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Abstract— Addressing the challenge of sparse acoustic channel is important in communication systems such as 
tele- and video-conferencing systems. Sparse impulse response plays an efficient role in acoustic identification 
systems, particularly in long acoustic rooms. This article presents an enhanced version of the Improved 
Proportionate Normalized Least-Mean-Squares (IP-NLMS) algorithm. It adapts only the active coefficients, 
thereby reducing the computational complexity of IP-NLMS algorithm. The selected active coefficients of the  
IP-NLMS algorithm (SAC-IP-NLMS) are proposed exactly in sparse impulse response (SIR) in order to reduce 
the computational complexity with faster convergence rate. Several simulations conducted across various sparse 
environments - based on the time evolution of error signals, the mean square error, the echo return loss 
enhancement and  the computational complexity - validate the effectiveness of the proposed algorithm. 

 
Keywords— Adaptive filtering; Sparse impulse responses; Improved Proportionate Normalized Least-Mean-
Squares algorithm; Communication system.  
     

1. INTRODUCTION  

Recently, the advancement in telecommunication systems have shown significant 

improvements in areas such as speech recognition [1, 2], noise reduction [3, 4], acoustic echo 

cancellation [5, 6], and speech enhancement [7]. However, noise in closed environments can 

disrupt conversations, leading to unclear communication. This noise, known as punctual noise, 

reduces the connection between users. Recently, numerous research papers have explored the 

use of adaptive filtering algorithms in various telecommunication systems, such as reducing 

acoustic echo and noise, to improve conversation quality and speed convergence [7]. 

Many research activities have attempted the identification problem both in the time and 

frequency domains. For instance, widely utilized techniques include the basic Least Mean 

Square (LMS) and its normalized version, for their simplicity [8]. Additionally, various filtering 

algorithms personalized for Acoustic Echo Cancellation (AEC) have been proposed [9-10]. 
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However, the challenge deteriorates in scenarios with strongly non-stationary excitation signals 

and variable echo paths. Echo cancellers, employing digital Finite Impulse Response (FIR) 

filters, offer a solution to these complexities. These include lengthy Impulse Response (IR) 

modeling of the echo channel and the presence of non-stationary input signals such as speech. 

To resolve the sparse environment problem, several adaptive filtering algorithms have 

been developed, such as the proportionate NLMS algorithm (PNLMS) [11]. The improved 

proportionate NLMS algorithm (IP-NLMS) has been proposed to address dispersive or sparse 

environments [12]. These algorithms update a significant portion of adaptive filter coefficients 

to achieve best performance [11-13]. Based on real-time implementation of AEC systems, the 

algorithm complexity is important. 

This paper introduces a novel approach to reduce the computational complexity of 

adaptive algorithms while ensuring fast convergence rates as IP-NLMS algorithm, particularly 

in SIR systems. Our proposed version involves including an averaging constant detection into 

the IP-NLMS algorithm for adapting the selected active coefficients. This method aims to 

dynamically adjust the detection thresholds to identify the active coefficients. The algorithm 

showcases excellent performance in terms of achieving low MSE values, all while maintaining 

very low computational complexity. 

The paper is structured as follows. In section 2, we present the acoustic impulse response 

identification systems, detailing NLMS and improved P-NLMS algorithms. In section 3, the 

proposed selected active coefficients IP-NLMS (SAC-IP-NLMS) algorithm is introduced, 

focusing on its development. The experimental results are presented in the next section. Finally, 

a conclusion is done in the last section of this paper. 

2. ACOUSTIC IMPULSE RESPONSE IDENTIFICATION SYSTEMS 

We are considering a system of two conferencing rooms equipped by two microphones 

and two loudspeakers, as presented in Fig. 1. The channel between a microphone and 

loudspeaker in each room is characterized by acoustical impulse response. In the locale room, 

𝑠1(𝑛) is the first speech signal send to the second room, however, 𝑠2(𝑛) presents the second 

speech signal send from the second room to the first ones that is coupled with the first acoustic 

impulse response ℎ1(𝑛). In the second room, the first speech signal 𝑠1(𝑛) is filtered by the 

acoustic impulse response ℎ2(𝑛) [9]. We can define the two output signals 𝑦1(𝑛) and 𝑦2(𝑛) of 

adaptive filters 𝑦1(𝑛) and 𝑦2(𝑛), respectively by: 

𝑦1(𝑛) = 𝑠2(𝑛) ∗ ℎ1(𝑛)        (1) 

𝑦2(𝑛) = 𝑠1(𝑛) ∗ ℎ2(𝑛)               (2) 

where (*) is the convolution operation. The two echo paths ℎ1(𝑛) and ℎ2(𝑛) represent impulse 

responses of two rooms. The Basic impulse response identification system is presented in                 

Fig.  1 [14-16]. In any teleconferencing system, it is efficient to eliminate the two acoustic 

echoes, 𝑦1(𝑛) and 𝑦2(𝑛), added to the signals received by the microphones installed in the two 

rooms. For the AEC system, adaptive filters are employed to identify the room IR. The filter 

needs to be updated continuously, because the characteristics of the room vary in time with 

the movement of people and objects [14-16]. Noting that 𝑠2(𝑛) is convoluted by ℎ1(𝑛). In other 

hand, 𝑠2(𝑛) is convoluted by adaptive filter 𝑤1(𝑛) that is used to estimate the ℎ1(𝑛), and 

subtracted from the 𝑑(𝑛). To update the filter 𝑤1(𝑛), we use the error signal during silence 

periods of 𝑠1(𝑛) [14]. This error is given by: 
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𝑒(𝑛) = 𝑑(𝑛) − 𝑦̂1(𝑛)       (3) 

𝑑(𝑛) = 𝑠1(𝑛) + 𝑠2(𝑛) ∗ ℎ1(𝑛)      (4) 

𝑦̂1(𝑛) = 𝑠2(𝑛) ∗ 𝑤1(𝑛)      (5) 

Inserting Eqs. (4) and (5) in Eq. (3), we obtain 

𝑒(𝑛) = 𝑠1(𝑛) + 𝑠2(𝑛) ∗ ℎ1(𝑛) − 𝑠2(𝑛) ∗ 𝑤1(𝑛).                 (6) 

𝑒(𝑛) = 𝑠1(𝑛) + 𝑠2(𝑛) ∗ [ℎ1(𝑛) ∗ 𝑤1(𝑛)].                            (7) 

In the optimal case [15, 16], 𝑤1(𝑛) converges to ℎ1(𝑛), and the calculated error becomes:  

𝑒(𝑛) = 𝑠1(𝑛)      (8) 

 
 

Fig. 1. Basic impulse response identification system. 

2.1. Basic Non-Sparse NLMS Adaptation 

Firstly, we are employing the estimation of the adaptive filter 𝐰1(𝑛), the a priori error 

signal e(n) at each iteration is determined as [6]: 

𝑒(𝑛) = 𝑑(𝑛) − 𝐬2(𝑛) ∗ 𝐰1(𝑛)          (9) 

By incorporating the a priori error signal e(n) from Eq. (9), the cost function 𝐽(𝐰1(𝑛)) is 

formulated as [9, 10]: 

𝐽(𝐰1(𝑛)) = 𝐸{𝑒(𝑛)2}          (10) 

Hence, the mean square error (MSE) cost function is quadratic in the adaptive filter 

vector 𝐰1(𝑛). The minimum of the error surface is achieved by setting the partial derivatives 

of 𝐽(𝐰1(𝑛))  with respect to each filter coefficient to zero. Therefore, the unique optimal 

adaptive filter is defined as [6, 9, 10]: 

𝐰1,𝑜𝑝𝑡(𝑛) = 𝐑−𝟏𝐩          (11) 

where 𝐩 , the M × 1 cross-correlation vector between 𝑦̂(𝑛)  and 𝑠2(𝑛) , is defined                                        

as𝐩 = 𝐸{𝑦̂(𝑛)𝐬2(𝑛)} . And 𝐑 , the M × M auto-correlation matrix of the tap inputs in the 

+ 
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transversal filter, is defined by 𝐑 = 𝐸{𝐬2(𝑛)𝐬2
T(𝑛)}. This method, known as the Wiener-Hopf 

solution, provides the minimum MSE and can be used to estimate the unknown room impulse 

response. However, it is not suitable for non-stationary signals such as speech signals, and the 

autocorrelation and cross-correlation values are also unknown. To resolve this problem, we 

can use the steepest descent method that is an iterative gradient-based technique that 

optimizes cost function 𝐽(𝐰1(𝑛)) by iteratively adjusting filter coefficients in the direction of 

the steepest decrease, thereby approaching the minimum error point with each iteration. 

Therefore, the filter coefficient update equation of steepest descent is expressed as [8]: 

𝐰1(𝑛 + 1) = 𝐰1(𝑛) + λ[𝐩 − 𝐑 𝐰1(𝑛)]                 (12) 

In Eq. (12), the adaptive step-size λ is designed to control the rate of convergence. The 

LMS algorithm is widely favored for its ease of implementation, low complexity, and 

numerical stability. The filter coefficient update equation for the LMS algorithm is expressed 

as [8]: 

𝐰1(𝑛 + 1) = 𝐰1(𝑛) + λ  𝐬2(𝑛)𝑒(𝑛)        (13) 

For stability it must be lie with the range 0 < 𝜆 < 2/𝜗𝑠,𝑀𝑎𝑥, with 𝜗𝑠,𝑀𝑎𝑥represents the 

largest eigen-value of the auto-correlation matrix R. The LMS algorithm represents as a first 

estimator for the Wiener-Hopf filter due to its approximation of the gradient vector. In                   

Eq. (13), the adjustment of the filter coefficients is directly proportional to the tap input vector 

𝐬2(𝑛). Consequently, when the 𝐬2(𝑛) vector is large, the LMS algorithm experiences gradient 

noise amplification. To address this issue, the adjustment applied to the tap weight vector at 

each iteration can be normalized by the squared Euclidean norm of 𝐬2(𝑛). So, the adaptation 

step-size λ of LMS algorithm has been changed by [µ/𝐬2
T(𝑛)𝐬2(𝑛)]. The NLMS algorithm is 

proposed to ensure convergence behavior independent of the input energy of the adaptive 

filter, and is widely adopted, particularly in AEC applications. Eq. (14) is the NLMS recursive 

update formula [8].  

𝐰1(𝑛 + 1) = 𝐰1(𝑛) +
µ𝐬2(𝑛)𝑒(𝑛)

𝐬2
T(𝑛)𝐬2(𝑛)+𝜉𝑛𝑙𝑚𝑠

                                                                                     (14) 

where, a small parameter 𝜉𝑛𝑙𝑚𝑠 is added in the denominator to overcome the problem of 

division by zero when the quantity [𝐬2
T(𝑛)𝐬2(𝑛)] takes small values or a zero value. 

𝐰1(𝑛) = [w1,1(𝑛), w1,2(𝑛),… ,w1,𝑀(𝑛)], this vector is used for identifying the impulse 

response h1(𝑛). It contains the filter coefficients that are updated at each iteration to minimize 

the error signal. 

𝐬2(𝑛) = [s2(𝑛 − 1), s2(𝑛 − 2),… , s2(𝑛 − 𝑀)] represent the M recent values of the input 

signal 𝐬2(𝑛) at each iteration n. It is used to compute the output of the adaptive filter and the 

error signal. 

µ represents the normalized adaptation step-size parameter that is takes its values 

between 0 and 2 [8]. In the context of the NLMS algorithm, the normalized parameter µ is 

important for ensuring the stability and convergence speed of the adaptive filter 𝐰𝟏(𝒏). The 

value of µ typically ranges between 0 and 2 [8, 17]. Firstly, μ must be chosen such that the filter 

does not diverge, and this range is chosen to guarantee the stability of this adaptive NLMS 

algorithm. As we note that, the higher values of µ lead to faster convergence but can also 

increase the risk of instability and larger steady-state errors. Conversely, the smaller values 

provide better stability and lower steady-state errors but result in slower convergence rates. 
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One major drawback of the NLMS algorithm is its significantly reduced convergence rate 

when dealing with sparse impulse responses, which are common in network echo cancellation 

applications. To address this issue, several sparse adaptive algorithms have been specifically 

developed to effectively identify sparse impulse responses in such contexts [11-13]. 

2.2. Sparse NLMS versions 

In teleconferencing AEC systems, the length of IR can extend up to 2048 filter taps, 

representing approximately 256 milliseconds. The acoustic system exhibits sparsity, meaning 

most of its taps are close to zero (inactive coefficients), while only a small subset of coefficients 

has significant magnitudes (active coefficients) [13]. Numerous sparsity-aware adaptive 

algorithms have been proposed to address the NLMS algorithm in teleconferencing systems, 

particularly its inability to accurately identify SIR. The filter coefficients update equation for 

numerous sparse adaptive algorithms can be represented by Eq. (15) along with the following 

set of generalized equations [11]: 

𝐰1(𝑛 + 1)= 𝐰1(𝑛) +
µ 𝑄(𝑛) 𝐬2(𝑛) 𝑒(𝑛)

𝐬2
T(𝑛) 𝑄(𝑛) 𝐬2(𝑛)+𝜉

                                                                                             (15) 

The diagonal control matrix 𝑄(𝑛) is employed to precise the step-size value for each 

coefficient. It is defined as by: 

𝑄(𝑛)  =  [

𝑞1(𝑛) 0 ⋯ 0

0 𝑞2(𝑛) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑀(𝑛)

]  (16) 

The Proportionate NLMS algorithm [11], aims to enhance the initial convergence speed. 

This method assigns a high adaptation gain to large coefficients while providing minimal 

adaptation gain for small coefficients. The diagonal elements 𝑞𝑚(𝑛) of the step-size control 

matrix 𝑄(𝑛) in Eq. (16) for the PNLMS algorithm can be expressed as [11-13]: 

𝑞𝑚(𝑛) =
𝜃𝑚(𝑛)

1

𝑀
∑ 𝜃𝑖(𝑛)𝑀−1

𝑖=0

,      0 ≤ 𝑚 ≤ 𝑀 − 1               (17) 

𝜃𝑚(𝑛) = 𝑚𝑎𝑥{𝜌 × 𝑚𝑎𝑥{𝛾, 𝐹(|𝑤1,0(𝑛)|), , … , 𝐹(|𝑤1,𝑀−1(𝑛)|)}, 𝐹(|𝑤1,𝑚(𝑛)|)}   (18) 

where, the function 𝐹(|𝑤1,𝑚(𝑛)|) is personalized to the specific used algorithm. The parameter 

𝛾  = 0.01 prevents the filter coefficients 𝑤1,m(𝑛)  from stalling when 𝐰1(𝑛) = 01×𝑀  at 

initialization. The parameter ρ, usually set to 0.01, ensures that the coefficients do not stall 

when they are much smaller than the largest coefficient. For the PNLMS algorithm [11], the 

elements 𝐹(|𝑤1,𝑚(𝑛)|) are defined by: 

𝐹(|𝑤1,𝑚(𝑛)|) = |𝑤1,𝑚(𝑛)|         (19) 

Therefore, PNLMS uses larger step-sizes for active coefficients, resulting in faster 

convergence than NLMS for sparse impulse responses. However, after a rapid initial 

convergence, PNLMS experiences a slower convergence in second phase. 

The MPNLMS algorithm improves the convergence of PNLMS by computing the 

optimal proportionate step-size during adaptation. It ensures all coefficients converge to 

within a vicinity 𝜖of their optimal value in the same number of iterations. Consequently in 

[17], 𝐹(|𝑤1,𝑚(𝑛)|) for MPNLMS is defined by: 

𝐹(|𝑤1,𝑚(𝑛)|) = 𝑙𝑛(1 + ɳ|𝑤1,𝑚(𝑛)|)        (20) 
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The MPNLMS algorithm adjusts the step-size with ɳ = 1 𝜖⁄ , where 𝜖  is a very small 

positive number [17]. A value of 𝜖 = 0.001  is recommended for typical echo cancellation 

scenarios. The positive bias of 1 in Eq. (20) prevents numerical instability during initialization 

when 𝑤1,m(0) = 0, ∀𝑚. 

Both PNLMS and MPNLMS algorithms encounter slow convergence when dealing with 

dispersive unknown systems, such as those found in acoustic impulse responses (AIRs). This 

issue arises because the step-sizes become small for each large coefficient due to the significant 

enlargement of certain parameters in the algorithms when the impulse response is dispersive. 

This is attributed to the significant enlargement of 𝜃𝑚(𝑛)in Eq. (18) for most 0 ≤ 𝑚 ≤ 𝑀 − 1 

when the impulse response is dispersive. 

In [12], the authors introduced the IP-NLMS algorithm, which combines elements of 

both non-sparse and sparse adaptation. The update formula of IP-NLMS is the same as 

presented previously in Eq. (15). Where the diagonal elements 𝑞𝑚(𝑛) are calculated as [12]: 

𝑞𝑚(𝑛)   =   
(1−𝛼)

2 𝑀
  +     

(1+𝛼)|𝑤1,𝑚(𝑛)|

2 ‖𝐰1(𝑛)‖1+𝜑
                                                                                                (21) 

where 𝛼 is a control parameter must be fixed between –1 and 1 [12]. With 𝜑 is small 

number to prevent division by zero, particularly during the initial stages of adaptation when 

filter taps are initialized to zero. The IP-NLMS algorithm mirrors the non-proportionate NLMS 

algorithm when 𝛼 equals -1.  

Conversely, when 𝛼  equals 1, the IP-NLMS and P-NLMS algorithms coincide. In 

practical applications like AEC systems, 𝛼= 0, -0.5, or -0.75 are commonly preferred choices 

[19]. ‖𝐰1(𝑛)‖1 is defined as the 𝑙1-norm: 

‖𝐰1(𝑛)‖1 = ∑ 𝑤1,𝑚(𝑛)𝑀
𝑚 = 1            (22) 

In the next, we examine the computational complexity of NLMS, PNLMS, MPNLMS, 

and IPNLMS algorithms. In Table 1, we assess the relative computational complexity of four 

algorithms in terms of the total number of additions, multiplications, divisions, comparisons, 

and logarithms required per iteration for coefficient adaptation. 

Table 1. Complexity of coefficients update filter using four algorithms [6, 11-13]. 
Algorithm Addition Multiplication Division Comparison Logarithm 

NLMS 3M + 3 6M + 4 1 0 0 

P-NLMS 4M + 1 7M + 3 2 4M 0 

MP-NLMS 4M + 2 8M + 3 2 4M M 

IP-NLMS 4M + 3 8M + 2 2 0 0 

Table 1 demonstrates that the overall computational complexities of PNLMS, MPNLMS, 

and IPNLMS either increase or remain comparable to NLMS. Justifying these heightened 

complexities requires significantly improved convergence. Notably, the IP-NLMS presents a 

promising solution compared to others, as it updates all coefficients, both active and non-

active of the sparse filter. In the next section, we will introduce our proposed algorithm, based 

on the IP-NLMS approach but engineered for very low complexity. 

3. PROPOSED LOW-COMPLEXITY SAC-IP-NLMS ALGORITHM 

In longer AEC applications, the complexity of the IP-NLMS algorithm becomes more 

pronounced compared to the basic NLMS. The adaptive filter comprises mostly small or near-
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zero inactive coefficients and only a few active coefficients with significant magnitudes. Hence, 

selecting the right number of active coefficients in the adaptive filter is important for efficiently 

handling SIR (see Fig. 2). For minimizing the computational complexity of the basic sparse         

IP-NLMS, we propose to adapt the active coefficients in the sparse adaptive filter. To achieve 

this goal, we propose a modified IP-NLMS adaptive filtering approach with significantly 

reduced complexity.   

 
Fig. 2. Selection procedure of active coefficients. 

We note that 𝐶𝑖 represent the coefficients of the SIR. We propose to adapt only the active 

coefficients, employing a selection active coefficients bloc based on an averaging constant 

detection. In the proposed new AEC system, a novel bloc has been introduced to facilitate the 

selection of active coefficients within the adaptive filter. Following this stage, the adaptation 

process focuses solely on these active coefficients, thereby reducing the computational 

complexity load. The updating formula of the selected coefficients is expressed as follows: 

𝐰1,S(𝑛 + 1) = 𝐰1,S(𝑛) +
µ𝑠𝑄𝑆(𝑛)𝐬2,𝑆(𝑛)𝑒(𝑛)

𝐬2,𝑆
𝑇 (𝑛)𝑄𝑆(𝑛)𝐬2,𝑆(𝑛)+𝜉𝐼𝑃

                 (23) 

where 𝜉𝐼𝑃  = ((1 − 𝛼) 2𝑀⁄ )𝜉𝑛𝑙𝑚𝑠 and α is a control parameter must be fixed between –1 and 1. 

This formula updates only the active coefficients in 𝐰1,S(𝑛) based on the error signal and input 

signal, thereby reducing computational complexity by ignoring small and inactive coefficients. 

The new diagonal control matrix 𝑄𝑆(𝑛) is written as:  

𝑄𝑆(𝑛)  =  

[
 
 
 
𝑞𝑆,1(𝑛) 0 ⋯ 0

0 𝑞𝑆,2(𝑛) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑆,𝑀(𝑛)]

 
 
 

    (24) 

where,𝑑𝑖𝑎𝑔{𝑄𝑆(𝑛)}  =  [𝑞𝑆,1(𝑛), 𝑞𝑆,2(𝑛), ... , 𝑞𝑆,𝑀(𝑛)]. The modified diagonal coefficients 

𝑞𝑆,𝑗(𝑛) are estimated as 

𝑞𝑆,𝑗(𝑛)   =   
(1−𝛼)

2 𝑀
  +   

(1+𝛼)|𝑤1,𝑆,𝑗(𝑛)|

2 ‖𝐰1,𝑆(𝑛)‖
1
+𝜑

         (25) 

The new sparse impulse response identification systems and selected active coefficients 

bloc of proposed SAC-IP-NLMS algorithm are illustrated in Figs. 3 and 4. 

Following the threshold calculation, the second step involves identifying the S active filter 

coefficients, new vector 𝐰1,𝑆(𝑛). This is achieved by comparing each element of the step-size 

control matrix with the previously calculated threshold value. Any element in the matrix that 

larger or equals the threshold is considered an active coefficient. 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C
M

-1
 

C
M
 

𝑞𝑇ℎ 

ℎ(𝑛) 

𝑡 

10% of coefficients are active 

 

Threshold value 𝑞𝑇ℎ used to select  
the active coefficients, with selected  
coefficients in red  
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To precisely determine the active coefficients, the important step involves calculating a 

threshold derived from the mean value of the matrix elements that is expressed as: 

𝑞𝑇ℎ   =  𝛾 ∑ 𝑞𝑗(𝑛)𝑀
𝑗 = 1           (26) 

 
Fig. 3. AEC based on proposed algorithm with SAC presented in detail in Fig. 4. 

In this context, if qj(n)  ≥  qTh, the coefficient w1,j(n) is considered an active coefficient. 

Conversely, if qj(n) < qTh, the coefficientw1,j(n)presents an inactive coefficient. The active 

coefficients are adapted and adjusted using the Sparse IP-NLMS. On the other hand, the 

inactive coefficients, are non-adapted and remain unchanged. 

In the final step, we extract all 𝑗 positions corresponding to the active coefficients. These 

positions are important for identifying the new vector of active coefficients for the SIR. 

 
Fig. 4. Detailed steps of SAC bloc. 

Based on the computational complexity presented in Table 1, we note that the standard 

IP-NLMS updates all filter coefficients regardless of their activity status [13]. However, the 

SAC-IP-NLMS focuses on updating only the active coefficients, which constitute a mere 10% of 

the total coefficients.  

This selective updating mechanism significantly reduces the computational load, making 

the SAC-IP-NLMS algorithm less complex compared with other non-sparse and sparse 
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algorithms. The proposed SAC-IP-NLMS algorithm demands 4Ms + 3 additions, 8Ms + 2 

multiplications and 2 divisions with Ms represents the number of active coefficients of sparse 

impulse response, i.e., which constitute only 10% of the total coefficients. 

4. SIMULATION RESULTS 

In this experimental part, we evaluate the performance of the proposed SAC-IP-NLMS 

algorithm for impulse response identification process. In order to give a good evaluation of this 

algorithm by maintaining the original characteristics of the real rooms, we have used SIRs. We 

have used two types of signals, with a sampling frequency of 8 kHz, that are filtered by SIR 

which give desired signals. We evaluated the algorithm using three criteria: (i) Time evolution 

of error signals, (ii) Mean Square Error (MSE), and (iii) Echo Return Loss Enhancement (ERLE). 

To show the performance of the proposed adaptive filtering algorithm, we have used in 

our experiments a stationary signal and a non-stationary signal, respectively: (i) the first one is 

the USASI-noise (USA Standards Institute) represented in Fig. 5, and (ii) the second is a speech 

signal of a male speaker (see Fig. 6) [18, 19]. Fig. 7 represents the SIR used in all simulations, 

with a) M = 64, b) M = 128 and c) M = 256. 

 
Fig. 5. Stationary USASI noise. 

 
Fig. 6. Non-stationary speech signal. 

 
Fig. 7. Sparse impulse responses with a) M = 64; b) M = 128; c) M = 256. 
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4.1. Temporal Evolution 

In this part of simulation, we present the time evolution of the error signal obtained by 

the proposed algorithm using the two signals, USASI noise and speech signal. The parameters 

values of three simulated algorithms are summarized in Table 2. 

Table 2. Parameters of the simulated algorithms. 

Algorithm Parameter 

Basic-NLMS µ = 0.9, 𝜉𝑛𝑙𝑚𝑠 = 10−6, 

IP-NLMS µ = 0.9, 𝜉𝐼𝑃  = 10−6, 𝛼 = - 0.5, 𝜑 = 10−6 

Proposed µ = 0.9, 𝜉𝐼𝑃,𝑆 = 𝜉𝐼𝑃, 𝛼 = - 0.5, 𝜑 = 10−6 

During these experiments, the number of iterations is set to 52000 iterations and the input 

Signal to Noise Ratio (SNR) is chosen equal to 90 dB. The error signals for USASI noise and 

speech signal are presented in Fig. 8. We present in Fig. 9, all estimated sparse impulse 

responses obtained by the proposed algorithm using two input signals (USASI and speech) for 

three scenarios: M = 64, M = 128, and M = 256. 

 
Fig. 8. Time evolution of echo signal (in Black) and error signal (in Red) with USASI to the left and speech to the 

right for a) M = 64; b) M = 128; c) M = 256. 

From Fig. 8, we note that the proposed adaptive algorithm reduces error signals across 

different signal environments, including both stationary and non-stationary signals. 

Complementary, the time representations demonstrate the good performance by showing a 
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indicator of the algorithm ability to improve signal quality and minimize the fluctuations, 

eventually enhancing the overall effectiveness in diverse situations. 

Based on Fig. 9, we observe that all estimated coefficients by the proposed algorithm 

converge exactly to the original and real sparse impulse responses with M = 64, M = 128 and   

M = 256. We note that the proposed SAC-IP-NLMS algorithm presents the efficient solution for 

acoustical sparse identification systems.  

By analyzing the same results presented in Fig. 9, we can observe significant conclusions 

about the performance of the proposed SAC-IP-NLMS algorithm in sparse acoustical 

environments with different filter lengths (M = 64, M = 128, and M = 256). Firstly, all estimated 

coefficients generated by the SAC-IP-NLMS algorithm converge precisely to the original and 

real sparse impulse responses. This convergence suggests that the algorithm precisely identifies 

and reconstructs the sparse characteristics of the impulse responses despite variations in filter 

length (M). Secondly, the observed convergence of estimated coefficients indicates that the 

SAC-IP-NLMS algorithm offers an efficient solution for acoustical sparse environments. 

 
Fig. 9. Comparison between the real SIRs and the estimated one obtained by the proposed algorithm: a) real SIR 
with M = 64, 128 and 256; b) estimated SIR with M = 64, 128 and 256 for input USASI noise signal; c) estimated 

SIR with M = 64, 128 and 256 for input speech signal. 

4.2. MSE Evaluation 
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precision, showing small values between estimated and desired signals. Conversely, high MSE 

indicates significant errors and less effective algorithm performance. The expression of the MSE 

is presented by the next formula:  

𝑀𝑆𝐸𝑑𝐵 = 10 log
10

(𝐸‖𝑒(𝑛)2‖)         (27) 

where, 𝑒(𝑛) is the normal linear filtering error and 𝐸‖ . ‖ denote the statistic expectation. We 

have tested the proposed selected active coefficients IP-NLMS algorithm (SAC-IP-NLMS) 

compared with its non-selected IP-NLMS algorithm [12]. The obtained MSE results with the 

two input signals USASI noise and speech signal are presented respectively in Figs. 10(a) and 

10(b). We have done other simulations using only the proposed algorithm for presenting its 

performance in terms of coefficients number. Figs. 10(c) and 10(d) present respectively the 

obtained MSE result with USASI noise and speech signal for three filter lengths, M = 64, 128 

and 256. 

 

Fig. 10. Convergence speed test with: a) input USASI noise signal; b) input speech signal; c) three filter lengths 
with input USASI noise signal; d) three filter lengths with input speech signal. 

Figs. 10(a) and 10(b) indicate that the proposed algorithm shows a similar convergence 

rate to basic IP-NLMS algorithm. This suggests that while the proposed algorithm performs 

comparably in terms of convergence speed, it achieves the highest MSE values in two different 

input signals but with a very low computational complexity (see section 4.4).  

In Figs. 10(c) and 10(d), the simulation results based on MSE criteria highlight specific 

performance characteristics of the proposed SAC-IP-NLMS algorithm with selected active 

coefficients: the fast convergence in Sparse IR is noted with filter length M = 64.  
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The algorithm exhibits very fast convergence in environments characterized by small or 

moderate sparse impulse responses, particularly with high input signal-to-noise ratio (SNR) 

conditions. Conversely, when the acoustical environments are characterized by large sparse 

impulse responses, the algorithm demonstrates slower convergence rates. 

4.3. ERLE Evaluation  

We now present the performance of the proposed SAC-IP-NLMS algorithm and the 

classical ones using the ERLE criterion. We note that the higher values indicate more effective 

reducing signal interference, while lower values signify poor performance. The ERLE measures 

can be defined as the ratio of the power of far end signal to the power of the residual error 

signal after the identification process and it is expressed by: 

𝐸𝑅𝐿𝐸𝑑𝐵 = 10 log
10

(
𝐸‖𝑑(𝑛)2‖

𝐸‖𝑒(𝑛)2‖
)             (28) 

The obtained results of ERLE criterion with the two input signals, USASI noise and 

speech signal are presented in Fig. 11. As we present in the same figure the comparative 

simulation results of the proposed algorithm using the ERLE criterion in term of coefficients 

length, M = 64, 128 and 256. 

 
Fig. 11. ERLE evaluation with: a) input USASI noise signal; b) input speech signal; c) three filter lengths with 

input USASI noise signal;  d) three filter lengths with speech input signal. 
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stationary input signals. This suggests that the proposed algorithm is efficient solution in 

reducing or cancelling out echo effects within the signal, leading to improve the quality. 

Another important observation from these figures is the similarity in ERLE achieved by the 

proposed algorithm compared to other sparse algorithm. This similarity indicates that the 

proposed algorithm achieves high ERLE. 

The ERLE results shown in Figs. 11(c) and 11(d) expose that the proposed IP-NLMS 

algorithm exhibits a rapid response to ERLE, especially evident with a filter length (M) of 64. 

This rapid response highlights the algorithm effectiveness in reducing the impact for 

identifying acoustic systems, especially in scenarios with short sparse impulse responses. 

 

4.4. Computational Complexity Study  

This subsection examines the computational complexities of NLMS and IP-NLMS 

algorithms compared to the proposed one, focusing on the number of multiplications and 

additions necessary for each weight update. Through comparative simulations across SIR 

scenarios with varying coefficient lengths from 32 to 2048.  

By concentrating on calculating and controlling the adapted active coefficients, which 

constitute only 10% of the total coefficients, the proposed algorithm significantly computational 

load. In Table 3, we present the numerical computational complexities for real filter length          

M = 32, 64, 128, 256, 512, 1024 and 2048 and selected active coefficients Ms = 3, 6, 12, 25, 51, 102 

and 204.As we present the number of multiplications and additions per iteration for three 

algorithms in two Figs. 12 and 13, respectively.  

Table 3. Numerical computational complexities with M = 32, 64, 128, 256, 512, 1024 and 2048, Mp is number of 
multiplications and Ad is number of additions. 

Filter 

Length 

M = 32 

Ms = 3 

M = 64 

Ms = 6 

M = 128 

Ms = 12 

M = 256 

Ms = 25 

M = 512 

Ms = 51 

M = 1024 

Ms = 102 

M = 2048 

Ms = 204 

Algorithms Mp Ad Mp Ad Mp Ad Mp Ad Mp Ad Mp Ad Mp Ad 

NLMS 196 99 388 195 772 387 1540 771 3076 1539 6148 3076 12292 6147 

IP-NLMS 258 131 514 259 1026 515 2050 1027 4098 2051 8194 4098 16386 8195 

Proposed 26 15 50 27 98 51 202 103 410 207 818 411 1226 819 

 

 

Fig. 12. Computational complexities of all algorithms in terms of multiplications. 
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a) Firstly, we note that the NLMS algorithm demonstrates the lowest computational 

complexity across different filter lengths (M), requiring the fewest number of 

multiplications and additions compared to IP-NLMS.As first observation, the IP-NLMS 

algorithm exhibits higher computational complexity than NLMS for the same filter 

lengths (M). 

b)  Secondly, when the filter length (M) increases, the computational requirements of IP-

NLMS also increase linearly. This increase is attributed to the additional computations 

needed to implement the intelligent processing features of IP-NLMS, which contribute to 

performance improvements such as faster convergence. 

c) Finaly, the proposed SAC-IP-NLMS algorithm shows lower complexities compared to 

both NLMS and IP-NLMS with very faster convergence rate as IP-NLMS algorithm as 

presented previously in section 4.2.  

For example, with a real filter length M = 2048 and a sparsity level Ms = 204, the proposed 

SAC-IP-NLMS algorithm demands 1226 multiplications and 819 additions. In comparison, the 

NLMS algorithm requires 12292 multiplications and 6147 additions. However, the IP-NLMS 

algorithm demands 16386 multiplications and 8195 additions. This shows that the proposed 

algorithm is efficient, delivering good performance with very low computational complexity 

compared to the basic sparse version (IP-NLMS). 

 

Fig. 13. Computational complexities of all algorithms in terms of additions. 

5. CONCLUSIONS 

In this study, we addressed the problem of identifying sparse acoustic impulse responses 

in telecommunications and conferencing systems. We proposed the SAC-IP-NLMS algorithm, 

which focuses on adapting only the active coefficients of the Sparse Impulse Response using 

efficient bloc of selection. Our simulations in various acoustic environments confirm its 

effectiveness in signal quality and convergence rate compared to the existing IP-NLMS 

algorithms. The proposed algorithm presents a good solution, particularly in reducing MSE 

values. In conclusion, the proposed algorithm offers a promising solution based on the active 

coefficients, reduces computational complexity without compromising performance and it 

requires very low computational complexity compared to other ones. Future research can be 

focusd on integrating selective partial updates with the SAC-IP-NLMS algorithm to enhance its 
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efficiency and applicability in more complex multi-conferencing rooms. Furthermore, 

evaluating the algorithm's performance in diverse real-world scenarios will be important for 

understanding its broader impact and identifying areas for potential improvement. 
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