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Abstract— Finger vein presentation attack detection (FVPAD) biometric systems have seen substantial 
enhancements through the application of deep learning convolutional neural networks (DCNN). This 
advancement led to increased complexity, parameters and resource requirements. To address these challenges, 
a novel modification to the first entry flow of the XceptionNet architecture based on customized depthwise 
separable convolution (DSC) CNN-based for extracting robust features from FV images to detect spoofing 
attacks is proposed in this paper. The proposed approach stands out for its simplicity in design, fewer 
parameters, reduced computational load, minimal resource and equipment needs, and minimum data overflow 
while maintaining high accuracy in verification and classification tasks. The developed FVPAD system includes 
FV image data preprocessing and augmentation, a modified XceptionNet architecture based on DSC to deeply 
extract robust features. Finally, the fully connected (FC) layers exclusively use the SoftMax activation function 
to normalize, predict and classify output classes. The model was evaluated on cropped FV images from the 
IDIAP and SCUT-SFVD datasets, achieving high accuracy rates of 100% and 99.499%, respectively. It also has 
the lowest number of trainable parameters at 131,106 acquired from fifteen convolutional and depth-separable 
convolution layers. 

 
Keywords— Finger Vein; Presentation attack detection; Deep learning; Depthwise separable convolutional 
neural network; XceptionNet.   
 

1. INTRODUCTION  

In the past, security measures revolved around using faces, eyes, and fingerprints for 

authentication in various operations like bank transactions, personal access control systems, 

ATMs, and data centers. The traditional approach involved detecting shapes in an image by 

identifying its edges and corners and then comparing it to a database. However, this method is 

vulnerable to attacks, particularly when it comes to fingerprints. For example, an attacker can 

easily steal someone's identity by using uncooperative methods such as photographs or 

capturing their fingerprint from surfaces like tape or glass. Biometric technology, such as 

fingerprint recognition, has gained popularity and is increasingly being integrated into the 

daily life applications. Unfortunately, the fingerprint-based recognition system is still 

vulnerable to attack. To fool the system, attackers can steal fingerprints and create molds out of 

materials such as silicon, gelatin, or latex [1]. The biometric system aims to automatically 

identify individuals based on biological and behavioral characteristics. for user authentication, 

it employs a variety of modalities, including fingerprints [2], face recognition [3], alongside iris 
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scanning [4]. The finger vein pattern is particularly valuable due to its resistance to change and 

stability. Additionally, each finger vein is unique, contactless, difficult to forge, and highly 

accurate for identification purposes [5, 6]. 

Researchers are currently exploring innovative methods to enhance the security of 

liveness operations by utilizing a person's biological characteristics. This is accomplished by 

combining digital images with biometric data, such as facial or finger vein measurements. 

These metrics have enabled the development of a robust system that is difficult to exploit. Due 

to the specialized equipment required for capturing FV features and structures, including an 

image capture device and near-infrared illumination, the use of finger vein technology has 

proven effective in preventing theft. In this paper, finger vein biometric characteristics are 

utilized to reduce spoofing attacks. Unlike previous studies that focused on optimizing the 

quality of FV images for superior performance [7, 8], this research focuses on improving overall 

fluency. Unfortunately, these types of detection systems are still vulnerable to spoofing attacks. 

Attackers have been successful in bypassing the finger vein detection system by developing 

sophisticated attack methods that mimic the same principles and approaches used by the 

system [9]. For instance, using ink and sandwich paper, they were able to create fake finger 

veins that absorb NIR light just like real finger veins [10], due to the properties of the materials 

used for deception. As a result, there is an ongoing need to develop spoofing detection 

methods, such as utilizing presentation attack detection (PAD) techniques for finger vein 

biometrics. 

Various finger vein PAD approaches of biometric system have conventional framework 

and exhibit similar behaviors [11]. However, they vary in terms of the carried data, applied 

improvement methods, and employed image preprocessing and classification techniques. 

Consequently, several FVPAD approaches were devised to extract features from FV images. 

The more traditional PAD approaches rely on distinguishing between fake and real FV images 

based on differences in feature extraction obtained from these images [12]. Subsequently, 

researchers employed deep learning and transfer learning with CNN models such as LeNet 

[13], AlexNet [14], VGG-16 [15], and VGG-19 [16] to extract FV image features for detecting 

presentation attacks. A comprehensive review of relevant literature on the application of deep 

learning will be presented in Section 2. Therefore, the application of deep learning techniques 

with convolutional neural network models like the XceptionNet architecture [17, 18] has 

resulted in advancements in finger vein PAD models [19]. These enhancements encompass 

improved efficiency, accuracy, and performance while reducing processing and computation 

load and time. 

The main objective of this research is to propose a modified depthwise separable 

convolution (DSC) neural network with residual connections and incorporate fully connected 

(FC) layers including the SoftMax function, for designing a low-complexity FVPAD biometric 

system. The DSC CNN-based application allows us to achieve minimal parameters by 

controlling the number of channels/filters, kernel/filter size, input/image size and stride for 

each channel. Additionally, the structure process is simplified by focusing on modifying only 

the first flow entry of XceptionNet based on customizing the DSC neural network, while the 

middle and exit flow entries are eliminated from the proposed model structure. Moreover, the 

proposed model emphasizes cross-channel correlations and spatial correlations to map and 

separate all channels based on their respective filter sizes. To further enhance the proposed 

FVPAD model while maintaining feature richness, changes are introduced in the number of 
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channels/filters between layers, which speeds up computations and compensates for any loss 

caused by learning kernel size variations. The training datasets were enlarged using data 

augmentation techniques to address overfitting issues.  

The main contributions of this study are: i) developing a deep learning model 

architecture by modifying the initial structure of the XceptionNet [19, 20] using a depth-

separable convolutional neural network approach. Specifically, the proposed model had two 

customized modules of DCS layers with residual connections, ii) fine-tunning and setting 

hyperparameters of the model structure, such as the number of DCNN layers, channels/filters, 

kernel/filter size, input image resizing, stride, training epochs, and learning rate, iii) applying 

data augmentation techniques using the ImgAug affine transformation method, including 

flipping, rotating, shearing, cropping, rescaling, and adjusting brightness, iv) employing the 

Softmax activation function as a classifier for the prediction and categorization process, which 

makes decisions based on statistical probabilities. 

Accordingly, the proposed model structure was designed to address key challenges 

faced by researchers, such as achieving high performance while maintaining low complexity, 

minimal processing time, and low operational losses [21-25], especially in the context of PAD 

methods. Specifically, the network structure was simplified, and the hyperparameters were 

adjusted to reduce trainable parameters, minimize computational load, and decrease feature 

map complexity. Tuning the hyperparameters helped map and separate the network channels, 

enabling efficient and effective feature extraction while minimizing complexity. This approach 

aimed to minimize computational complexity without compromising the ability to learn. 

Additionally, the resizing image method was crucial for quick and efficient training of the 

FVPAD model, especially for deep learning. Furthermore, the data augmentation approaches 

enlarged the FV dataset, acted as a regularization tool to reduce overfitting, generated accurate 

results, and accelerated the training process. Finally, the SoftMax activation function, with its 

exponential normalization and reliance on uniform input distribution, was used in this study 

to simplify the design, achieve class normalization, and generate accurate results in multi-class 

classification tasks. 

The remainder of the paper is organized as follows: Section 2 reviews the existing 

literature on using convolutional neural networks and other deep learning techniques to 

enhance the performance of the finger vein PAD models. In Section 3, the main research 

scenarios and methodology have been investigated. Section 4 presents the simulation and 

experimental results. Finally, Section 5 outlines the key findings from this research and suggests 

potential directions for future developments. 

2. RELATED WORKS 

In recent years, finger vein biometric measurement has gained popularity in comparison 

to other measures such as the iris [26], face [27], palm vein [28], and fingerprint [29]. The 

unique and permanent nature of each individual's finger veins makes it an efficient method 

for biometric verification systems [30]. However, there are limitations, including dataset 

restrictions and the possibility of spoofing or presentation attacks. To address these issues, 

researchers have been concentrating on using deep learning techniques, such as convolutional 

neural networks, to improve FVR performance. Various approaches have been employed to 

tackle the challenges related to a high number of layers and limited datasets in FV 

identification using subconvolutional neural networks. For instance, Boucherit et al. [31] 



69                                                    Jordan Journal of Electrical Engineering. Volume 11 | Number 1 | March 2025 

 

developed a deep-fused CNN that merges multiple convolutional neural networks for FV 

identification. Weng et al. [32] introduced the ZFNet architecture, which utilizes shareable 

convolution layers. In the study [33], researchers proposed deep learning approaches, such as 

deep neural networks (DCNN), that have demonstrated the capability of learning robust 

features from raw pixel images for finger vein image representation and predicting the quality 

of FV images for biometric verification systems. Moreover, in the field of using deep learning 

techniques with convolutional neural networks, the study [34] utilized sub-convolutional 

neural networks to handle challenges posed by numerous layers and data limitations in FV 

recognition tasks. Although the research focused on finger vein recognition instead of 

spoofing detection, it employed lightweight CNNs like AlexNet to extract main features 

deeply in a short time and make classification easier and faster. 

In addition to the previous approaches, a study [35] proposed a lightweight CNN in that 

combined center loss and dynamic regularization to enhance classification efficiency. Das et 

al. [36]utilized MatConvNet-1.0-beta24 for identifying larger FV images. In the study[37], 

researchers implemented FV-Net architecture and focused on Data Augmentation Parameters 

in Convolutional Neural Networks for finger vein detection and classification. Numerous 

research studies have also centered around deep CNN techniques for deep finger vein 

identification. For instance, Huang et al. [38] employed VGG-16 while Lu et al.[39] used pre-

trained AlexNet CNN as competitive order CNN-CO for feature extraction and matching 

purposes. 

Different deep convolutional neural network architectures were employed by Jalilian 

and Uhl [40] to obtain finger vein patterns from images. Noh et al. [41] used DenseNet-16 for 

texture analysis, while researchers in another study [42] focused on developing a full model 

using deep CNNs for feature extraction and classification. They utilized ResNet-50 as a pre-

trained CNN with lightweight DSC for deeper feature extraction. Nguyen et al. [10] applied 

transfer learning methods using AlexNet and VGG-16 models. These paired CNN methods 

were enhanced to overcome overfitting, utilizing transferred parameters. Another research 

study [43] incorporated transfer learning using AlexNet to improve the reliability of the 

biometric system, especially in detecting FV presentation attacks with seven additional 

augmented layers. In 2020, researchers developed the FVRAS-Net [44] real-time model for 

anti-spoofing detection and FV recognition. This model can perform all essential operations in 

a biometric system, such as feature extraction, training, classification, and matching. Another 

study by Hengyi Ren et al. [45] focused on encrypting FV images using the RSA algorithm and 

using a CNN-based algorithm called ResNet 34 to extract features and recognize the images. 

In a recent study by Huy H. Nguyen et al. [46], three types of DCNN were utilized: VGG-19 

as a pre-trained CNN-based for feature extraction; Capsule NW [47]; and XceptionNet [20] 

CNN-based specifically designed for classification tasks.  

Consequently, deep convolutional neural networks are widely used in a variety of 

applications to address training time and overfitting issues. For example, reserachers 

proposed a DSC-LSVM [19] finger-vein PAD model for the IDIAP and SCUT-SFVD datasets. 

the computational workload was reduced by 10% by using the first entry flow level of DSC 

DCNN with the linear support vector machine LSVM. Another recent study [48] created a 

finger-vein PAD model called FV2021, which incorporated deep learning and transfer learning 

techniques based on DSC CNNs. The FV2021 model also employed spatial convolution by 

applying depthwise and pointwise convolutions sequentially. This approach proved 
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beneficial for feature extraction, PRNU correlation analysis, and texture descriptor 

comparison. In conclusion, previous studies have shown that using deep learning techniques 

can improve the performance and accuracy of FVPAD models DCNN-based. Incorporating 

these techniques simplifies model complexity, making it easier to handle large datasets and 

extract relevant features from FV images. Our proposed approach is to use DSC CNNs in the 

FVPAD system for identifying the origin of FV images while minimizing model parameters 

and avoiding unnecessary architectural complexities. 

3. METHODOLOGY  

3.1. General Deep CNN Structure 

A convolutional neural network is a type of deep neural network that utilizes advanced 

deep learning applications to detect complex patterns. It is particularly effective for tasks such 

as image processing, verification, object detection, pattern recognition, and classification [49], 

[50]. CNNs have been widely used in various applications including computer vision due to 

their ability to automatically learn spatial hierarchies of features from the data. In a subsequent 

study [51], multiple layers and convolution filters were used to detect local patterns and extract 

complex features from input FV images. The filters output is then used by one or more fully 

connected FC layers for feature extraction and prediction. The related CNN architecture [52] 

diagram is shown in Fig. 1. Therefore, this paper focuses on deep convolutional neural 

networks applications, specifically the XceptionNet [20] CNN model. It also explores depthwise 

separable convolution CNNs [20, 53, 54], with a particular focus on the entry flow of 

XceptionNet as a deeper feature extraction method. The proposed model comprises of 

convolutional DSC, and FC layers. The first two convolution layers serve as the initial 

computation, functioning as feature detectors and extracting features from the resized input 

images. These features are then mapped to the next module, which includes a separable 

convolution layer. In contrast, the final FC layer followed by a SoftMax function is utilized for 

prediction and classification purposes. Moreover, the DSC layers with residual connection 

layers are employed for extracting robust features deeply. Additionally, all convolutional and 

DSC layers are accompanied by Maxpooling, Batch-normalization (BN), and activation ReLU 

layers to reduce computational load and feature map complexity. 
 

 
Fig. 1. Basic CNN architecture. 
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3.2. XceptionNet CNN Model 

The XceptionNet model architecture is a linear stack of depthwise separable convolution 

layers with residual/skip connections. It is also described as a flixable and straightforward 

approach. The normal XceptionNet architecture consists of three parts of flows: the first entry 

flow has 21 layers with residual connections, the middle flow has 6 layers with residual 

connections and is repeated eight times, and the exit flow has 10 levels with residual 

connections. More details about the XceptionNet architecture can be found in [20]. 

More precisely, the XceptionNet model incorporates a linear stack of depthwise separable 

convolution layers with residual connections due to its architecture. This allows the model to 

learn deeply using fewer parameters and take advantage of DSC's ability to map cross-channel 

correlations and spatial correlations for each output channel separately. By using depthwise 

separable convolution instead of traditional convolution, the technique requires fewer 

parameters while being able to capture more complex representation and acquire complex 

patterns by applying different filters to each channel. In this research, the first entry flow of 

XceptionNet and customized the DSC layers  have been adapted to extract robust features with 

the goal of reducing complexity and improving the efficiency of distinguishing between fake 

and real finger veins. Section 3.3 provides a detailed explanation of the proposed FVPAD 

model.  

3.3. Proposed FVPAD Model (Customized DSC Model) 

To further elaborate on the benefits of using depthwise separable convolution DSC CNN-

based, four key points can be summarized: First, DSC helps to mitigate overfitting by 

introducing fewer parameters. Second, it reduces model complexity and computational 

requirements, making it particularly suitable for computer vision applications, as evidenced by 

numerous papers [48, 55, 56]. Third, applying different filters to each channel allows for more 

effective information gathering. Finaly, DSC is a robust DCNN that employs deep learning 

techniques for automatic feature extraction and classification of FV images from the IDIAP and 

SCUT-SFVD datasets. Therefore, to reduce the design complexity of the proposed model, the 

last module of the first entry flow has been excluded, and considering the selected optimal 

hyperparameters and factors such as input/image size, number of channels/filters, 

kernel/filter size, padding, and stride for each channel. In addition, determined whether a 

convolution layer or a depth-separable convolution layer is used for each module, along with 

residual connection blocks. Thus, the customized DSC model emphasizes the advantages of 

cross-channel correlations and spatial correlations in mapping and decoupling all network 

channels. This optimization aims to minimize parameters while improving the proposed 

model's performance. 

Accordingly, the proposed FVPAD model is made up of a linear stack of depth-separable 

convolution layers with residual connections. The model architecture includes two initial 

convolutional layers, batch normalization, and the ReLU nonlinearity unit. This is followed by 

two module blocks, each containing two depth-separable convolution layers, ReLU activation, 

batch normalization, and Maxpooling. There are also two residual connections in the model 

that consist of 3x3 skip convolution operator layers for each module. Finally, there is one fully 

connected layer consisting of flatten and dense operations layer with a SoftMax activation 

function for prediction and classification. Specifically, the proposed model consists of two 
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sequential modules; each module block has a residual/skip connection with 3x3 convolution 

operator layers using a stride of two.  

Based on the observations, a modified DSC CNN structure is designed and inspired by 

the first entry flow of the XceptionNet network. The kernel size was adjusted to 3x3 across all 

layers, including fully connected, skip connection, and depth-separable convolution layers. The 

padding is set to "same" for fully connected and modules layers, while stride is consistently set 

at two for all layers.  

To optimize performance, various hyperparameters and factors have been considered. 

This includes the number of DSC modules used, filter sizes employed, data generation methods 

applied, including data augmentation techniques. Furthermore, the number channels/filters 

have been adjusted to 32 for the first convolution layer and 64 for the second convolution layer. 

Additionally, the number of channels/filters has been optimized and fixed at 64 for two DSC 

modules. Finally, the fully connected layer is also set up with a similar number of 

channels/filters of 64. The complete architecture can be seen in Fig. 2. More details regarding 

its structure are provided in Table 1. 
 

Table 1.  Architecture of the customized DSC CNN-based system for the proposed FVPAD model. 

Layer name Output size No. of parameters 

Input layer 96, 96, 3 0 

conv2d_8 (Conv2D) 48, 48, 32 864 

batch_normalization_16 (BatchNormalization) 48, 48, 32 128 

re_lu_10 (ReLU)) 48, 48, 32 0 

conv2d_9 (Conv2D) 48, 48, 64 18432 

batch_normalization_17 (BatchNormalization) 48, 48, 64 256 

re_lu_11 (ReLU) 48, 48, 64 0 

separable_conv2d_8 (SeparableConv2D) 48, 48, 64 4672 

batch_normalization_18 (BatchNormalization) 48, 48, 64 256 

re_lu_12 (ReLU) 48, 48, 64 0 

separable_conv2d_9 (SeparableConv2D) 48, 48, 64 4672 

conv2d_10 (Conv2D) 24, 24, 64 36864 

batch_normalization_19 (BatchNormalization) 48, 48, 64 256 

batch_normalization_20 (BatchNormalization) 24, 24, 64 256 

max_pooling2d_4 (MaxPooling2D) 24, 24, 64 0 

add_4 (Add) 24, 24, 64 0 

re_lu_13 (ReLU) 24, 24, 64 0 

separable_conv2d_10 (SeparableConv2D) 24, 24, 64 4672 

batch_normalization_21 (BatchNormalization) 24, 24, 64 256 

re_lu_14 (ReLU) 24, 24, 64 0 

separable_conv2d_11 (SeparableConv2D) 24, 24, 64 4672 

conv2d_11 (Conv2D) 12, 12, 64 36864 

batch_normalization_22 (BatchNormalization) 24, 24, 64 256 

batch_normalization_23 (BatchNormalization) 12, 12, 64 256 

max_pooling2d_5 (MaxPooling2D) 12, 12, 64 0 

add_5 (Add) 12, 12, 64 0 

flatten_2 (Flatten) 9216 0 

dense_2 (Dense) 2 18434 

Total parameters 132,066 
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Fig. 2.  DSC CNN-based proposed model. 

3.4. FVPAD system 

In fact, the finger vein PAD structure is consistent in architecture and behavior across all 

solutions in practice. However, there are variations in dataset types, data input size, prediction 

and mapping features, and performance improvement methods. Additionally, there are 

differences in data generation approaches including data preprocessing and augmentation 

techniques as well as feature extraction strategies and implemented classification methods. As 

a result of these differences, the FVPAD has the potential for further improvements to enhance 

its effectiveness. Furthermore, adjusting hyperparameters and attributes of model structure, 

as well as the criteria for data augmentation could lead to significant enhancements. This 

optimization not only affects the number of parameters but also impacts the choice of 

classification technique. In addition, it is crucial to consider factors like processing time, 

duration of training, the platform used for training and finding suitable datasets for FVPAD 

tasks. 

In this context, Fig. 3 illustrates the complete architecture of the proposed FVPAD model, 

incorporating the DSC CNN-based approach. The proposed FVPAD model comprises three 

blocks. The first block involves data generating for FV images, utilizing preprocessing and 

augmentation techniques to enhance the reliability and performance of feature extraction by 

the CNN. Data generation significantly contributes to expanding FV data size, mitigating 

overfitting concerns, and improving overall CNN performance. Additionally, the second block 

of the FVPAD system includes a newly developed DSC CNN-based system for training, 

feature extraction, and mapping as illustrated in Fig. 2. Finally, it incorporates a fully 

connected layer comprising of a flattened layer and dense layer with SoftMax function. This 
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aids in determining whether an FV image is real or forged by adjusting hyperparameters such 

as number of channels/filters of 64, kernel size of 3x3, and stride of two. The system handles 

fake FV images differently - either ignoring them or repeating them - while real images 

undergo further processing in the final block known as the FVR system block for evaluation. 

 
Fig. 3.  Overall structure of the proposed FVPAD biometric system. 

 

Furthermore, advanced techniques, such as deep learning CNN-based methods enhance 

the FVPAD model and create tailored PAD systems for finger vein images. The customized 

DSC uses the convolution layer to establish the developed model, which is considered the core 

of building the CNN block. It is responsible for major computations and incorporates fewer 

components like stride, number of channels, and kernel size. These are used to perform initial 

functions like feature detection, extraction, and mapping to the next module resulting in 

simplified model processing leading to improved performance. 

4. SAMPLE DATA AND RESULTS  

4.1. Sample Data  

The proposed FVPAD model is evaluated using two publicly available datasets, namely 

IDIAP VERA [24] and SCUT-SFVD [25]. These datasets consist of cropped FV images, as 

demonstrated below:  

 The IDIAP VERA is a finger vein database that includes 440 index finger images from 

110 clients. These images were captured by a sensor to evaluate the performance of 

FVPAD systems in detecting finger vein spoofing or presentation attacks. Additionally, 

there are 440 forged finger images in the database, making it a total of 880 real and fake 

finger vein images in the dataset. Likewise, the IDIAP database contains two types of 

finger vein sizes – original size and cropped FV images for both fake and real finger 

veins. The original images have dimensions of 650x250 pixels while the cropped ones 

are sized at 550x150 pixels. This study utilizes the cropped FV images to exclude the 

surrounding environment and solely concentrate on the area around the actual finger 

veins. 

 The SCUT-SFVD database, developed by South China University of Technology [25], is 

specifically designed for evaluating the performance of FVPAD systems in detecting 

finger vein spoofing or presentation attacks. The dataset consists of 3600 images, 

including both fake and real FV images. Each image has been cropped from its original 
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size of 158x467 pixels to a size of 150x450 pixels, focusing solely on the finger vein area. 

This study utilized the cropped FV images for analysis and evaluation purposes.  
 

As a result, this study aimed to primarily enhance system performance by reducing the 

input size of the FV images to 96x96 pixels. Fig. 4 provides visual examples of data 

preprocessing approaches using resizing method for the original cropped real and fake FV 

images from the IDIAP and SCUT-SFVD datasets. Additionally, Table 2 presents detailed 

information about the distribution of these datasets, including training, validation, and testing 

data subsets. 

 
Fig. 4. Preprocessing method - FV images resized to 96x96 pixels: a) IDIAP (real FV); b) IDIAP (fake FV);                

c) SCUT-SFVD (real FV); d) SCUT-SFVD (fake FV). 

 

Table 2. IDIAP and SCUT-SFVD datasets distribution. 

Database 
Real FV image  Fake FV image 

Training Testing Validation  Training Testing Validation 

IDIAP FV [24] 440 200 120  440 200 120 

SCUT-SFVD [25] 720 2160 180  720 2160 180 

Accordingly, the first block of the proposed FVPAD structure was used to preprocess and 

augment the collected samples sourced from the IDIAP and SCUT-SFVD datasets. 

4.1.1. Data Preprocessing   

In order to optimize the FVPAD model, it is necessary to preprocess the finger vein 

images before using them in the training and detection blocks, as previously illustrated in               

Fig. 4. This involves regenerating the FV image datasets by applying various transformations 

such as normalization, rescaling, and resizing. For consistency across datasets like IDIAP and 

SCUT-SFVD, all resized FV images are standardized to 96x96 pixels. Fig. 5 displays the set of 

preprocessed and FV images after resizing and normalization. Data preprocessing enables the 

proposed model to efficiently process data without causing delays or compromising accuracy 
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during detection, especially in problematic areas of the images. Therefore, preprocessing plays 

a crucial role in identifying optimal features for normalizing FV images. For example, resizing 

the images to smaller dimensions such as 96x96 pixels, enables deep learning models to train 

more quickly and efficiently. 

 
Fig. 5. FV images resized after preprocessing operation to 96x96 pixels: a) IDIAP datasets (real); b) IDIAP Vera 

datasets (fake); c) SCUT-SFVD dataset (real); d) SCUT-SFVD dataset (fake). 

To ensure compatibility for matching and classification, the FV images are normalized 

using techniques such as numerical stability methods and the min-max function to transform 

them within a range of 0 to 1, as outlined in Eqs. 1 and 2, respectively. 

  𝑅𝑒𝑠𝑐𝑎𝑙𝑒 = 1/255                                                                                     (1) 

(𝑥)′ =
𝑥−min(𝑥)

max(𝑥)−min (𝑥)
                                                                               (2) 

4.1.2. Data Augmentation 

Data augmentation is a crucial technique in deep learning to enhance the diversity of a 

training dataset. This technique involves creating copies of existing data and making small 

adjustments to the images. It helps enlarge the dataset's feature vectors, extract more robust 

features, achieve reliable predictions, and reduce overfitting in deep-learning models. 

Additionally, it plays a role in regularizing and normalizing the FV datasets. In particular, the 

proposed FVPAD model applies affine transformations such as ImgAug augmenters 

techniques to FV datasets using approaches like shearing, flipping, rotating, cropping, zooming 

in and out as well as changing brightness and contrast. Those augmented methods are applied 

to both the IDIAP and SCUT-SFVD databases, except for the flipping method. Specifically, the 

images in the FV dataset from both databases differ in size; therefore, the IDIAP dataset was 

horizontally flipped while the SCUT-SFVD dataset vertically flipped. As a result, Table 3 details 

the techniques used to augment the FV training datasets. Regarding the results of augmentation 

techniques, Table 4 describes the distribution of augmented real and fake FV images for both 

IDIAP and SCUT-SFVD databases, which consist of approximately 4,400 and 7,200 cropped real 

and fake FV images respectively.  
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Table 3. Data augmentation techniques used to expand the FV training datasets. 

IDIAP datasets  SUCT-SFVD datasets 

ImgAug 

augmenters 

Affine 

transformations 
 

ImgAug 

augmenters 

Affine 

transformations 

rotation 15  rotation 15 

rescale 1./255  rescale 1./255 

shear 0.2  shear 0.2 

Horizontal flip 1.0  Vertical flip 1.0 

Multiply (random 

brightness) 
1.2, 1.5  

Multiply (random 

brightness) 
0.8, 1.2 

 
Table 4. The augmented real and fake FV images distribution for both IDIAP and SCUT-SFVD databases. 

Dataset 
Real FV image 

training 

Fake FV image 

training 

FV image 

datasets 

FV image 

augmentation 

Total 

FV images 

IDIAP FV 

[24] 
440 440 880 5 4400 

SCUT-SFVD 

[25] 
720 720 1440 5 7200 

As a result, Fig. 6 shows the FV sample results of five different augmentation methods 

applied to the FV training datasets. This highlights how data generation can be valuable in 

reducing overfitting, expediting the training process, and extracting robust features to achieve 

high performance, especially when applying deep learning in the proposed FVPAD model. 

 

Fig. 6. Sample of the five data augmentation approaches applied on real and fake cropped FV images from the 

IDIAP training datasets. 

4.2. Training Infrastructure 

 For the implementation phase, the proposed model employes TensorFlow platform    

[56-58]. TensorFlow offers reliability, user-friendliness, support for deep learning, and can be 

easily installed on machines with minimal specifications. The proposed model does not 

require high-end specifications but relies on certain components and hyperparameters to 

function properly. Thes include Jupiter Notebook version v2.4 and Python version 3.8 which 

installed on a laptop equipped with an Intel processor (core i7 2.7GHz, 4 CPU cores), and Intel 
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HD 620 graphics display device, along with NVIDIA GeForce 930MX graphics display with a 

share of 4GB memory capacity. For training purposes, fixed and optimized hyperparameters 

are utilized including a learning rate of 0.0001, batch size set at 32, and maximum epochs set 

at 40. Additionally, it incorporates categorical cross-entropy, Adam optimizer, ReLU 

activation function, early stopping technique, and maxpooling. Consequently, Table 5, 

outlines the specific training infrastructure needs specifications and the fixed 

hyperparameters used in the proposed FVPAD model for FV images generated from IDIAP 

and SCUT-SFVD datasets. 

Table 5. Proposed FVPAD model training infrastructure and fixed hyperparameters. 

Basic 

datasets 
CPU GPU 

Tensor 

flow 

version 

Python 

version 
Optimizer 

Learning 

rate 
Batch Epoch Kernel 

IDIAP 

and 

SCUT-

SFVD 

Intel 

core i7-

2.7GHz 

4CPU 

NVIDIA 

GeForce 

930MX 

4GB 

2.8.0 3.8 Adam 0.0001 32 40 3x3 

4.3. Experimental Evaluations, Results, and Comparisons  

4.3.1. Performance Evaluation Criteria 

This section outlines the evaluation process and results for the proposed FVPAD 

model.  In this experiment, the performance is evaluated using global standard evaluation 

metrics benchmarks based on ISO/IEC 30107-3 [59]. The following metrics and expressions 

provide a detailed explanation of how the FVPAD methods are evaluated: 

 The attack presentation classification error rate (APCER): is a measurement used by 

biometric systems to assess their ability to detect attacks or presentation attacks. It 

represents the proportion of attack presentations using the same presentation attack 

instrument species PAIs that are incorrectly classified as bona fide presentations in a 

specific scenario. A lower APCER indicates that the system is more effective at detecting 

spoofing attempts.  

 The bona fide presentation classification error rate (BPCER): is a measure of how well a 

biometric system can detect attempts to bypass it. It represents the proportion of bona 

fide presentations that are incorrectly classified as presentation attacks in a specific 

scenario. In this context, a presentation attack occurs when an attacker presents a 

legitimate biometric sample that has been registered in the system but does not 

correspond to the person who is present. A lower BPCER indicates higher effectiveness 

of the system in detecting such attempts to bypass its security measures. 

 The average classification error rate (ACER): is the average of the APCER and BPCER. 

ACER is used to evaluate the overall performance of a biometric system. A lower ACER 

indicates better overall performance. The metrics APCER, BPCER, and ACER are 

calculated according to Eqs. 3, 4, and 5 respectively. 

 𝐴𝑃𝐶𝐸𝑅 = 1 − (
1

𝑁𝑃𝐴
) ∑ (𝑅𝑖) 𝑁𝑃𝐴

𝑖=1                                                           (3)                      

𝐵𝑃𝐶𝐸𝑅 =  
∑ (𝑅𝑖)   𝑁𝑃𝐴

𝑖=1

𝑁𝐵𝐹
                                                                              (4)                            

𝐴𝐶𝐸𝑅 =
𝐴𝑃𝐶𝐸𝑅+𝐵𝑃𝐶𝐸𝑅

2
                                                                          (5) 
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The NPA variable represents the number of presentation attacks for a specific instrument 

species, and NBF represents the number of bona fide presentations. Ri is equal to 1 when the ith 

presentation is classified as an attack presentation, and 0 if it is classified as a bona fide 

presentation. The evaluation metric for assessing the performance of the PAD system includes 

global standard metrics like precision, recall, accuracy, and ACER. These metrics are 

represented by Eqs. (6) to (9) respectively. They are also utilized in evaluating the proposed 

FVPAD model. It should be noted that the values of ACER in Eqs. (9) and (5) are identical. 

  𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                       (6) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                          (7) 

𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                                    (8) 

𝐴𝐶𝐸𝑅  =   
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                           (9)  

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                                                      (10) 

The metrics of precision, recall, and accuracy are used to evaluate the performance of 

biometric systems. Precision measures how many positive patterns were correctly predicted, 

while Recall calculates the fraction of positive patterns that were accurately classified. Accuracy 

(ACC) is the ratio of correct predictions across all systems. The F1score assesses both recall rates 

and accuracy for consistency. Furthermore, true positives, false positives, true negatives, and 

false negatives are values that are used to determine the tested datasets whether datasets are 

real or fake. As shown in Table 6, TP, FP, TN, and FN are used as inputs for confusion matrices 

that demonstrate classification performance.  

Table 6.  Binary confusion matrix. 

 Positive Negative 

Positive TP FP 

Negative FN TN 

Consequently, the confusion matrix provides valuable insights into the performance of 

classification models by identifying areas where the system is not performing well and 

detecting challenging patterns for the model. Specifically, the confusion matrix metrics, such as 

accuracy, precision, recall, and F-score, are employed to evaluate the performance of the 

proposed model, as detailed in Section 4.3.2 (see Fig. 7). 

  
(a) (b) 

Fig. 7. Confusion matrix outputs: a) IDIAP Vera; b) SCUT-SFVD.  
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4.3.2. Experiment Results   

The proposed FVPAD model was evaluated using global metrics described in the 

previous section. It was applied to cropped FV images from the IDIAP and SCUT-SFVD 

datasets. Subsequently, this section presents the initial results and the generated outputs of 

proposed FVPAD model. It includes fixed hyperparameters and attributes such as a total of 

four depth-separable convolution layers, two traditional convolution layers, and two 

residual/skip convolution layers. The overall structure consists of fifteen layers excluding the 

classification stage layers. Therefore, the IDIAP dataset has a validation step number of 240 and 

a training step number of 27, while the SCUT-SFVD dataset has recorded 360 validation steps 

and 45 training steps. Other fixed hyperparameters such as cross-entropy, pooling, activation 

function, and model normalization are set to default values including maxpooling, ReLU, 

categorical cross-entropy, and BN were utilized in testing the proposed FVPAD model. 

Table 7.  The proposed FVPAD model CNN-based hyperparameters, attributes and factors. 

Datasets 
Images 

size 

Overall 

layers 

Separable 

layers 

Conv 

layers 

Skipped 

ConV 

layer 

Training 

steps no. 

Validation 

steps no. 

IDIAP 96x96 15 4 2 2 27 240 

SCUT-SFVD 96x96 15 4 2 2 45 360 

The proposed FVPAD model, built using the DSC deep learning application, 

demonstrated impressive efficiency with a total of 132,066 parameters. Of these, 131,106 were 

trainable parameters, and 960 were non-trainable parameters. This streamlined parameter 

count reflects the model's commitment to achieving low complexity while ensuring 

effectiveness. Subsequently, the proposed FVPAD model was applied to train FV datasets 

from the IDIAP and SCUT-SFVD databases, yielding impressive results for both tested 

datasets. It achieved an overall accuracy of 1.0 (100%) for the IDIAP dataset and 0.99499 

(99.499%) for the SCUT-SFVD dataset. Table 8 provides a detailed breakdown of parameters 

and the model's accuracy; it offers a comprehensive overview of its performance and 

parameter distribution while highlighting its robustness in accurately detecting presentation 

attacks in finger vein biometric systems. 

Table 8.  DSC CNN-based accuracy and performance measurement. 

Datasets 
ACC 

Test datasets 

Loss 

Test datasets 

Total 

parameters 

Trainable 

parameters 

IDIAP 100% 0.000 132,066 131,106 

SCUT-SFVD 99.499% 0.014 132,066 131,106 

Furthermore, the outputs of the training data generator are utilized with the proposed 

FVPAD model for the training process in both IDIAP and SCUT-SFVD datasets. New fit 

parameters, such as training accuracy, training loss, validation accuracy, and validation loss, 

are evaluated as metrics. These parameters act as validation data for fitting deep learning 

models and indicate whether the proposed model is overfitting, underfitting, or a good fit.  

As a result, Fig.  8a, the IDIAP dataset shows that training accuracy ranged from 91% to 

100% across all epochs, while validation accuracy started at 79% and reached a perfect score of 

100% by the final epoch. The loss values also exhibited notable improvement during training, 

with training loss ranging from 0.12% to 0.03%, reaching its lowest value in the last epoch,. 
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Similarly, validation loss decreased progressively from an initial value of 65% to reach 0.06% 

as shown in Fig. 8b. The test datasets showed a minimal loss of only 0.05% in overall 

performance. Similarly, Fig. 8c demonstrate significant improvements in both training and 

validation accuracy for the SCUT-SFVD dataset, increasing from 93.5% to 100% and from 50% 

to 100%, respectively. However, there was a wide range of training losses, which decreased 

from 16% to 0.03%. The validation loss also varied but consistently declined during training, 

starting at 70% and reaching 0.27% at the last epoch, as illustrated in Fig. 8d. Additionally, the 

overall loss on test datasets was measured at 1.3%. 

Upon completing the initial prediction and assessment phases, as well as obtaining the 

initial outputs, data, and results using the proposed FVPAD model based on DSC CNN for the 

FV training and validation datasets, the classification stage was conducted as the third step in 

the biometric system. This stage involves utilizing the FV testing datasets to enhance the 

accuracy and efficiency of the FVPAD model. The achievement of improved classification 

performance is determined through a performance evaluation method using a confusion matrix 

applied to our proposed model, especially on the testing datasets. The main objective at this 

stage is to differentiate between genuine and forged FV images in testing sets comprising 400 

FV images from the IDIAP database and 4320 from the SCUT-SFVD database. 

The confusion matrix represents the distribution of the testing datasets. In the IDIAP 

dataset, the confusion matrix values for TP, FP, TN, and FN were 200, 0, 200, and 0 respectively. 

Similarly in the SCUT-SFVD dataset: TP:2141, FP:3, TN:2157, and FN :19. These values obtained 

from the Confusion Matrix are used to compute performance measurements such as precision, 

recall, F1 score, and ACER for both databases 

Table 9 shows the performance measurements of the confusion matrix. The precision 

value is around 100% for both databases, while the recall of 100% for IDIAP database and 

99.12% for SCUT-SFVD database. In addition, in addition to the F1 score, the IDIAP database 

achieved a success rate of 100%, while SCUT-SFVD database achieved a success rate of 99.499%. 

The evaluation using confusion matrix method showcased high classification performance of 

the proposed FVPAD model. 

Table 9. Accuracy measurements of the proposed FVPAD model using DSC CNN-based approach. 

Datasets Accuracy Precision Recall F1score 

IDIAP 100% 100% 100% 100% 

SCUT-SFVD 99.499% 100% 99.12% 99.49% 

Consequently, Table 10 presents the performance results of the proposed FVPAD model 

for the FV datasets in both IDIAP and SCUT-SFVD databases. The evaluation is based on 

standardized ISO/IEC 30107-3 [59] metrics: APCER, BPCER, and ACER. For the IDIAP 

datasets, both APCER and BPCER achieved a low error rate of 0.0%, indicating strong 

performance by the proposed model for detecting fake and real-live FV images. The obtained 

results demonstrate that the proposed FVPAD model performs exceptionally well with an 

overall average ACER metric of 0.0%. 

Table 10. Performance of the proposed FVPAD model using DSC CNN-based approach. 

Datasets ACER APCER BPCER 

Proposed FVPAD (IDIAP) 0.0% 0.0% 0.0% 

Proposed FVPAD (SCUT-SFVD) 0.005% 0.0013% 0.0087% 
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      (a) 

 
             (b) 

 
             (c)  

 
(d) 

Fig. 8. The overall training and validation accuracy and losses: a) IDIAP dataset, training accuracy; b) IDIAP 

dataset, training loss; c) SCUT-SFVD dataset, training accuracy; d) SCUT-SFVD dataset, training loss. 
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In contrast, the SCUT-SFVD datasets achieved a low error measurement for the APCER 

metric of only 0.0013% and a BPCER metric of only 0.0087% due to using large FV datasets, 

resulting in an overall ACER average metrics of only 0.005%. Additionally, this value is 

identical to the ACER metric value achieved based on confusion matrix performance evaluation 

method. These values further highlight the effectiveness, reliability, and strong performance of 

the proposed model. 

Finally, Table 11 compares the proposed FVPAD model with existing CNN-based models 

such as XceptionNet [19], FV2021 [48], VGG-16 [10, 19], and AlexNet [10, 19].  
 

Table 11. Performance and hyperparameters comparisons of the Xception, FV2021, AlexNet, VGG-16 CNN-based 
models, and the proposed FVPAD model on the cropped FV datasets. 

PAD 

method 

No.  of 

datasets 

Resized 

image 

pixels 

No. of 

epochs 

Learning 

rate 

No. of 

layers 

CNN 

network 

based 

No. of 

parameters 
ACC 

Xception 

CNN-based 

[48] 

(IDIAP) 

120 96x96 NA 0.001 

36 

Conv 

+ 1 

FC 

Original 

Xception 

CNN-based 

20,822,768 

(AUR-

ROC) 

ROI = 

100% 

Precision= 

100% 

FV2021 [48] 

(IDIAP) 
120  96x96 NA 0.001 

6 

Conv 

+ 1 

FC 

modified the 

First entry 

flow 

XceptionNet 

314,632 

(AUR-

ROC) 

ROI= 

99.97% 

Precision= 

100% 

PAD Alex-

Net [10], [19] 

(IDIAP-

PVD) 

500 87×151 10 0.001 

5 

ConV 

+ 3 

FC 

Customized 

AlexNet 
1,191,168 

ACC= 

100% 

PAD VGG-

16 [10], [19] 

(IDIAP 

PVD) 

500 128×256 10 0.001 

2x8 

ConV 

+ 3 

FC 

Customized 

VGG 16 
3,532,576 

ACC= 

100% 

Proposed 

FVPAD 

(SCUT-

SFVD) 

1440 96x96 40 0.0001 

15 

ConV 

+1 FC 

Customized 

the First 

entry flow 

XceptionNet 

132,066 

ACC= 

99.499%   

Precision= 

100% 

Proposed 

FVPAD 

(IDIAP) 

880 96x96 40 0.0001 

15 

ConV 

+1 FC 

Customized 

the First 

entry flow 

XceptionNet 

132,066 

ACC= 

100%, 

Precision= 

100% 

 

The evaluation criteria for this comparison include accuracy, hyperparameters, CNN-

based approach, and FV datasets. Table 11 presents the performance and hyperparameters of a 

set of existing models based on deep convolutional neural networks, as well as the proposed 

FVPAD model. While all existing CNN models achieved excellent performance on the cropped 

FV datasets, ranging between 99-100%, they exhibited complexity in their structure with a large 

number of parameters and high computational load. For instance, deeper models such as 

XceptionNet, VGG-16, and AlexNet showed high performance but required a significant 
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increase in parameters and computational requirements during implementation. On the other 

hand, FV2021 achieved high performance with few parameters by using a 7x7 kernel size, 

which allowed for greater coverage while potentially sacrificing precise details. Additionally, 

the FV2021 dataset was sourced from eight databases, including the IDIAP database, which 

contained 120 FV images as presented in Table 11.  

Among these results, the proposed FVPAD model achieved impressive scores of 100% 

for the IDIAP Database and 99.499% for SCUT-SFVD Database. Additionally, this model 

demonstrated remarkable outcomes with a low number of trainable parameters of 131.106, 

resulting in less complexity, simplicity, accelerated speed, and minimizing computational loads 

all without requiring special equipment’s or specific environment for implementation.  

Finally, the models were compared based on their CNN-based architecture, 

hyperparameters, and the number of parameters used. The proposed FVPAD model 

demonstrated high accuracy and efficiency while outperforming existing models in similar 

areas with comparable parameter usage. This led to the development of a less complex model 

that achieves high performance in detecting finger vein spoofing attacks using DSC CNN-based 

applications. 

5. CONCLUSIONS AND FUTURE WORK 

In this study, a FVPAD model was developed using deep learning techniques based on 

CNN. The proposed model was tested on the IDIAP and SCUT-SFVD databases, effectively 

distinguishing between fake and real (live) FV images. Additionally, a DSC CNN-based model 

was created and validated. Experimental results demonstrate that the proposed FVPAD 

achieved superior performance with low complexity, resulting in 131.106 trainable parameters 

using 15 convolution layers. Furthermore, it is characterized by efficient resource utilization, 

depth training, robust feature extraction capability as well as speed and high accuracy in 

detection and classification with rates of 100% for IDIAP datasets and 99.5% for SCUT-SFVD 

datasets. Therefore, when applying the FVPAD model, using a large number of parameters is 

unnecessary as they do not affect the computation process. As a result, it is concluded that the 

proposed model is lightweight and does not demand specific resources or an operating 

environment with strict specifications.  

In future work, the proposed finger vein presentation attack detection model will be 

targeted in order to establish a biometric FV detection system that is easy to implement and 

highly efficient. Specifically, this will involve developing a minimally complex CNN-based 

deep learning model with fewer parameters, making it adaptable to new datasets growth or 

capable of adjusting when presented with unfamiliar data, while effectively detecting spoofing 

attacks. 
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