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Abstract— This paper investigates how the diffusion coefficients of various semiconductor wires - namely Si, 
Ge, and 4H-SiC - are modulated by an external electric field assuming steady-state transport.  This theoretical 
investigation consists of two steps.  In the first step, we derive a model-based theoretical expression of the 
diffusion coefficient based on the continuity equation.  Since this consideration is too simplified, in the second 
step, we perform Monte Carlo simulations to investigate how the electric field alters the electron occupation 
fraction of energy band valleys; for this, quantum mechanical scattering events during transport are calculated.  
Using these calculations, the electric field dependence of the diffusion coefficients of Ge and 4H-SiC wires with 
various cross-sectional areas is investigated because the conduction process of such materials is strongly ruled 
by the multi-valley transport of electrons. The obtained results reveal that the diffusion coefficient of Ge wires is 
constant when the electric field rises at 200 K and 400 K; but it rebounds under very high electric fields above 
400 K due to the increase in the intrinsic carrier concentration.  On the other hand, it is shown that the diffusion 
coefficient of 4H-SiC wires increases as the electric field rises in a low electric field range regardless of 
temperature, but it drops under high electric fields. Thus, it is considered that the theoretical models assumed 
for various semiconductor wires are useful in estimating the steady-state transport characteristics of scaled 
devices in a practical range of temperatures around room temperature. 

 
Keywords— Electric field; Diffusion coefficient; Semiconductor wires; Steady-state transport characteristics.  
     

1. INTRODUCTION  

The transport properties of one-dimensional materials, which include semiconductor 

wires of Si, Ge, and other materials, are attracting intense attention because such materials can 

realize energy-conversion devices through the Seebeck effect [1-4] and the photochemical effect 

[5].  Even though extensive simulation studies of such structures have been performed [6], 

several physical parameters must be reconsidered because various bulk properties of such 

materials are expected to alter with scale reduction [6]. The author’s group has already 

investigated possible theoretical expressions of the diffusion coefficient of nanometer scale 

wires [7-9], and its viability has been examined numerically for Si [7, 8], Ge [9], and SiC 

nanowires [10].  Those studies demonstrated that the electron occupation fraction in each 

energy band determines the diffusion coefficient of nanowires, and that energy band valley 

non-parabolicity does not significantly influence the behavior of the diffusion coefficient 

because most electrons occupy a lower energy range at thermal equilibrium.  In this paper, the 

carrier diffusion process in semiconductor materials like Si, Ge and SiC under an external 
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electric field is revisited, and some theoretical models and numerical approaches are considered 

to predict the impact of external electric fields on the diffusion coefficient; one of the primary 

goals of this study is to reveal the validity of material analysis techniques because such 

considerations based on possible theoretical models have not yet been performed.   Since band-

to-band transitions should play an important role in determining the level of electron 

occupation in each energy band valley, carrier scattering processes are taken into account in 

formulating a theoretical expression of the diffusion coefficient; this analysis is performed by 

the Monte Carlo simulation technique. Though it is expected that the influence of the above 

difference on the diffusion coefficient is prominent in the nanometer range [10-13], this paper 

does not address this range of wire dimensions, as a preliminary study, because the practical 

formulation is too complex and its expected expression is not realistic in various applications.  

Thus, just the primary aspects of the influences of the electric field on the diffusion coefficient 

are extracted and discussed with the assumption of steady state transport. 

2. THEORETICAL MODEL BASED ON PROBABILITY DENSITY AND IMPACTS OF 

EXTERNAL ELECTRIC FIELD 

2.1. Theoretical Basis in the Thermal Equilibrium State 

The author’s group [11] proposed the basic mathematical model for the diffusion 

coefficient of nanoscale rectangular wires made from covalent semiconductors like Si, Ge, and 

SiC without any external electric field.  Schematic energy band diagrams are shown in Fig. 1. 

  
(a) (b) 

 
(c) 

Fig. 1. Schematic energy band images of: a) Si; b) Ge; c) 4H-SiC [10]. 

The diffusion process is theoretically described by the master equation based on the 

probability density [14].  For the one-dimensional (1D) transport system of Si wires, for example, 
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we can assume single-valley transport.  Therefore, the semi-classical diffusion coefficient DSi() 

is expressed as [11-20]. 

     
22

, '

1
' , | '

2
Si Si

x x

D x x P x i x  
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 

                       (1) 

where  , | 'SiP x i x  is the Fourier transformation of the probability density of finding a particle 

at site x on the Si wire.  This form was extended to cover real-world situations by using the 

approximate calculation technique.  By making a couple of approximations, we derive the 

practical expression of 
,1Si DD  as [11]: 

2

,1

1

2
Si D Si Si

D T v                         (2) 

where  
SiT   is the characteristic time restricting the primary spectrum of carrier diffusion and 

2

Si
v  is the averaged value of squared velocity.  A comparison with past simulation results 

[11] revealed that such mathematical calculations are sufficient for estimating material 

properties.  

  In contrast, for multiple-band transport, demonstrated by Ge, we have the following 

form without any external electric field [13]. 
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where pX, pL, and p are the occupation fractions of X valley, L valley, and  valley, respectively 

[13].   ,X , | 'GeP x i x ,  ,L , | 'GeP x i x , and  Ge, , | 'P x i x  are the diffusion process probability 

components for the X valley, L valley, and valley, respectively.  Applying similar 

approximations to Eq. (3), yields the practical form for ,1Ge DD  as [13]: 

,1 ,X ,L ,Ge D X Ge L Ge GeD p D p D p D                          (4) 

where 
,XGeD , 

,LGeD , and  
,GeD 

 are the diffusion coefficients in the X valley, L valley and  valley, 

respectively.  A similar expression for SiC,1DD  is obtained for 4H-SiC nanowires as [14]: 

SiC,1 SiC,L 1 SiC,M1 2 SiC,M 2 SiC,D L M MD p D p D p D p D            (5) 

where the terminology follows that of Eq. (4).  Theoretical calculation results yielded by             

Eqs. (4) and (5) for  Ge and SiC wires led to many interesting findings [13- 21]. 

 At the second step, however, we must have a realistic perspective of material properties 

in future applications because nanoscale materials may be used in the presence of other than 

low-electric fields.  In the next subsection, an advanced theoretical formulation is introduced to 

handle the impact of an external electric field, assuming steady state transport, on the diffusion 

coefficient of semiconductor materials. 

2.2. Theoretical Formulation of the Impact of an External Electric Field <I> 

Several theoretical studies on the diffusion coefficient in the non-equilibrium condition 

have been published recently [22-24] that use Langevin’s approach to investigate the fluctuation 

and chemical diffusion process.  In contrast, this paper proposes two methods to take account 
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of the impact of external electric fields on the diffusion coefficient.  We start with the first 

method.  Assuming the electric field is not extremely high, the influence of the electric field on 

the diffusion coefficient for Si wires, wherein single-valley transport is dominant, can be 

covered by semi-classical and semi-empirical methods.   

In this model, the impact of the velocity saturation of electrons under a high electric field 

on the diffusion coefficient is considered theoretically based on the conventional, semi-classical 

continuity equation. 

    0nJ x n x
x t

 
 

 
,                        (6) 

where Jn(x) and n(x) are the electron current density in the one-dimensional flow and the 

electron density, respectively.  It is assumed that  nJ x   is uniform on the y-z plane.   Jn(x) is 

expressed as 
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where F is the longitudinal local electric field in the material, q denotes the elementary charge, 

n(F) is electron mobility, and Dn(F) is the diffusion coefficient.  Under the steady state 

condition, the current continuity requires 

    0nJ x n x
x t

 
 

 
                        (8) 

This results in the following equations. 
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The relation 0 0K   gives the conventional Einstein relation that is valid with low electric 

fields.  Here, we use 0nD  to identify the diffusion coefficient given by 0 0K  .   

This suggests that the relation of 1 0K   gives, approximately, the semi-classical 

expression for the electric-field effect on the diffusion coefficient.  Based on this idea, we use 

nFD to refer to the diffusion coefficient in the following.  Calculation details are given in 

Appendix A. 

The final form of the diffusion coefficient  is given as 
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                (12) 

,0 0 ,1
B

Si Si D

k T
D D

q
                        (13) 

where Dsi,0 is equivalent to Eq. (2).  F0 and FC are  the effective lowest electric field and the critical 

electric field, respectively, and are defined in Appendix A.  Eq. (12) is valid for F > F0. 
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2.3. Theoretical Formulation on the Impact of External Electric Field <II> 

The previous subsection detailed the theoretical model that considers the semi-classical 

effect of the external electric field on the diffusion coefficient, where the velocity saturation 

effect is the primary considered by the theoretical formulation.  However, it is easily anticipated 

that the impact of the dynamic transition of electrons between energy valleys during transport 

can’t be considered in sufficient detail. This subsection discusses the second method, which 

applies to the multi-valley transport system. With reference to the author’s previous papers   

[13, 21], the theoretical expressions for the occupation fraction like pX, pL, and p for Ge, were 

introduced assuming thermal equilibrium. However, it is not easy to derive analytical 

expressions under high electric fields [22-24]. Accordingly, this paper introduces the Monte 

Carlo simulation technique to determine the valley occupation fraction under high electric 

fields. 

Since it is assumed here, for simplicity, that the cross-section dimensions of the wire are 

larger than 10 nm, the electronic states are not quantized given that extremely low temperatures 

are not assumed, so the approximations for a three-dimensional transport system are available.  

When the parabolic energy band structure is assumed for simplicity, the scattering rate W(k) of 

electrons in the specific band by impurity scattering, acoustic phonon scattering, and optical 

phonon scattering processes can be expressed as a function of the wave number (k) as [25-27]: 

(i) Impurity scattering rate 
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(ii)  Acoustic phonon scattering rate 
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(iii) Non-polar optical phonon scattering rate 
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for intra-band scattering, and 
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for inter-band scattering. 

(iv) Polar optical phonon scattering rate (for 4H-SiC) 
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where NI is the density of the ionized impurity, Z is the atomic number, S is the 

semiconductor’s static permittivity, kD is the Debye wave number, 
*

valleym  is the effective mass 

of electrons in the specific valley, Ek is the electron energy in the specific valley, d  is the 

deformation potential, cL is the velocity of sound, Dopt is the optical deformation potential on 

the specific valley for intra-band scattering, opt is the optical angular frequency in the specific 

valley for intra-band scattering, n0 is the optical phonon density in the specific valley, Dopt_ij is 

the optical deformation potential for inter-band scattering, opt_ij is the optical angular 

frequency inter-band scattering, Zj is the number of patterns of inter-band scattering, Eij is the 

energy difference between two different valleys, and   is the semiconductor’s optical 

permittivity.  

Since it is expected that the occupation fractions of energy valleys are a function of the 

time spent under the external electric field and the strength of the field, various combinations 

of such parameters are considered so that the simulation results apply to many cases. 

When the occupation fractions of valleys are labeled, for Ge, as pL(F), pX(F), and p(F), the 

diffusion coefficient for Ge wires can be expressed as: 
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where DGe,i (i=L, X, and ) is the diffusion coefficient component in each valley appearing in   

Eq. (4).  pi(F) (i=L, X, and ) is the valley occupation fraction as a function of the electric field as 

calculated by Monte Carlo simulations.  F0,j and FC,j (i=L, X, and ) are the effective lowest 

electric field and the critical electric field in each valley, respectively.  For the case of 4H-SiC 

wires, the expression of the diffusion coefficient is obtained in a similar way.  In the following 

consideration, for simplicity, it is assumed that DGe,L = DGe,X = DGe,, F0,L = F0,X =  F0,, and                

FCL = FC,X = FC,. 

3. SIMULATION RESULTS AND DISCUSSION 

3.1. Electric Field Dependence of Diffusion Coefficient of Various Semiconductor Wires 

Figure 2 shows the physical confinement and transport configurations of the 

semiconductor rectangular wires assumed in this paper; Fig. 2(a) show a Si rectangular wire 

physically confined with (001) and (010) surfaces where the transport is along the <100> 

direction.  Fig. 2(b) shows a Ge rectangular wire physically confined with (001) and (010) 

surfaces where multi-valley conduction is assumed; transport is along the <100> direction.  

Fig. 2(c) corresponds to wurtzite rectangular 4H-SiC wire, where multi-valley conduction is 

assumed and it is also assumed that the wire is physically confined with (0001) and

   1120 / 1120  surfaces; electrons flow along the 1100   axis.  Parameters assumed in 

calculations are summarized in Table 1. 
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Fig. 2. Confinement and transport configuration assumed in this paper: a) Si wire; b) Ge wire; c) 4H-SiC wire with 

wurtzite structure. 

 

Table 1. Physical parameters assumed in simulations. 

Parameters [units] Si Ge 4H-SiC Ref. 

Energy bandgap*[eV]     

M1 valley - - 3.23 [28, 31, 32] 

M2 valley - - 3.33 [28, 31, 32] 

L valley - 0.66 4.0 [28, 31, 33] 

X valley 1.12 0.84 - [28, 31, 34] 

 valley - 0.8 6.0 [28, 31-33] 

Effective mass values of electrons**     

M1 valley     

mtM1/m0 - - 0.42 [29, 30] 

mlM1/m0 - - 0.29 [29, 30] 

M2 valley     

mtM2/m0 - - 0.35 [29, 30] 

mlM2/m0 - - 0.71 [29, 30] 

L valley     

mtL/m0 - 0.082 0.66 [29, 30, 35, 36] 

mlL/m0 - 1.59 0.15 [29, 30, 35, 36] 

X valley     

mtX/m0 0.19 0.29 - [34, 37] 

mlX/m0 0.98 1.35 - [34, 37] 

 valley     

m/m0 - 0.04 - [34] 

   *Measured from the valence band top (@300K). 

   **m0 is the free space mass of electrons. 

Figure 3 shows the calculation results of the electric field dependence of normalized 

diffusion coefficient (DSi(F)/DSi0) of Si wires at various temperatures.  These calculations 

assumed that all the electrons occupy only 6 X valleys. Calculations assumed the steady state 

while the electric field is being applied to the wire. Fig. 3(a) shows the results for the doping 

level of 1x1015 cm-3 and Fig. 3(b) for the doping level of 1x1017 cm-3. Some assumptions for 

temperature dependence of physical parameters are given in Appendix B. Figs. 3(a) and 3(b) 

reveal that the normalized diffusion coefficient (DSi(F)/DSi0) rises as the electric field is 

increased and as temperature rises.  Such a behavior of the diffusion coefficient has been 

already discussed theoretically [35], where semi-classical particles in a liquid were assumed; 

it was shown that the diffusion coefficient is larger by 30% than that expected from 

conventional Brownian particles.  It should be noted that   expCF T   and 0F T   in               

Eq. (12), which suggests that the influence of the velocity saturation is weakened as 

temperature rises, but the influence of thermal potential becomes noticeable as temperature 

(1120) 

(0001) 

<1100> 
x 

(010) 

(001) 

<100> 
x 

(a) (b) 

(010) 

(001) 

<100> 
x 
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rises.  In other words, the diffusion potential due to thermal energy is enhanced in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Calculated DSi(F)/DSi0 values as a function of the external electric field (F) at various 

temperatures and for various cross-section dimensions of wires: a) ND=1015 cm-3; b) ND=1017 cm-3. 

According to the study by Jacoboni’s group [37], on the other hand, the increase in the 

diffusion coefficient of bulk Si can be discerned from Monte Carlo simulations, where a slight 

increase in the diffusion coefficient of electrons is expected but only in the medium electric 

field range.  Then, since the difference between our result and Jacoboni’s result suggests that 

the multi-valley transport must be taken into account, even in Si wires, the simplified model 

given here must investigated further in the future.   

In Fig. 3, it is also seen that the simplified model is insensitive to the cross-sectional 

dimensions because the model does not include any term of dimension.  On the other hand, it 

is sensitive to the doping level, and it is seen that increasing the doping level suppresses the 

temperature dependence of the normalized diffusion coefficient (DSi(F)/DSi0). 

Figure 4 shows the calculation results of the electric field dependence of normalized 

diffusion coefficient (DGe(F)/DGe0) of Ge wires at various temperatures.  In this calculation, it 

is assumed that the electrons occupy L valleys, X valleys, and  valley.  Calculations assume 

the steady state while the electric field is being applied to the wire. 

Fundamental aspects of Figs. 4(a) and 4(b) are the same as those of Figs. 3(a) and 3(b).  

Fig. 4 differs significantly from Fig. 3 in that the electric field dependence of DGe(F)/DGe0 is 

sensitive to the cross-section dimensions of the wire, and that the value of DGe(F)/DGe0 is 

decreased as temperature rises.   

Since the occupation fraction of each energy valley is taken into account in calculating 

the diffusion coefficient, it is considered that the diffusion coefficient is sensitive to 

temperature due to the temperature dependence of the valley occupation fraction and the 

cross-section of the wire, although DGe(F)/DGe0 is not sensitive to the doping level.  These 

behaviors are discussed in [13]. 
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(a) (b) 

Fig. 4. Calculated DGe(F)/DGe0 values as a function of the external electric field at various temperatures and for 

various dimensions of cross-section of wires:  a) ND= 1015 cm-3; b) ND=1017 cm-3. 

Figure 5 shows the calculation results of the electric field dependence of normalized 

diffusion coefficient (DSiC(F)/DSiC0) of 4H-SiC wires at various temperatures.  Calculations 

assumed the steady state while the electric field is being applied to the wire.  Fundamental 

aspects of Figs. 5(a) and 5(b) are almost similar to those of Figs. 3 and 4.  A significant difference 

between Figs. 4 and 5 is that the electric field dependence of DGe(F)/DGe0 is sensitive to the 

doping level, and that the temperature dependence of Fig. 5 is similar to that in Fig. 3, but 

different from that in Fig. 4.  Since the occupation fraction of each energy valley is taken into 

account, it is considered that the diffusion coefficient is sensitive to temperature and the cross-

section dimensions of the wire [21]. 

  
    (a)         (b) 

Fig. 5. Calculated DSiC(F)/DSiC0 values as a function of the external electric field at various temperatures and for 

various dimensions of wire cross-sections: a) ND= 1015 cm-3; b) ND=1017 cm-3. 
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This subsection has shown that the normalized diffusion coefficients of Si, Ge, and         

4H-SiC wires increase as the electric field rises but then saturate.  As shown in the paper by 

Jacoboni’s group [38, 39], the diffusion coefficient of Si increases slightly as the electric field 

rises but then it decreases as the electric field rises, which is different from the behaviors shown 

in Figs. 3 to 5.  It is anticipated that the multi-valley transport under the electric field should 

be directly taken into account for these semiconductor wires [13, 21, 39] because the scattering 

events yielded by high electric fields accelerate the band-to-band transition.  However, the 

material parameters of Si needed in Monte Carlo simulations are not disclosed.  So, this paper 

discusses this issue only for Ge and 4H-SiC wires with the aid of Monte Carlo simulations in 

the next subsection. 

3.2. Impacts of Multi-Valley Transport on the Normalized Diffusion Coefficient 

Here, this paper introduces various simulation results on the electric field effect on the 

energy valley occupation fractions and its impact on the diffusion coefficient values of 

materials like Ge and 4H-SiC wires.  Material parameters assumed in the Monte Carlo 

simulations are summarized in Tables 1 and 2.  It was assumed that all the electrons initially 

occupied the L valleys for Ge wires and M valleys for 4H-SiC wires. 

Table 2. Material parameters in Monte Carlo simulations 

Parameters [units] Si Ge 4H-SiC Ref. 

NI (ND) [/cm3] - 1x1015, 1x1017 1x1015, 1x1017 - 

S / 0  - 16.0 9.7 [32, 37, 39] 

Xd /q [eV] - 5.0~11.0 19.0 [32, 37, 39] 

cL [cm/s] - 3.81 13.7 [32, 37, 39] 

 [g/cm3] - 5.32 3.21 [32, 37, 39] 

opt [meV] - 35.4 104 [32, 37, 39] 

opt_ij [meV] - 27.6 85.4 [32, 37, 39] 

Dopt /q [eV] - 0.8x1010~3.0x1010 3.0x1010~9.0x1010 [32, 37, 39] 

 / 0  - 10.9 8.5 [32, 37, 39] 

Dopt_ij /q [eV] - 2.0x1010~1.0x1011 2.0x1010~1.0x1011 [32, 37, 39] 

Zj - 4 and 6 3 and 3 [32, 37, 39] 

 

In the Monte Carlo simulations, the influence of discrete energy levels in each energy 

valley on the carrier concentration and the diffusion coefficient is taken into account for the 

cross-section dimensions of 10 nm x 10 nm.  Simulation results of valley occupation fractions 

as a function of electric field for Ge wires are shown for the doping level of 1015 cm-3 in Fig. 6, 

where simulation results at two different temperatures are shown.  Simulations assumed steady 

state transport while the electric field was being applied to the wire; here the time spent under the electric 

field was assumed to be ~2 ps.  It is seen that the L-valley occupation fraction linearly decreases 

for F > 1x106 V/m at 200 K, while it linearly decreases for F > 5x106 V/m at 400 K, but steeply 

rebounds for F > 6x108 V/m.  It is considered that the steep increase in L-valley occupation 

fraction stems from the thermalization of carrier distribution in each valley and the increase in 

the intrinsic carrier concentration.  In Fig. 6(b), the critical electric field under which the steep 

decrease begins is higher than that in Fig. 6(a).  This is due to the large increase at 400 K in the 

electron concentration in the L valleys. 

Monte Carlo simulation results of valley occupation fractions as a function of electric 

field for Ge wires are shown for the doping level of 1017 cm-3 in Fig. 7, where simulation results 
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at two different temperatures are shown.  Fundamental aspects of Fig. 7 are basically the same 

as those in Fig. 6.  It is seen that the valley occupation fraction is not sensitive to the doping 

level. 

  
     (a)             (b) 

Fig. 6. Calculated valley occupation fraction of Ge wires as a function of the external electric field at various 

temperatures (ts= 10 nm,  ND=1015 cm-3): a) 200 K; b) 400 K. 

 

  
    (a)          (b) 

Fig. 7. Calculated valley occupation fraction of Ge wires as a function of the external electric field at various 

temperatures (ts= 10 nm,  ND=1017 cm-3): a) 200 K; b) 400 K. 

In a similar way, Monte Carlo simulation results of valley occupation fractions as a 

function of electric field for 4H-SiC wires are shown for the doping level of 1015 cm-3 in Fig. 8, 

where simulation results at two different temperatures are shown.  Simulations assumed steady 

state transport while the electric field was being applied to the wire; here the time spent under the electric 

field was assumed to be ~2 ps.  It is seen that the M-valley occupation fraction drastically 

decreases for F > 1x107 V/m at 200 K, while, in contrast, the L-valley occupation fraction 

steeply increases for F > 107 V/m.  In contrast to the case of Ge shown in Fig. 6, the behaviors 

of valley occupation fractions are not sensitive to temperature for 4H-SiC.  It is anticipated that 
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4H-SiC has larger inter-valley gap than t Ge, and that in 4H-SiC has lower active electron 

concentration in the valley than Ge.  Since the influence of the doping level is not significant, 

the simulation results for the doping level of 1x1017 cm-3 are not shown here. 

  
      (a) (b) 

Fig. 8. Calculated valley occupation fraction of 4H-SiC wires as a function of the external electric field at 

various temperatures. (ts= 10 nm,  ND=1015 cm-3): a) 200 K; b) 400 K. 

3.3. Electric Field Dependence of the Diffusion Coefficient 

This subsection describes how the simulation results shown in Figs. 6 and 8 can be used 

in order to evaluate the impact of the electric field on the valley occupation fractions.  Here, 

two-step calculations of the normalized diffusion coefficient are performed.  In the first step, 

a set of piecewise equations that can reproduce Monte Carlo simulation results is created.  In 

the second step, a combination of the set of piecewise equations and the diffusion coefficient 

calculation results yield the final result of the electric field dependency of the diffusion 

coefficient. 

Figure 9 shows the calculation results of the normalized diffusion coefficient of Ge wires 

with three different cross-sectional dimensions at 200 K and 400 K.  Fig. 9(a) reveals that the 

diffusion coefficient is slightly increased in a low electric field range at 200 K and clearly 

decreased in a high electric field range.  Fig. 9(b), in contrast, reveals that at 400 K it falls in a 

medium electric field range and steeply rebounds in a high electric field range.  In both cases, 

the normalized diffusion coefficient is not so sensitive to the wire’s cross-section dimensions.  

Aspects of behaviors of the normalized diffusion coefficients are roughly identical to those 

seen in Fig. 6. 

Figure 10 shows the calculation results of the normalized diffusion coefficient of 4H-SiC 

wires with three different cross-sectional dimensions at 200 K and 400 K.  Fig. 10(a) reveals 

that at 200 K the diffusion coefficient increases as the electric field rises to 1x107 V/m but 

decreases in a high electric field range.  A similar behavior of the normalized diffusion 

coefficient is also seen in Fig. 10 (b).  In both cases, the normalized diffusion coefficient is 

slightly sensitive to wire cross-section dimensions.  Aspects of behaviors of the normalized 

diffusion coefficients roughly track those seen in Fig. 8. 
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       (a)           (b) 

Fig. 9. Calculated normalized diffusion coefficient of Ge wires as a function of the external electric field for 

various thicknesses (ND=1015 cm-3): a) 200 K; b) 400 K. 

 

  
(a) (b) 

Fig. 10. Calculated normalized diffusion coefficient of 4H-SiC wires as a function of the external electric field 

for various cross-section dimensions (ND=1015 cm-3):: a) 200 K; b) 400 K. 

3.4. Future Issues 

The theoretical discussion of this paper is limited to the wire materials shown in Fig. 2 

because our purpose is to examine the method and the model.  However, it has already been 

demonstrated for Si and Ge wires that the diffusion coefficient depends on physical 

confinement [12, 13].  Therefore, it is anticipated that the diffusion coefficients of Ge and SiC 

wires are also sensitive to physical confinement.  While many reliable physical parameters of 

Ge and SiC materials have been revealed by energy band analysis and related experiments, 

even more reliable predictions of the diffusion coefficient of Ge and SiC materials will become 

possible. SiC materials are seen as promising for high-voltage applications due to their large 
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bandgap [40].  Moreover, such large bandgap materials are necessary in space electronics 

because device degradation due to high-energy radiation must be suppressed [41].  In addition, 

wire-type gate-all-around (GAA) MOS devices [42] are very promising for space applications 

because their small device volume results in less degradation by high-energy radiation. For 

future device design [43], physical parameters like the diffusion coefficient play an important 

role in enhancing design reliability. Therefore, analyses of material parameters remain 

essential in predicting optimum device architectures. 

4. CONCLUSIONS 

This paper investigated how the diffusion coefficients of various semiconductor wires 

are influenced by an external electric field assuming steady state transport.  This issue was 

investigated in two steps.  In the first step, this paper derived a model-based theoretical 

expression of the diffusion coefficient based on the continuity equation, where the velocity 

saturation effect is taken into account and single-valley transport is assumed for simplicity.  

The theoretical expression revealed that the electric field increases the diffusion coefficient of 

wires regardless of temperature and wire cross-sectional area.  However, this does not match 

past Monte Carlo simulation results for Si bulk material.   So, in the second step, this paper 

performed Monte Carlo simulations in order to investigate how the electric field modifies the 

electron occupation fraction of energy band valleys during transport, where quantum 

mechanical scattering events were taken into account.  As multi-valley transport plays an 

important role in Ge and 4H-SiC wires, this method was used in calculating valley-occupation 

fraction values.  Using these calculations, electric field dependence of the diffusion coefficients 

of Ge and 4H-SiC wires having various cross-sectional areas was investigated.  

It was shown that the behaviors of the diffusion coefficient of Ge wires are sensitive to 

temperature, but not to wire cross-sectional area.  It was also shown that the diffusion 

coefficient of Ge wires basically remains unaltered as the electric field rises at 200 K and 400 K, 

but that it rebounds in a very high electric field at 400 K due to the increase in the intrinsic 

carrier concentration. On the other hand, it is seen for 4H-SiC wires that the diffusion 

coefficient is definitely increased as the electric field rises in a low electric field range 

regardless of temperature, but it steps down in a high electric field range.  It was also seen that 

the diffusion coefficient of 4H-SiC wires is sensitive to the wire cross-sectional area.  

Thus, it is considered that the conventional theoretical models assumed for various 

semiconductor wires are basically useful in estimating the transport characteristics of scaled 

devices at various temperatures around room temperature.  When more physical parameters 

of other semiconductor materials are determined accurately, more reliable predictions of the 

diffusion coefficient of such materials and other materials for future applications like energy 

conversion will become possible. 

APPENDIX A: SEMI-CLASSICAL MODEL OF THE ELECTRIC FIELD INFLUENCE ON 
THE DIFFUSION COEFFICIENTS 

As noted in Section 2, the solution of 1 0K   is calculated here.  From Eq. (11), we have 

   

 

 
 nFD F n x F

F x
F Fn x

x



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  

    
 

 

                            (A. 1) 
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When it is assumed that electron density n(x) has the form of a shifted Boltzmann 

distribution [44], we can assume the electron density has the following form with local 

potential  . 

  0 exp
B

q
n n

k T




 
  

 
                    (A. 2) 

In addition, we have 
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                  (A. 3) 

Combining Eq. (A.1) with Eq. (A.3) leads us to 
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                 (A. 4) 

In order to integrate Eq. (A.4), a simple mobility model is introduced as a preliminary 

consideration [45]. 
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                     (A. 6) 

where 0 is the low-field mobility, Fc is the critical electric field causing the velocity saturation, 

and  vSat is the saturation velocity. 

Integration of Eq. (A.4) gives us the following solution of DnF(F) for F>F0. 
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where F0 means the lowest effective electric field in the material, which this paper assumes has 

the following definition. 

0 /B
D

k T
F L

q

 
  
 

                   (A. 8) 

where LD is the Debye length.  Eq. (A.8) shows that F0 stands for the effective local electric field 

originating from the electron density fluctuation in the material without any external electric 

field. 

Then, the final form of diffusion coefficient Dn(F) for F>F0 can be expressed as 
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APPENDIX B: SUMMARY OF TEMPERATURE DEPENDENCE OF PHYSICAL 
PARAMETERS  

In this paper, it is assumed that the transport in Si wires is by single-valley conduction.  

Electron concentration and hole concentration are expressed as, respectively 
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Then, the Fermi level of Si wires is given by [13] 
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where ND, NA, ED, EA, EF, NC, and NV take the conventional meanings.   For degenerate p-type 

Si films, Eqs. (B. 2) and (B. 4) are applied in the simulations. 

The Fermi level of n-type 4H-SiC wires is given by [13]: 
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The Fermi level of Ge wires is also given in a way similar to Eqs. (B.5) to (B.9) [13]. Band-

gap energy of Si, Ge, and 4H-SiC wires is expressed as [40, 42] 

 



Jordan Journal of Electrical Engineering. Volume 10 | Number 4 | December 2024                                                 658 
 

 

   
2

0 0G G

T
E T E

T




 


                 (B. 10) 

Saturation velocity of Si, Ge, and 4H-SiC wires is expressed as 
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Low field mobility of electrons is expressed as 
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