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Abstract— Recently, Convolutional Neural Networks (CNNs) have shown a great significance in the field of 
computer vision and image recognition. However, they have two major difficulties to be addressed. The first one 
is the need to have too many samples per class for training. It is not always an easy task to have a huge number 
of labelled samples per class for every problem; actually, in some cases only one sample per class is all what is 
available. The second difficulty is the enormous computational power needed to perform the training task. In 
this paper, an experimental study of how to handle problems where the data available provides only one sample 
per class is carried out. The implemented technique utilizes proper data augmentation in solving the 
aforementioned problems. A database of the world countries flags with one flag sample per country is used to 
start with. One sample per class is the worst case for CNN training, but the proposed approach helps in 
enhancing the accuracy from being unfeasible at the beginning of training to above 99% of validation accuracy 
when the technique is applied. Promising results have been achieved without the need for a very deep CNN. 
Also, the findings reveal that the utilized type of data augmentation technique must be carefully selected for 
each application to avoid over-fitting while obtaining the best validation accuracy. As a solution, an adequate 
selection of different augmentation options is tried out to improve the network ability to generalize well to new 
testing samples. 
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1. INTRODUCTION  

The idea of Convolutional Neural Networks in general was inspired by how our brains 

work that was discovered in 1959 by Hubel and Wiesel [1] by testing how cats brains react to 

small visual regions. Until 2012 there was no major enhancement in this field mainly due to the 

lack of big datasets and the lack in computational power at that period of time. In 2012, a huge 

breakthrough took place by Krizhevsky et al [2] when they worked on the huge ImageNet [3] 

dataset provided publicly by Stanford University. And of course, by that time, computational 

power has increased significantly. Since 2012, researches kept on proving that the major factor 

in enhancing the network architecture was the depth of the network and the size of the dataset. 

However, some researches proposed some techniques to minimize the computational power 

and time needed for training while maintaining similar results of old classical architectures. 

One of those techniques was proposed by Ioffe et al [4], they proposed to add a batch 

normalization layer before every activation layer, they suggest that it reduces the internal 

Covariate Shift by maintaining a good distribution of values in every layer as the training 

progress. Another technique was introduced by Google Inception architecture [5] that was 
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recently enhanced [6] using the residual technique by Microsoft [7]. For Google inception 

model, they suggest using more than one kernel size in the same layer; such as, 1x1, 3x3, and 

5x5. And then concatenate their outputs in a depth manor. The idea behind that is to let the 

network choose the kernel size that is most suitable for the given problem instead of changing 

that as a hyper parameter. Batch normalization after is used every layer to speed up the training 

process. The residual connection helped deeper layers reference the values in the input layer 

and earlier layers. Dropout has also been introduced by Srivastava et al [8] to prevent over-

fitting and to make the network generalizes well to new test samples. It works by randomly 

deactivating a number of the neurons in the fully connected layers during each training step. 

That makes the network more robust to minor changes in the input image. 

Another technique to speed up the training process is to provide the input dataset zero-

centered and normalized, which does the same job as batch normalization technique 

introduced earlier. But for the input layer this time. All the techniques introduced above 

focused on increasing the accuracy and speeding up the training processing assuming a big 

enough dataset to train on. However, having professionally maintained labelled datasets is 

extremely hard. That is mainly why most of the powerful techniques use the ImageNet dataset 

as bench mark with around 14M images and 21K categories. However, to train an application 

specific network, it is hard to provide such a huge and accurate dataset for training. Hence, in 

this paper, several data augmentation techniques are proposed to increase the training and 

validation accuracy and explain how the combinations of these techniques were able to enhance 

the network performance. To prove the quality of this work, a dataset of 224 countries’ flags 

with one flag per country is used. This makes it a harder problem for CNN recognition task. 

In 2012, Krizhevsky et al [2] has proposed the state of the art results using convolutional 

neural network to classify the immense ImageNet dataset of 1.2 million images with 1000 

classes at that time. They were the first to achieve an accuracy of 62.5% for top 1 predictions 

and 83% accuracy in the top 5 predictions. That was done with what was considered a deep 

convolutional network at that time with around 650000 neurons. Due to the lack of 

computational power at the time, they had to split the network to work on two different GPU 

devices. That is the reason why their network looks like two different streams of data flow as 

in Fig. 1.  

 
Fig. 1. AlexNet architecture. 

It is good to mention that it took them around a week of training time. Since 2012, work 

in image classification and recognition has moved to convolutional neural networks. Starting 

from fined tuned versions of AlexNet architecture such as SF NET [9] in 2013 and VGG NET 

[10] in 2014. And ending with totally new concepts of the convolutional neural networks; such 

as GoogLeNet [11] and Microsoft ResNet [7] in 2015. GoogLeNet has introduced the idea of 



XXX                                                        Jordan Journal of Electrical Engineering. Volume X | Number X | Month 20XX 

 

Inception Layers as shown in Fig. 2. Which helps the network choosing the kernel sizes for a 

given problem by learning different weights for each of the three kernels provided at the same 

time at each layer. 

 
Fig. 2.  Inception layer architecture in GoogLeNet. 

 

ResNet introduced the idea of having residual connection from deeper layers back to 

input and earlier layers in the network as shown in Fig. 3. As can be seen as a common factor 

between all those previously mentioned architectures that they all need a huge, accurate and 

professionally labelled images by human. And since this kind of dataset is not always available 

for many applications, old image recognition techniques are still needed for some specific 

applications, especially when the dataset is very small. In this case, professional computer 

vision engineers try to pre-extract the required features for the system to work on. 

 
Fig. 3. Residual Block Architecture in ResNet. 

 

One of these feature extraction techniques are called SIFT features [12], it is scale, 

rotational, translational, and illumination invariant feature extractors. They are inspired by 

how the neuron architecture in the temporal cortex in the human brain works. Handcrafted 

features and feature extractors such as SIFT are very powerful in case of very small dataset 

images, but they are time consuming and very hard to discover. They need expert knowledge 

in computer vision to get the best features for every specific problem. Hence, a work that 

combines both the easiness of convolutional neural networks and the small dataset size 

capabilities of handcrafted features and feature extractors is needed. Here comes the 

importance of using data augmentation techniques. Although data augmentation is one of the 

key rules in reducing over-fitting, it is still of a great importance in increasing dataset size when 

dataset acquisition is hard. For example, data augmentation techniques help to increase the size 
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of training data for medical-image classification problems, which normally have a small 

number of samples per class [13-16].  

For instance, earlier work on Indirect Immune Fluorescence (IIF) images on Human 

Epithelial-2 (HEp-2) cells started using LBP [17] and SIFT handcrafted feature extractors. Later 

works focused on using convolutional neural networks with different data augmentation 

techniques [18, 19]. In Table 1, Jia et al [20] achieved three significantly different accuracy results 

with just augmenting the HEp-2 dataset with three different rotation angles. In the Table, ACA 

(Average Classification Accuracy) is computed as all the correct predictions of the test set over 

the number of test samples. While MCA (Mean Class Accuracy) is calculated as the summation 

of the percentages of correct predictions for every class over the number of classes. Since the 

number of samples of each class is not the same in HEp-2 dataset, the rotation angles differ 

from one class to another to ensure having as similar number of samples per class as possible 

after the rotation process. Table 1 shows that the accuracy increases as the rotation angle 

decrease. Specifically, Rotation Degrees 3 achieves higher accuracy compared to Rotation 

Degrees 2, which in turn outperforms Rotation Degrees 1. This trend occurs because smaller 

rotation degrees result in more augmented data. 

Table 1. HEp-2 classification performance with data augmentation using three different rotation angles. 

Accuracy 
rotation 

Rotation degrees 1 Rotation degrees 2 Rotation degrees 3 

ACA 94.74% 98.24% 98.49% 

MCA 95.08% 98.05% 98.26% 

Jetley et al [21] used Support Vector Machine (SVM) [22] to classify the 224-word flags 

using the HSI colour representation instead of RGB colour representation. They worked with 

HSI colour values because they believe that flags are distinguished even by humans with the 

colour combinations rather than the edges and shapes of the flags. Because one flag sample per 

country is not sufficient for the classification task, they have manually gathered 18935 images 

from the Internet and still used scaling data augmentation techniques to make the system scale 

invariant. Gu et al [23] gathered 1668 positive flag samples from the internet, which are partially 

blocked, deformed, blurred, and contain complex background and lighting conditions. In this 

work, however, convolutional neural networks to classify countries’ flags from a one sample 

per class dataset is used. To help the CNN network to capture realistic variations in these 

samples, several data augmentation techniques suitable for flag datasets are carefully 

introduced. 

2. MATERIALS AND METHODS 

The experiment setting for the proposed work is described in Table 2. Due to the limited 

computational resources, the number of scenarios, Depth of the network, and the amount of 

data augmentation were limited to get the results within a reasonable amount of time. The 

nine scenarios/combinations for different data augmentation techniques were tested as listed 

in Table 3. Each combination consists of choosing between 1, 3, or 5-degrees rotation steps. 

After deciding on the rotation steps, one or more transformation methods were chosen, i.e., 

translation, shearing, and scaling. A white background is only used in scenario 5, while the 

rest use a black background. Finally, noise is added to the images of scenario 5 and 6 to test its 

effect with white and black backgrounds. The size of the augmented dataset will change based 
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on the selected set of augmentation techniques, e.g., scenario 9 has the largest number of 

augmented images because it uses a 1-degree rotation step with the three transformation 

methods. Each of those scenarios is then tested with three CNN network architectures with 

different depths. 
Table 2. Experimental hardware and software environment. 

Item Description 

Device Dell Inspiron (15-7559) laptop 

Processor Intel(R) core (TM) i7-6700HQ @ 2.60GHz 

RAM 16.0 GB DDR-3 

Hard desk 128GB SSD SanDisk Z400s 

GPU NVIDIA GeForce GTX 960M 

GPU CUDA compatibility 5.0 

Cuda cores 640 

Operating system 64-bit windows 10 

Implementation software MATLAB R2018b 

Table 3. The utilized data augmentation combinations. 

Augmentation\Scenario 1 2 3 4 5 6 7 8 9 

Rotation 1◦ X        X 

Rotation 3◦        X  

Rotation 5◦  X X X X X X   

Translation  X   X X X X X 

Shearing   X  X X X X X 

Scaling    X X X X X X 

Noise (salt & pepper)     X X    

Black background X X X X  X X X X 

White background     X     

Images per class 91 57 57 57 285 285 465 195 1365 

The flags’ images used are one sample computer generated flag per country. And there 

are 224 countries in the dataset. Adding non-flag images, by generating randomly colored, 

black, or white noisy images, caused a drop in the validation and prediction accuracy of all 

networks. Hence, classifying non-flag images was neglected and stuck with categorizing the 

test images into the given countries. Nine scenarios were used to augment the single flag image 

per class into more images used for training and validation. The number of images for every 

class is the same after the augmentation process. These images are then divided into two 

groups, for training and validation, in the ratio 3:1 respectively. The number of generated 

images per class for every augmentation scenario is listed in Table 3. 

The original images are of different sizes. Hence, they were scaled to 100x100 pixels. 

From MATLAB documentation, augmenting the images using rotation, translation, and 

shearing is done by cropping the output image to make the output size the same as the input 

size. To avoid losing some of the details in the original image, a rescale of the output image to 

include all the input image after the performed augmentation technique is performed, i.e., 

loose transformation, and then rescaled the output image to be 100x100 after the augmentation 

process. 

Image transformations are done by filling the generated new background with a pre-

determined color. Filling the new background with colors other than black and white caused 

a significant accuracy to drop, which means that the network is considering that color part of 
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the flag. Hence, only black and white backgrounds were considered. Changing the 

background color was done by creating a white, i.e., Boolean True, image of the same size as 

the input image (image to be augmented), with the same augmentations as for the input image. 

Before saving the augmented input image, the Boolean image is negated so that all background 

pixels are set to a value of 1, which are at the same locations as the background of the 

augmented image. Now, the background of the augmented image can be changed using the 

Boolean image as an index for the pixels in the flag image. Fig. 4 shows the augmented flags 

with black, colored, and white backgrounds in each row of images, respectively. For images 

with white background, also salt & pepper noise using density of 0.001 is added. For the 

rotation Augmentation, rotating each image between 0 and 360 degrees is bad for flag images, 

because some flags are the flipped version of others either vertically or horizontally. Hence, 

we only rotate the images between 45 and -45 degrees without the flip augmentation 

technique. This allowed us to use smaller rotation steps with considerably less training size. 

 
Fig. 4. Different flag backgrounds after augmentation. 

 

MATLAB R2017b has a great support for Deep Neural Networks to build easily 

customizable network Architectures. It can easily extract the learned parameters from the 

network to run classification on older versions with simple for loops and matrix 

multiplications. It is also compatible with NVIDIA GPUs using the CUDA library. In addition, 

it has built-in support for data augmentation in its input layer, such as random cropping and 

flipping during training time. However, augmenting input images as they are fed to the 

network made the performance worst for the single sample per class dataset. Hence, a pre-

augmentation was used in this work as it has shown superior performance compared to real-

time augmentation of the input images [24]. 

The training for each scenario and for the three network architectures was done for 7 

epochs with a mini-batch-size of 128 samples. Training longer, i.e., 100 epochs, achieves better 

validation accuracy on the validation set, i.e., a different augmented set of the single sample 

images. However, it performs bad on Internet flags with different patterns than the original 

dataset. The learning rate was 0.00001 with validation frequency between 100 and 1000 

according to the training set size. Early stopping is also applied with a validation patience 

value of 5. The training time using our resources was approximately 2 days with the deepest 

CNN network and 1365 images per class. 
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3. RESULTS AND DISCUSSION 

The first trivial observation is that with less training data (less data augmentation) there 

will be less validation and training accuracy. That was tested and verified using the shallowest 

CNN architecture for only 3 epochs of training. The network is trained with an augmented 

data with 20 degree of rotation step between 0 and 359 degrees. The network validation 

accuracy reached 54.80% after the final iteration as shown in Fig. 5. 

 
Fig. 5. Validation accuracy achieved using augmentation with only 20-degree rotation. 

When the same network was trained with an augmented data using 1 degree of image 

rotation, the validation accuracy reached 98.84% at the second epoch of training (see Fig. 6).  

 
Fig. 6. Validation accuracy achieved using augmentation with only 1 degree rotation. 
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Although, the variations between validation and training sets are small when 

augmenting with 1 degree of rotation steps between 0 and 359 degrees. But the network 

performance against new flag images from the Internet, i.e., with different patterns, is 

astonishing. Which means that the network could somehow generalizes well to the problem.  

Testing the trained network against images from the Internet, i.e., with different 

patterns, evaluates the proposed framework better than validation augmented images. Hence, 

20 flag images from the Internet have been gathered and small modification to the original 

dataset images is applied, like cropping, addition of extra information, and adding random 

noise. The top-5 accuracy was used to evaluate these 20 images as another performance metric 

in addition to the validation accuracy. Training the shallow CNN architecture longer with      

20-degree rotation augmentation images improves the validation accuracy as shown in Fig. 7. 

 
Fig. 7. Ten epoch validation accuracy for only 20-degree rotation. 

 

 
Fig. 8. Validation accuracy for 20-degree rotation with translation and shearing. 
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Nevertheless, longer training creates over-fitting in the network. This problem is clearly 

noticed when testing the network against the 20 extra images produced as another 

performance metric. To enhance the validation accuracy while avoiding over-fitting, other 

augmentation techniques are introduced to the 20-degree rotation, as in Fig. 8. 

The validation accuracy of the shallow CNN architecture reached 99.06% with 5-degree 

rotation step between -45 and 45 degrees, 2 translations, 2 shearing transformations, and               

2 scaling (stretching) transformations as shown in Fig. 9. Training and validation accuracies 

are enhanced in the first few epochs. Table 4 shows that scenario 9 achieves the best validation 

accuracy for the three network architectures. It provides good generalization with the 20 

Internet flag images in its top1 and top-5 accuracy. So, from these results one can infer that 

augmentation helps to a given limit, and that augmentation techniques that are not suitable 

for the given application should not be used, e.g., background colour and noise for flag images, 

to avoid inappropriate results. 

 
Fig. 9. Validation accuracy for 5-degree rotation with translation, shearing and scaling. 

 
Table 4. Validation Accuracy for every network scenario combination for 7 epochs. 

Scenario 
Network validation accuracy [%] 

Shallow CNN Medium depth CNN Deep CNN 

1 98.70  98.34  98.11 

2 98.01  98.0  98.0 

3 98.83  98.25  98.56 

4 98.50  98.29  98.55 

5 97.48  97.39  97.44 

6 98.13  97.93  97.79 

7 99.01  98.85  98.92 

8 99.05  99.04  99.05 

9 99.60  99.58  99.59 

It can be seen from Table 4 that all the results range between 97.39% and 99.60%. The 

shallow network architecture slightly outperformed deeper architectures using the validation 

augmented images in almost all the scenarios in Table 4. The best results are for scenario 9, 
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where all transformation methods are used with 1-degree rotation steps. Scenarios 8 and 7 

produce the second and third best results as they use all transformation methods with 3 and 

5-degree rotation steps, respectively. The worst results are with scenario 5, where white 

background after performing transformation on the images.  

When testing the trained networks with the extra 20 Internet flag images, shallow CNN 

with augmentation scenario 9 achieved the best performance, i.e., accurately classifying 19/20 

Internet flag images. The worst results are achieved using medium depth CNN with 

augmentation scenario 5, i.e., accurately classifying 5/20 Internet flag images. This shows that 

shallow networks are better than deeper networks with more parameters. The superiority of 

a shallow CNN is mainly due to having fewer parameters than deeper architectures, which 

can lead to reaching the global optima faster than deeper networks with problems with scarce 

training data [25]. Moreover, a shallow CNN generalizes better on simple datasets by 

capturing essential features compared to the unnecessary complexity that causes overfitting 

in deeper networks. The small number of details in flag images compared to natural images, 

e.g., landscapes, animals, or humans, simplifies the feature extraction process for shallow 

networks and reduces the complexity of the classification task. 

4. CONCLUSIONS 

In this work, a single sample per class classification using convolutional neural networks 

was carried out. To facilitate that, a combination of data augmentation techniques and proper 

network architectures was utilized, and a validation accuracy of 99% was achieved. The testing 

was performed using a subset of the augmented dataset used for the training process. 

Promising results were achieved without the need for a very deep convolutional neural 

network. Also, the type of data augmentation technique used must be carefully selected for 

each application to avoid over-fitting while obtaining the best validation accuracy. Selecting 

the wrong augmentation technique type can significantly drop the network ability to 

generalize well to new testing samples. As a future work, the same techniques used to 

augment the countries flags will be introduced but with natural images; such us, the human 

face recognition task. This task is a more difficult one because the number of details and 

features in the image will increase, and the importance of every pixel in the image will increase 

as well, unlike flags, where the redundancy is much higher. Another issue to consider is to 

input the images into the system using HSI color model instead of RGB. That should give more 

color information for the network to deal with. Also, studying the effect of augmenting the 

data with contrast stretching and histogram equalization will be considered to let the network 

tolerate small color variations in light illumination during image acquisition. 
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