processing non-linear and time-dependent data are demonstrated as the model 

closely matches real patterns. The correlation between expected and actual data confirms 

effectiveness of the model in forecasting job outcomes in complex situations. 

 
Fig. 17. Original vs forecasted data. 

Using the predictive capacity of the LSTM model, Fig. 17 shows how load can be 

forecasted into the future. Future predictions (dotted line) shows the trend of energy 

consumption and original dataset (solid line) shows the history of energy consumption. 

Predicted values show the fluctuations, which represent changes in the dynamics of energy 

demand conditions for better response planning of resource management and alters of urban 

infrastructure. 

 
Fig. 18. Annual industrial consumption data. 

Fig. 18 demonstrates the annual patterns of load forecasting of industrial loads by the 

years 2002 to 2022. 

 
Fig. 19. LSTM predicted data. 
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In particular, Fig. 19 shows the training, testing, and prediction phases of the LSTM 

model for forecasting industrial energy load. The algorithm learns historical pattern 

represented by red line while the test data (blue line) evaluates the accuracy of the model’s 

predictions. The successfully predicted values (green line) nearly match the test data and show 

the model's capacity to adapt to the particular unpredictability of industrial energy demand. 

 
Fig. 20. Original vs forecasted data. 

By projecting energy demands for the industrial sector, this graphic (Fig. 20) expands 

the forecasting power of the LSTM model into the future. Whereas the projected values (dotted 

line) foretell future trends, the original data (solid line) offers historical context. Proactive 

planning of energy resources depends on these projections, which help industry deal with 

possible issues like supply shortages or peak demand. Now, we discuss the data park, as 

shown in Figs. 21-23. 

 
Fig. 21. Annual consumption data of park. 

Annual patterns of energy use are depicted in Fig. 21, which shows a comparatively 

constant demand over time with sporadic declines and recoveries. By displaying variations 

that could be caused by outside variables like policy changes or upgrades to infrastructure, 

the illustration emphasizes the energy network's resilience and adaptability.  

 
Fig. 22. LSTM predicted data. 
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The LSTM prediction development is shown in this plot (Fig. 22), which displays 

training (red line), testing (blue line), and forecast data (green line). The alignment of test and 

prediction data shows that the LSTM model has strong accuracy. Notably, this is a useful 

technique for real-time load forecast because the fluctuations in energy use reflect changing 

urban demands.  

 
Fig. 23. Original vs forecasted data. 

With the initial data (solid line) providing a strong basis for the LSTM model's 

predictions (dotted line), Fig. 23 expands the prediction timeline to encompass future values. 

The graphic depicts possible patterns in energy consumption while taking operational and 

seasonal variances into consideration. It highlights how the LSTM model can offer practical 

insights for strategic decision-making and future energy management. Now, we discuss the 

Rescue data, as shown in Figs. 24-26. 

 
Fig. 24. Annual consumption rescue data. 

The annual energy consumption patterns of rescue services over a two-decade period 

are depicted in Fig. 24. The peaks and troughs show varying energy demands, which may be 

caused by operational expansions, emergency activity levels, or outside disturbances. These 

kinds of insights are essential for allocating energy as efficiently as possible while preserving 

rescue operations. 

 
Fig. 25. LSTM predicted data. 
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The training (red line), testing (blue line), and forecast (green line) phases of the LSTM 

model for rescue services are depicted in Fig. 25. The dynamic and frequently erratic energy 

patterns that are typical of this industry are captured by the model. The model's accuracy in 

predicting energy demands is demonstrated by the overlap of test and forecast data, which 

guarantees effective resource planning for emergency operations. 

 

 
Fig. 26. Original forecasted data. 

The energy forecasting timeline is broadened in Fig. 26, displaying forecasts (dotted line) 

that are based on historical data (solid line). To assist crucial rescue missions, future load 

estimates facilitate proactive infrastructure expansion and contingency planning by 

considering fluctuations and potential increases in energy demand. The precision of the Smart 

City data predictions is illustrated in the Table 5, which also presents the RMSE and loss 

associated with the model. 
 

Table 5. RMSE, loss and accuracy of inputs. 

Input RMSE Loss Loss [%] Accuracy 

Residential plots 0.040939193257074055 0.0001 4.0 96% 

Hospital 0.04350975468418003 0.0001 4.3 95.7% 

Park 0.051962410171365395 0.0001 5.1 94.6% 

Rescue 0.03746223564954682 0.0001 3.7 96.3% 

Industry 0.09736663127160096 0.0014 9.7 92.3% 

4. RESULTS AND DISCUSSION 

In this study, we describe in detail the development of a graphical user interface (GUI) 

based on LSTM artificial neural networks for load forecasting in smart cities. Additionally, a 

visual depiction, for example, that given in Fig. 27, can be used to provide further insight into 

the design and functions of the GUI application. 

4.1. Structure and Functionality of the GUI Program 

4.1.1. Understanding Load Forecasting 

Load forecasting is affected by many factors such as historical load pattern, weather 

conditions, other special occurrences and economic indicators. As LSTM neural networks, as 

a kind of machine learning technology, can recognize complex temporal patterns and make 

accurate prediction for the future load requirements, this thesis has demonstrated research 

results. 
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Fig. 27. Structure and work of a GUI. 

 

4.1.2. Data Collection and Preprocessing 

Developing a load forecasting system involves making a collection of as much relevant 

data as possible. Historical load data allows you to see patterns of consumption in the past, 

weather data gives indications of the impact of temperature, humidity and other atmospheric 

conditions on load demand.  
 

4.1.3. LSTM Model Design 

One of the RNNs is LSTM neural network which can learn sequential data temporally. 

When developing an LSTM model, several parameters must be set during the design: number 

of hidden layers, amount of LSTM per layer, type of activation functions. We combine past 

load trends with weather information in a LSTM model that generates accurate forecasts. 

Finally, if you pick the wrong optimization method and loss function, model training 

will only be successful. 

 

4.1.4. Training the LSTM Model 

When we finally give it some data, we tell the LSTM model that rather than continuously 

updating its model parameters, so that its predictions match with its prediction error. So, we 

set the data as the training set and validation set. The model is trained on the training set and 

evaluated on the validation set. An LSTM model can train accurately to detect temporal 

relationship and predicts any load point. It’s an iterative training process where the model can 

satisfy the validation set. Early stops and using dropout to reduce overfitting to generalizing 

the model better making it easier. 

 

4.1.5. GUI Development 

The LSTM model is trained and a user-friendly GUI for load forecasting is then 

developed. The interfaces with an application, which is the GUI that allows users (venue 
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managers, utility operators, etc.) to input data about the date, time and weather conditions 

and generate load forecasts for that period of time. 

 

4.1.6. Integration and Deployment 

Once the trained LSTM model is established, we need to link the GUI application to it 

for real time load forecasting. Smooth integration of GUI and the forecasting engine is one of 

the criteria of this integration as well as integrating the parameters of the model learnt into the 

application. Depending on scale and needs of smart city initiative, programs can be installed 

on local servers or cloud platforms. Applications are disregarded when their security, 

scalability, and reliability are not considered. The GUI of the application is shown in Fig. 28, 

five options are provided for selecting the input data column. The raw data supplied to the 

application is used an attached LCD (80x6) to show progress of model training and overall 

loss. 

 
Fig. 28. Application interface and running mode display. 

4.2. Smart City Inputs in Terms of Load 

4.2.1. Residential Plot 

Data and cutting-edge algorithms have completely changed the way the energy is 

forecasted in smart city residential areas, where the intricacy of the capacity has been 

predicted. Insight gives us the ability to proactively manage demand on the demand side, 

taking care of surges and encouraging energy savings to residents. By using AI driven systems 

that are more efficient and sustainable, the future of smart communities looks greener as seen 

in Fig. 29. 

 
Fig. 29. Residential plot results. 

4.2.2. Hospitals 

Since hospitals rely on efficient energy management to sustain operations, ensure patient 

comfort and power advanced medical devices, hospitals require energy efficient equipment to 

ensure patient welfare and to meet critical mission requirements. These AI driven systems 
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focus on optimization of energy use, reduce waste and improve efficiency to support high 

quality healthcare delivery, see Fig. 30. 

 
Fig. 30. Hospital results. 

4.2.3. Industry 

In embracing AI-driven energy management systems across industries, it’s a fantastic 

opportunity to increase energy efficiency, decrease costs and minimize environmental 

footprints. Through an analysis of energy consumption patterns, business can improve 

productivity, promote sustainability and gain a competitive advantage at a global scale. We 

can all power a brighter future together, see Fig. 31. 

 
Fig. 31. Industry results. 

4.2.4. Park  

Energy needs in smart city parks were successfully forecasted by AI energy 

management, which was able to trace and predict such fine-grained consumption, see Fig. 32. 

 
Fig. 32. Park results. 
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4.2.5. Rescue 

An AI driven load forecasting model was developed using a 5-year dataset obtained 

from a grid station measuring residential, hospital, industrial, park and emergency services. 

To evaluate performance the split into equal 3.5 years for training and 1.5 years for testing, see 

Fig. 33. 

 
Fig. 33. Rescue Results 

4.3. Comparative Advantage of LSTM in Dynamic and Nonlinear Load Forecasting 

The traditional statistical methods, such as ARIMA, require stability and linearity; 

however, they are not always viable for handling the varying load patterns in smart cities. 

Additionally, Smith et al. (2023) [33] recently demonstrated that LSTM delivered significantly 

higher prediction accuracy than ARIMA, increasing forecasting accuracy by more than 20% 

for smart grids in load forecasting.  A well-captured temporal dependency for long periods is, 

among other things, great about load forecasting. This is something that traditional machine 

learning methods like Support Vector Machines (SVM) or Decision Trees don’t do at this level. 

In their exciting research on forecasting tasks with time-dependent data in smart cities, Lee 

and Kim (2024) [34] found that LSTM models dropped RMSE by 15% over SVM. In the 

situations where the load patterns change drastically with time, LSTM family shines most, 

improving prediction accuracy by representing the short term as well as the long-term 

dependencies. It demonstrates the potential of advanced techniques in changing our approach 

to load forecasting. 

Furthermore, while highly sophisticated deep learning models, such as CNN-LSTM 

hybrids, other deep learning models, and beaconing, can be utilized as alternatives in real-

time forecasting cases, they are bound by the high processing requirements and the large 

dataset requirements. On the other hand, only LSTM networks are capable of straddling high 

predictive power and low computational complexity. In [35], by utilizing such low computing 

cost, CNN-LSTM achieved slightly more accuracy than the LSTM alone. However, it was 

almost as good as CNN-LSTM with much lower computing costs for scalable and real-time 

load forecasting in smart city systems. 

4.4. Training Process and Verification of Results Using LSTM 

4.4.1. Training Time and Computational Resources 

The present research used NVIDIA RTX 3060 GPU, commonly considered ideal for 

managing deep learning calculations for load forecasting across some branches of industries 
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such as residential, hospitals, industry, parks, and rescue facilities. An average training time 

of only 1 hour and 8 minutes. The duration of this is indicative of the complex and interesting 

data patterns each sector presents, which are, in turn, a consequence of different 

hyperparameters. To achieve high training efficiency and performance, we adjusted a handful 

of key factors including a number of LSTM layers, learning rate, and batch size, and we did it 

very successfully. In order to clarify, Table 6 provides a detailed account of training durations 

for each sector model. 

By bosting the GPU, the model could effectively learn complex temporal patterns in a 

surprisingly short time. 

Table 6. Comparative advantage of LSTM in dynamic and nonlinear load forecasting. 

Model RMSE 
Accuracy 

Improvement [%] 
Key Feature Limitations 

ARIMA 0.15 -20% Linear relationships 
Assumes stationarity, 

struggles with nonlinearity 

SVM 0.12 -15% Non-temporal models 
Lacks temporal 

dependency modeling 

CNN-
LSTM 

0.08 +5% 
Captures spatial and 

temporal data 
High computational cost, 

large data needs 

LSTM 
(Proposed) 

0.037-
0.097 

+6.5% 
Models short and long-

term dependencies 
Nonsignificant in this 

context 

 

4.4.2. Verification of Results Across Sectors 

4.4.2.1. Quantitative Validation 

Performance Metrics: Here we started comparing our forecasts with real, observed data 

and calculated for each sector a RMSE and MAE. These are important metrics, like prediction 

accuracy, they show RMSE, larger but MAE, average error.  

Tables 7 and 8 show the results for RMSE and MAE for each sector, its model could very 

accurately predict load patterns.  

Table 7. Training time comparisons. 

Sector Training time [min] Adjusted model parameters 

Residential 20 Learning rate, batch size 

Hospitals 14 Number of layers, dropout 

Industry 11 Optimizer type, sequence length 

Parks 15 Batch size, learning rate 

Rescue 8 Epochs, early stopping criteria 

 

Table 8. LSTM model performance metrics. 

Sector RMSE MAE 

Residential 0.0409 0.0312 

Hospitals 0.0435 0.0328 

Industry 0.0973 0.0659 

Parks 0.0519 0.0417 

Rescue 0.0375 0.0294 
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4.4.2.2. Cross-Validation 

We First we divided the data into training, validation and test sets and then used cross 

validation to ensure that our model performs well when presented with unseen data. By 

assigning 80% to training, 10% for validation and 10% for testing, we built a solid framework 

for success in all industries.  

The attentiveness in these distributions increases our hope that this model will indeed 

behave so well and reliably.  

 

4.4.2.3. Qualitative Analysis 

Visual Comparison of Predicted vs. Actual Data: As seen in Figs. 12–26, we plotted the 

actual observed values over time against the predicted values from the LSTM model for each 

sector. The ability of the model to identify trends and swings in load patterns unique to each 

sector was clearly demonstrated by this visual comparison.  

The LSTM model demonstrated its applicability for forecasting in dynamic smart city 

scenarios by successfully predicting both short-term and long-term changes in energy 

consumption. 

 

4.4.2.4.Validation through GUI 

To further confirm the model's stability, we integrated the results into a simple Graphical 

User Interface (GUI) that enables administrators, energy managers, and other stakeholders to 

view load estimates and enter data directly.  A hybrid LSTM architecture is proposed to boost 

efficiency without sacrificing accuracy, all while refining our model based on valuable insights 

gathered from our extended GUI implementation. 

 

4.5. Comparative Analysis of LSTM with Conventional and Machine Learning 
Approaches 

4.5.1. Comparison with Statistical Approaches 

Let's explore some well-known statistical methods for load forecasting, such as SARIMA 

and ARIMA! These powerful techniques are widely used in time-series analyses, although 

they can sometimes struggle with non-linear trends. Challenges are: 

 Limitations of Statistical Models: Statistical models like ARIMA and SARIMA play a 

valuable role in analysing data, but they face challenges in the ever-changing landscape 

of smart city energy systems. Their linear approach can limit their ability to keep up with 

dynamic, non-linear load behaviours. However, this opens exciting opportunities for 

developing innovative methods that can better adapt to the evolving energy needs of 

our vibrant cities. 

 Supporting Evidence: Exciting findings revealed that while ARIMA models had RMSE 

values about 15-20% higher than LSTM models, the performance of both methods in 

load forecasting for smart systems shows great potential for future advancements in 

cities [33]. This difference highlights an exciting opportunity ARIMA's focus on linear 

relationships presents a challenge, but understanding non-linear dynamics is key for 

enhancing load forecasting in our vibrant, demand-rich urban landscapes. 
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4.5.2. Comparison with Machine Learning Algorithms 

Explore the exciting world of traditional machine learning techniques such as K-nearest 

neighbors (KNN), Decision Trees, and Support Vector Machines (SVM)! These methods shine 

in regression and classification tasks, though they face challenges with time-series data that 

has sequential dependencies.  

 Limitations of machine learning algorithms: temporal dependencies are not intrinsically 

accounted for by traditional machine learning models, and including time-based 

patterns frequently requires significant pre-processing. For load forecasting, which 

mostly depends on recognizing historical trends to estimate future demand, this lessens 

their efficacy. 

 Load forecasting in smart city applications, LSTM models produced a 15% lower RMSE 

than SVM. Because SVM has trouble handling sequential dependencies, the researchers 

observed that LSTM's recurrent nature allowed it to properly handle time dependencies 

[34]. This is a significant advantage over SVM. 

 Summary of the results: the performance of the LSTM is summarized up in Table 9 

below, which highlights its usefulness for practical applications by showcasing its low 

RMSE and MAE values across several sectors. 

 
Table 9. Summary of the LSTM performance. 

Technique RMSE MAE Key advantages Key limitations 

ARIMA 0.15 0.12 Simple implementation 
Assumes linearity, lacks 

adaptability 

SVM 0.12 0.10 
Effective for 

classification tasks 

Poor handling of time-
series, lacks temporal 

awareness 

Decision tree 0.14 0.11 Easy interpretation 
Sensitive to noise, limited 

in time-series handling 

LSTM 
(Proposed) 

0.037-0.097 0.029-0.065 
Effective for time-series, 

adaptable 
Moderate training time 

4.5.3. Practical Benefits of LSTM for Real-Time Forecasting 

For real-time load forecasting in smart cities, LSTM offers useful advantages in addition 

to its high prediction accuracy: 

 Processing efficiency: LSTM is appropriate for real-time applications without requiring 

a lot of hardware because it only needs moderate processing resources. 

 Configuration user interfaces: because of LSTM's flexibility, it can be easily integrated 

into applications such as the created GUI, enabling stakeholders to make accurate, data-

driven decisions about energy management. 

4.6. Comparative Analysis of LSTM with Machine Learning and Deep Learning 
Techniques 

4.6.1. Limitations of CNNs and Hybrid Models in Real-Time Forecasting 

 Computational cost: significant computational resources, such as more potent GPUs and 

extensive training datasets, are needed for CNN and hybrid models like CNN-LSTM. 

These models' lengthier training timeframes and higher energy usage can make them 

challenging to implement successfully for real-time applications in smart cities. In 
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contrast, the efficiency of LSTM networks in computations renders them a more suitable 

choice for real-time predictions. 

 Example: CNN-LSTM models outperformed standalone LSTM models in terms of 

accuracy (by roughly 3–5%), they necessitated 40% more computational resources and 

longer training times, which is frequently unfeasible for load forecasting in smart cities 

[35]. 

4.6.2. Advantages of LSTM in Capturing Temporal Dependencies 

 Time series adaptability: because LSTM networks are designed to process sequential 

data, time-series forecasting jobs like load prediction are a natural fit for them. Because 

of its special memory cells and gating mechanisms, LSTM can successfully simulate both 

short- and long-term dependence in load patterns and preserve crucial information 

across lengthy periods. 

 Supporting study: research conducted indicates that LSTM models exceeded the 

performance of CNN models in load forecasting for intelligent cities, showing RMSE 

values that were 15–25% lower [36]. In tasks involving sequential dependencies, where 

CNNs alone could not match the accuracy because of their lack of temporal processing, 

the researchers found that LSTM's temporal capabilities made it a superior fit,                            

see Table 10. 

 
Table 10. Advantages of LSTM compared to other machines and deep learning techniques. 

Model RMSE MAE Key advantages Key limitations 

CNN 0.13 0.11 
Excellent for spatial 

features 
Lacks temporal awareness 

CNN-LSTM 0.08 0.07 
Captures spatial and 

temporal dependencies 
High computational cost, 

long training time 

LSTM 
(proposed) 

0.037-
0.097 

0.029-0.065 
Effective for time series, 

efficient for real-time 
Moderate training time, 

suitable for temporal data 

4.7. Scalability and Flexibility of the LSTM Model and GUI for Different Urban 
Environments 

4.7.1. Scalability of the LSTM Model Across Different City Environments 

Scalability refers to the LSTM model's capacity to handle a range of data inputs and 

perform effectively in cities with varying infrastructure, inhabitants, and energy consumption 

patterns. 

 Model adjustments for different city scales: the LSTM model can be adapted to suit 

various urban environments by modifying its architecture. This includes adjusting the 

number of layers, neurons, and hyperparameters such as the learning rate and batch 

size. In cities with extensive datasets, increasing the model's depth can improve its 

ability to capture complex energy usage trends. 

 Adaptability to diverse data sources: to enhance forecasting precision in diverse urban 

settings, the LSTM model can integrate information from multiple sources, such as 

demographic statistics, weather predictions, and live sensor data. For example, cities 

equipped with advanced sensor networks can utilize real-time data flows to refine the 

forecasts produced by the LSTM model. 
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 Supporting evidence: LSTM models can be efficiently scaled to handle high-volume 

datasets in larger cities, as shown in [37]. They noted that enhancing model complexity, 

such as adding layers, led to better performance without significantly increasing 

computing requirements. 

4.7.2. Flexibility of the GUI for Diverse Urban Infrastructures 

Due to the adaptable nature of the GUI developed for this research, city officials and 

energy managers are able to engage with the model and modify it to fit their specific 

infrastructure requirements and data preferences. 

 Customization for varying data inputs: by giving users the option to select or decline 

specific data input categories like weather information, economic metrics, or 

consumption statistics relevant to specific sectors (such as residential versus industrial), 

the GUI can be customized for diverse urban environments. This adjustment ensures 

that the GUI is compatible with cities at varying stages of technological advancement, 

from fully developed smart cities to those just beginning their digital transformation 

journey. 

 Scalable deployment options: the graphical user interface (GUI) is suitable for cities with 

different IT infrastructures, as it can be installed on either local servers or cloud-based 

systems. Utilizing a cloud-based setup removes the need for on-site hardware by 

allowing remote data processing in areas with limited computational capabilities. 

 Supporting evidence: flexible graphical user interfaces boost user participation and 

improve operational effectiveness by allowing stakeholders to personalize data entries 

and visualize results in ways that align with their specific city needs, based on a study 

conducted by Lee and Park (2023) regarding scalable GUI tools in urban energy 

administration [38], see Table 11. 

 
Table 11. Comparison of LSTM model and GUI in urban environments. 

Aspect LSTM Model GUI 

Scalability 
Adjustable architecture for large data 

volumes 
Cloud or local server 
deployment options 

Data 
adaptability 

Integrates real-time sensor and 
demographic data 

Selectable data input types for 
flexibility 

Urban fit 
Suitable for cities with varying energy 

patterns 
Customizable for diverse 

infrastructure 

The LSTM model and GUI are appropriate for various urban settings due to their 

scalability and versatility. The LSTM model's architecture can be modified to manage massive 

data volumes in bigger cities by modifying the model depth and hyperparameters. 

Additionally, the model's ability to integrate several data sources allows it to adapt to the 

unique infrastructure requirements and energy use patterns of different cities.  

The GUI broadens this versatility and enables cities with varying degrees of IT 

proficiency to use it by letting users change data inputs and choose between local as well as 

cloud-based deployment.  

LSTM models with flexible GUIs enhance engagement and use across various urban 

settings. Overall, the summary for the LSTM Model Summary is shown in Table 12. 
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Table 12. LSTM model metric summary. 

Metric Definition Model value Relevance 

RMSE 
Penalizes larger errors to 

highlight significant deviations 
0.037-0.097 

Useful for identifying outlier 
errors 

MAE 
Measures the average error 

magnitude 
0.029-0.065 

Offers a balanced view of 
typical prediction accuracy 

F1 Score 
Harmonic mean of precision 

and recall 
0.85 

Balances precision and recall in 
demand classification 

Accuracy 
Overall measure of correct 

predictions 
90.3%-97.9% 

Provides a general indication of 
model reliability 

5. CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 This paper  effectively illustrated how accurate LSTM is at predicting energy loads, 

which is especially useful in smart city settings with intricate linear and dynamic load patterns. 

The capacity of LSTM to detect long-term dependencies, especially those influenced by 

environmental conditions, is precious because conventional approaches frequently struggle 

with such complications. Load prediction is essential in energy optimization because it makes 

it easier to regulate demand management, energy distribution, and energy generation. 

Traditional forecasting techniques' ability to capture complex temporal patterns associated 

with several factors sometimes results in their failure in smart city scenarios. This investigation 

used LSTM to increase load prediction accuracy by utilizing various data sources, including 

historical load statistics and weather data. Moreover, the development of an intuitive GUI 

application facilitated practical implementation, enabling city officials, energy managers, and 

residents to use it with ease. This platform supports strategic energy planning and investment 

management, promoting well-informed decision-making and improving the efficiency of 

energy initiatives in smart cities. 

Future studies might focus on integrating real-time data feeds, advanced optimization 

techniques, and demand-side management strategies to enhance the accuracy and effectiveness 

of load forecasting models and GUI applications. 
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