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Abstract— Fingerprint-based localization, which uses received signal strength (RSS) measurements from 
spatially deployed wireless access points (APs), is a popular technique for indoor positioning. The size of the 
fingerprint database has a significant impact on the accuracy of localization. The higher the density of the 
fingerprint database, the more accurate the localization, but the longer the localization time. Clustering is one of 
the techniques used such systems to improve localization accuracy and reduce localization time. To cluster 
fingerprints, the majority of clustering techniques employ a distance-based fingerprint similarity metric. 
However, the choice of distance metric has a significant impact on the performance of the clustering algorithm. 
Using four publicly available RSS-based fingerprint databases, this paper investigates the clustering 
performance of the k-medoids algorithm using six distance metrics, namely Euclidean, Manhattan, cosine, 
Mahalanobis, Chebyshev, and Canberra distance. Using the silhouette score as a performance metric, the cosine 
and Euclidean distance metrics outperform the others, with the highest silhouette score values of about 0.38, 
0.43, 0.34, and 0.31 on the SEUG_IndoorLoc, IIRC_IndoorLoc, MSI_IndoorLoc, and IPIN_2019_PIEP_UM 
databases, respectively. It demonstrates that on these four databases, using Euclidean distance as well as the 
angle between fingerprint measurement vectors is the best option for generating efficient clusters that will result 
in high localization accuracy and low localization time. 

 
Keywords— K-Medoids; Distance metric; Received signal strength; Silhouette score; Clustering; Fingerprint; 
Indoor localization.  
     

1. INTRODUCTION  

Indoor localization is becoming increasingly important and has applications in a variety 

of areas, such as navigation assistance and asset tracking. Due to signal attenuation and 

multipath propagation, conventional localization techniques, such as global positioning 

systems (GPS), are unreliable for indoor localization [1]. Fingerprint-based localization, which 

uses received signal strength (RSS) or channel state information (CSI) measurements from 

spatially deployed wireless access points (APs), has emerged as a promising alternative for 

indoor localization [2]. To determine the location of an indoor user, the fingerprint-based 

indoor localization system employs a two-phase process, namely the offline phase and the 

online phase [1, 3]. The offline phase involves the acquisition of radio frequency (RF) signals 

from the wireless APs, the determination of the RSS or CSI measurements from the received RF 

signals, and the creation of an RSS or CSI-based fingerprint measurement database [1]. A 

fingerprint measurement is a vector containing RSS or CSI measurements that were collected 

from several wireless APs at a given reference location (RL). The fingerprint measurement 

database is a database that contains fingerprint measurements mapped to the RL from where 
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they are obtained. The online phase of the fingerprint-based localization system involves 

determining the location of an indoor user using the instantly acquired fingerprint 

measurement by scanning through the fingerprint database using a localization matching 

algorithm such as the k-nearest neighbor (k-NN)[4], support vector machine (SVM) [5], and 

Gaussian mixture model (GMM) [6]. 

The localization performance of the fingerprint-based localization system is dependent 

on several factors, one of which is the density of the fingerprint database [2, 7]. Fingerprint 

database density refers to the number of RLs used in the generation of the database, and the 

more RLs used, the higher the density. To increase localization accuracy, several researchers 

have reported using a high-density fingerprint database. The use of a high-density database 

results in a high localization time; that is, it takes longer to determine the localization of an 

indoor user using the instantly acquired fingerprint measurement. However, low or near-real-

time localization time and high localization accuracy are two of the primary objectives of any 

wireless-based localization system. Researchers proposed the use of clustering techniques to 

overcome the trade-off between localization time and accuracy [7–11]. Fingerprint database 

clustering is the process of grouping fingerprint measurements into clusters based on a 

common parameter known as the similarity metric. There are several commonly used 

fingerprint database clustering techniques, some of which are k-means [12], c-means [13], 

affinity propagation clustering (APC) [3], and density-based spatial clustering (DBSCAN) [14]. 

The k-means is the most commonly used clustering algorithm due to its simplicity and 

moderate clustering performances [15, 16]. In this paper, an improved version of the k-means, 

known as the k-medoids, is considered [17–19]. Unlike the k-means, which use the mean 

average of all the fingerprints within a cluster as the representative of that cluster, known as 

the cluster centroid, the k-medoids use an actual fingerprint within the cluster. 

The performance of any clustering technique is dependent on the fingerprint similarity 

metric used [17, 20, 21], and the most used fingerprint similarity metric is the distance-based 

similarity metric. Different distance-based similarity metrics capture the similarity between 

fingerprint measurements in different ways. However, in general, the distance-based similarity 

metric quantifies the similarity between two fingerprint measurements by measuring the 

distance between their RSS vectors. The smaller the distance, the more similar the fingerprints 

are considered to be. Some examples of distance-based similarity metrics are Euclidean 

distance, Manhattan distance, Minkowski distance, Mahalanobis distance, Canberra distance, 

and Cosine similarity [8]. Since the similarity metric plays an important role in the performance 

of the clustering algorithm, it is important to investigate the impact of different distance-base 

fingerprint similarity metrics on the clustering performance. Thus, in this paper, the clustering 

performance of the k-medoids algorithm is determined and compared considering different 

distance-based similarity metrics using an RSS-based fingerprint database. The contribution of 

this paper is the investigation of the impact of some of the commonly used distance-based 

fingerprint similarity metrics on the k-medoids clustering performance using several RSS-

based fingerprint databases of varying fingerprint density. 

The paper reminder is organized as follows: Section 2 provides an overview of the               

k-medoids clustering algorithm process as well as a review of related work. This is followed by 

a mathematical description of the distance-based similarity metrics that will be used with the 

k-medoids algorithm in Section 3. Section 4 contains the simulation and result discussions, and 

Section 5 contains the conclusion and recommendations for future works. 
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2. OVERVIEW OF K-MEDOIDS CLUSTERING ALGORITHM AND REVIEW OF 

RELATED WORKS 

As earlier stated, this paper considered the k-medoids algorithm to cluster RSS-based 

fingerprint databases, and in this section of the paper, an overview of the k-medoids algorithm 

clustering process is first presented, followed by a review of related works. 

2.1. K-Medoids Algorithm Clustering Process 

The K-medoids algorithm is a robust and efficient clustering algorithm that has been 

widely used to improve the localization accuracy of fingerprint-based localization systems. 

The K-medoids algorithm partitions the fingerprint database into a predetermined number of 

clusters (k). Unlike k-means clustering, which uses the average of fingerprints in each cluster 

as its cluster centroid, k-medoids use one of the fingerprints within the cluster as its 

representative, which is known as a cluster medoid. Below is a summary of the steps taken to 

implement the k-medoids algorithm [17, 22]. A graphical description of the clustering process 

of the k-medoids algorithm is shown in Fig. 1.  

 

Fig. 1. K-medoids algorithm clustering process. 

Step-1: Initialize medoids.  

As the initial medoids, choose k fingerprints at random from the fingerprint database. 

These medoids will serve as the centers of the clusters. 

Step-2: Cluster assignments. 

Assign the reminder of the fingerprints to the nearest medoid. This can be accomplished 

with any distance-based metric, such as the Euclidean distance or the Manhattan 

distance. 

Step-3:  Cost calculation. 
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Calculate the cost function, which measures the overall dissimilarity between 

fingerprints and the medoids to which they are assigned.  

This cost function represents the overall quality of clustering. 

Step-4: Optimize medoids. 

Continuously swap medoids with non-medoid fingerprints as the cost function 

decreases. This swapping process aims to find better medoids that can improve the 

clustering structure while lowering overall costs. 

Step-5: Return cluster assignments and medoids. 

Return the final cluster assignments and medoids for each cluster once the algorithm 

converges or the specified number of iterations has been reached. These outcomes 

represent the clustering solution. 

Steps 1–5 summaries the steps taken to implement the k-medoids algorithm. A review of 

works related to the performance comparison of the k-medoids algorithm using different 

distance-based fingerprint similarity metrics is presented in the following subsection. 

2.2. Review of Related Works 

Several works have been published on the use of the k-medoids algorithm using different 

distance-based similarity metrics [17–19, 22–24], but most of the works in these categories used 

Euclidean distance as the similarity measure metric. Fewer works have been published on the 

clustering performance comparison of the k-medoids algorithm, considering more than one 

distance similarity measure metric. For example, the authors of [23] compared the performance 

of the k-means and k-medoids clustering algorithms using only two types of distance-based 

similarity metrics, Manhattan and Euclidean. In addition, the authors of [17] performed                   

a k-medoids performance comparison using Manhattan, Euclidean, and Chebyshev distances 

as similarity measure metrics, while in [24], Euclidean, Canberra, and Chebyshev distances are 

used. A summary of the comparison of work related to k-medoids algorithm clustering 

performance considering multiple distance similarity measure metrics is shown in Table 1. 

Table 1. Comparison of works on k-medoids clustering performance considering different distance-based 

similarity metrics. 

Related work Distance metric No. of databases 
Density 

Points/RLs Attributes 

[17] 
Manhattan 
Euclidean 

Chebyshev 
1 647 5 

[23] 
Manhattan 
Euclidean 

1 983 10 

[24] 
Euclidean 

Chebyshev 
Canberra 

1 147679 6 

Current work 

Euclidean 
Chebyshev 

Mahalanobis 
Manhattan 
Canberra 

Cosine 

4 

49 10 

194 4 

4973 11 

1000 8 

Table 1 shows that most of the published works used only one database with two to three 

of the most used distance metrics to evaluate the performance of the k-medoid algorithm. 
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Furthermore, the databases considered in earlier published works can be classified as dense. 

The effect of any distance similarity metric on the clustering performance of the k-medoids 

algorithm varies with databases and their densities. While some distance metrics may work 

well for large databases, they may be inefficient or perform poorly when applied to smaller 

databases.  

As a result, it is critical to investigate the performance of a clustering algorithm using 

various distance metrics on databases of various density sizes, which is what this study aims 

to do. The performance of the k-medoids algorithm was evaluated using six different distance 

metrics on four different databases, ranging in density size from small to large.  

The distance metrics considered are Euclidean, Chebyshev, Mahalanobis, Manhattan, 

Canberra, and cosine. The mathematical descriptions of each of the distance metrics considered 

in this paper are presented in the following section. 

3. MATHEMATICAL DESCRIPTION OF DISTANCE-BASED FINGERPRINT 
SIMILARITY METRIC FOR K-MEDOID CLUSTERING 

The mathematical description of the distance metrics considered in determining the 

performance of the k-medoids algorithm is presented in this section of the paper.  

As mentioned earlier, the distance metrics considered are Euclidean, Chebyshev, 

Mahalanobis, Manhattan, Canberra, and Cosine. 

3.1. Euclidean Distance based Similarity Metric 

This is a straightforward and most used distance-based similarity metric by most 

clustering algorithms. It calculates the shortest straight-line distance between two fingerprints. 

Given two fingerprint measurement vectors 𝐟1 and 𝐟2, which contain RSS measurements 

obtained from N wireless APs, as shown in Eqs. (1) and (2): 

𝐟1 =  [𝑟𝑠𝑠1
1, 𝑟𝑠𝑠2

1, 𝑟𝑠𝑠3
1 … 𝑟𝑠𝑠𝑁

1 ]          (1) 

𝐟2 =  [𝑟𝑠𝑠1
2, 𝑟𝑠𝑠2

2, 𝑟𝑠𝑠3
2 … 𝑟𝑠𝑠𝑁

2 ]               (2) 

The Euclidean distance between fingerprints 𝐟1 and 𝐟2 can be obtained using Eq. (3) [17]. 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐟1, 𝐟1) = √∑ (𝑟𝑠𝑠𝑖
1 − 𝑟𝑠𝑠𝑖

2)
2𝑁

𝑖=1          (3) 

3.2. Chebyshev Distance based Similarity Metric 

The Chebyshev distance, also known as the maximum norm, is another distance-based 

similarity metric considered in this paper. It is useful for calculating distances in high-

dimensional spaces where other metrics, such as the Euclidean distance, may be affected by 

outliers.  

The Chebyshev distance between the two fingerprint measurements in Eqs. (1) and (2) is 

calculated mathematically as [17]: 

𝑑𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝐟1, 𝐟1) = max
 

{|𝑟𝑠𝑠1
1 − 𝑟𝑠𝑠1

2|, |𝑟𝑠𝑠2
1 − 𝑟𝑠𝑠2

2|, … , |𝑟𝑠𝑠3
1 − 𝑟𝑠𝑠3

2|}                (4) 

The Chebyshev distance, based on Eq. (4), finds the maximum absolute difference 

between the corresponding RSS measurements in the two fingerprints, measuring the distance 

along the coordinate where the fingerprints are farthest apart. 
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3.3. Mahalanobis Distance based Similarity Metric 

Another distance-based similarity metric considered in the performance analysis is the 

Mahalanobis distance. It is a generalization of the Euclidean distance that takes the covariance 

structure of the entire fingerprint database into account. The Mahalanobis distance is a more 

robust metric than the Euclidean distance in the presence of outliers. It is also unaffected by the 

size of the differences in fingerprint measurements. The Mahalanobis distance between the two 

fingerprint measurements in Eqs. (1) and (2) is calculated as follows [25]: 

𝑑𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝐟1, 𝐟2) = √(𝐟1 − 𝐟2)𝑇𝐒−1(𝐟1−𝐟2)     (5) 

where 𝐒−𝟏 is the inverse of the covariance matrix "𝐒" and  𝑻 denotes the transpose of a matrix 

or vector. 

3.4. Manhattan Distance based Similarity Metric 

The Manhattan distance, also known as the city-block distance, is another commonly 

used distance-based similarity metric considered in this paper. It is calculated by adding the 

absolute differences in RSS measurements between each fingerprint. The Manhattan distance 

is a straightforward and computationally efficient metric that works well with large fingerprint 

databases. It is also resistant to outliers, making it a versatile choice for a variety of applications. 

The Manhattan distance between the two fingerprint measurements in Eqs. (1) and (2) is 

calculated as follows [17]: 

𝑑𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝐟1, 𝐟2) = ∑ |𝑟𝑠𝑠𝑖
1 − 𝑟𝑠𝑠𝑖

2|𝑁
𝑖=1          (6) 

3.5. Canberra Distance based Similarity Metric 

The Canberra distance, also known as the L1-norm distance, is a distance-based similarity 

metric used to calculate the distance between two fingerprint measurements. Because it is 

unaffected by the magnitude of differences between fingerprints, it is a reliable metric for 

detecting outliers. As a result, it is an excellent choice for applications where the fingerprint 

database may contain noisy or incorrect values. Other metrics, such as the Euclidean distance, 

are more sensitive to the overall structure of the fingerprints in the database than the Canberra 

distance. The Canberra distance between fingerprints 𝐟1  and 𝐟2 can be calculated 

mathematically as [24]: 

𝑑𝐶𝑎𝑛𝑏𝑒𝑟𝑟𝑎(𝐟1, 𝐟2) = ∑
|𝑟𝑠𝑠𝑖

1−𝑟𝑠𝑠𝑖
2|

|𝑟𝑠𝑠𝑖
1|+|𝑟𝑠𝑠𝑖

2|

𝑁
𝑖=1          (7) 

Eq. (7) computes the sum of the absolute differences between the corresponding 

fingerprint measurements, normalised by the sum of the absolute values of the RSS 

measurements. This normalisation helps to mitigate the impact of large values. 

3.6. Cosine Distance based Similarity Metric 

The cosine distance, also known as cosine similarity, is the final distance-based similarity 

metric considered in this paper. It measures the similarity between two fingerprints using the 

angle between them, regardless of their magnitude. The angle between the two fingerprint 

measurement vectors is defined as the cosine distance and is mathematically expressed as [8]: 

𝑑𝐶𝑜𝑠𝑖𝑛𝑒(𝐟1, 𝐟2) = 1 −
∑ (𝑟𝑠𝑠𝑖

1×𝑟𝑠𝑠𝑖
2)𝑁

𝑖

√∑ (𝑟𝑠𝑠𝑖
1)

2𝑁
𝑖 ×√∑ (𝑟𝑠𝑠𝑖

2)
2𝑁

𝑖

         (8) 
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The distance metrics discussed in this section will be used in Step 2 of the k-medoids 

algorithm clustering processing described in Subsection 2.1. That is, once the cluster medoids 

have been identified, the distance between the cluster medoids and the remaining fingerprints 

in each cluster is calculated using the distance metrics listed from 1 to 6. The performance of 

the k-medoids algorithm using each of these distance metrics is evaluated in the following 

section using four publicly available RSS-based fingerprint databases of varying fingerprint 

density sizes. 

4. SIMULATION RESULT AND DISCUSSION 

The performance of the k-medoids algorithm using each of the distance-based similarity 

metrics presented in Section 3 is determined and compared in this section using four publicly 

available RSS-based fingerprint databases. The simulation setup and parameters are presented 

first, followed by a clustering performance evaluation and comparison. 

4.1. Simulation Setup and Parameters 

The clustering performances of the k-medoids algorithm using the six distance-based 

similarity metrics are determined and compared using four publicly available RSS-based 

fingerprint databases with characteristics shown in Table 2. 

Table 2. Characteristics of the four RSS-based fingerprint databases considered. 

Databases Wireless technology 
Database characteristics 

Number of APs Number of fingerprints 

IIRC_IndoorLoc [26] Zigbee 4 194 

SEUG_ IndoorLoc [27] Wi-Fi 3 49 

MSI_IndoorLoc [28] Wi-Fi 11 4973 

IPIN_2019_PIEP_UM [29] Wi-Fi 8 1000 

 

The databases MSI_IndoorLoc and IPIN_2019_PIEP_UM were used at the International 

Conferences on Indoor Positioning and Indoor Navigation (IPIN) in 2017 and 2019, 

respectively. These two databases can be considered to be dense. The MSI_IndoorLoc database 

has a total of 4973 fingerprint measurement vectors containing RSS measurements obtained 

from four Wi-Fi-based wireless APs, all of which are collected within an indoor environment 

with a coverage area of 1000 m2.  

The IPIN_2019_PIEP_UM database is generated within an indoor environment with a 

coverage area of 1000 m2 and contains about 1000 fingerprint measurements generated using 

eight Wi-Fi-based wireless APs. The databases IIRC_IndoorLoc and SEUG_IndoorLoc are 

smaller in size, with a total of 194 and 49 fingerprints, respectively. The IIRC_IndoorLoc 

database was generated using four Zigbee-based wireless APs, while the SEUG_IndoorLoc 

database was generated using three Wi-Fi-based wireless APs.  

The total indoor coverage areas for the IIRC_IndoorLoc and SEUG_IndoorLoc databases 

are 161 m2 and 33 m2, respectively. 

The silhouette score value is used as the clustering performance metric in this paper to 

evaluate the clustering performance of the k-medoids algorithm using various distance metrics. 
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4.2. Clustering Performance Comparison 

The silhouette score is a metric for assessing the quality of clusters produced by a 

clustering algorithm. It measures how well clusters are separated from one another and how 

well fingerprints are assigned to their respective clusters. Silhouette scores range from -1 to 1, 

with a higher score value of 1 indicating a better clustering result. When a clustering algorithm 

with any similarity metric has a silhouette score of 0.7 or higher, it is considered to have good 

clustering performance. This indicates that all the clusters are reasonably well-separated and 

that the fingerprints are generally well-assigned to their respective clusters. Table 3 shows the 

silhouette score values for the different distance metrics used by the k-medoids algorithm to 

cluster the four RSS-based fingerprint databases. A graphical representation of the results in 

Table 3 can be seen in Fig. 2. 

Table 3. Silhouette score for each distance-based similarity metric. 

Distance metric 
Silhouette score  

SEUG_IndoorLoc IIRC_IndoorLoc MSI_IndoorLoc IPIN_2019_PIEP_UM 

Euclidean 0.37 0.42 0.34 0.31 

Chebyshev 0.31 0.38 0.28 0.24 

Mahalanobis  0.29 0.42 0.09 0.13 

Manhattan  0.32 0.40 0.30 0.29 

Canberra 0.29 0.32 0.25 0.28 

Cosine 0.38 0.43 0.31 0.30 

 

The silhouette scores obtained by the k-medoids algorithm with all distance-based 

similarity metrics for all four databases are very low, less than 0.5, indicating that the 

fingerprint clusters were poorly generated. This indicates that the clusters are not well-

separated, and fingerprints may be misassigned to other clusters. The result discussion, on the 

other hand, will disregard the poorly generated clusters and compare the silhouette scores to 

determine which of the six fingerprint similarity metrics considered is slightly better. 

 
Fig. 2. Silhouette score comparison for different fingerprint databases. 

Looking at the silhouette scores for the SEUG_IndoorLoc and IIRC_IndoorLoc databases, 

which are considered to be small in fingerprint density, it can be seen that the cosine distance 

has the highest silhouette score values of 0.38 and 0.43, respectively. This is followed by the 
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Euclidean distance, with silhouette score values of 0.37 and 0.42, respectively. In the 

SEUG_IndoorLoc database, the Manhattan distance came in third with a silhouette score value 

of 0.32. However, on the IIRC_IndoorLoc database, Mahalanobis came in third with a silhouette 

score value of 0.42, which is the same as that of the Euclidean distance. The silhouette score 

value difference between the cosine and Euclidean distances is insignificant. This means that 

both are equally good choices to be used with the k-medoids algorithm to cluster the 

SEUG_IndoorLoc and IIRC_IndoorLoc databases. The Canberra distance metric is the worst 

metric to be used with the k-medoids algorithm, as it has the lowest silhouette score values of 

0.29 and 0.32 on the SEUG_IndoorLoc and IIRC_IndoorLoc databases, respectively. This means 

clusters generated using the Canberra distance as a similarity metric will result in very poor 

localization accuracy. Also, it suggests that these two databases do not have fingerprint outliers 

Extending the analysis to the MSI_IndoorLoc and IPIN_2019_PIEP_UM databases, which 

are considered to be relatively dense in size, the Euclidean distance has the highest silhouette 

score values of 0.34 and 0.31, respectively. This is followed by the cosine distance metric, with 

silhouette score values of 0.31 and 0.30, respectively. The Manhattan distance came in third 

with silhouette score values of 0.30 and 0.31, respectively. For the MSI_IndoorLoc database, the 

silhouette score value of the Euclidean distance is significantly higher than that of the cosine 

and Manhattan, making it the best choice for use with the k-medoid algorithm. As for the 

IPIN_2019_PIEP_UM database, the silhouette score values for the Euclidean, Cosine, and 

Manhattan are nearly the same, meaning that any of the three is a good choice to use with the 

k-medoids algorithm. The Mahalanobis distance metric in this case has the lowest silhouette 

score values in both databases. This means that clusters generated using the Mahalanobis 

distance as a fingerprint similarity metric with the k-medoids algorithm will result in very poor 

localization accuracy. It also suggests the Mahalanobis distance has a very high sensitivity to 

the density of the fingerprint database and that its performance is best on a fingerprint database 

with a low density. 

Even though all six metrics considered generated poorly separated clusters, the Euclidean 

and cosine distance metrics appear to be slightly better choices when considering all four 

databases. The clusters they generated could result in a slight improvement in localization 

accuracy compared to the others. This is regardless of the density of the fingerprint database. 

On large fingerprint databases, as part of the Euclidean and cosine distance metrics, the 

Manhattan distance metric is also a good choice, as it has comparable silhouette scores close to 

those of the Euclidean and cosine distances. Unlike the Euclidean and Manhattan distances, 

which measure the similarity between two fingerprints using actual distances, the cosine 

distance uses the angle distance between fingerprint measurement vectors. For it to have 

equivalent performances close to the Euclidean distance, it shows that the fingerprint 

measurement vectors in these four databases are likely to have similar angles. As a result, the 

cosine distance metric was able to effectively identify clusters of fingerprints with similar 

angles. 

In summary, based on the four databases considered, the Euclidean and cosine distance 

metrics performed better than the other four distance metrics considered. However, in the 

practical implementation of the k-medoids algorithm, there are several factors that need to be 

considered when choosing the best distance-based fingerprint similarity metrics. This is 

because each of these distance metrics is affected by specific indoor environmental factors. For 

instance, in an indoor environment, RSS measurements are known to fluctuate due to several 
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factors, such as the presence and absence of crowds and temporal and ambient conditions. This 

results in a noisy fingerprint database, and it is known that both cosine and Euclidean distance 

metrics are very sensitive to noisy fingerprint databases. Furthermore, considering a large 

fingerprint database, it is computationally intensive to calculate the pairwise distances or 

angles between fingerprints, which could result in a longer localization time. Thus, when 

choosing the appropriate distance metrics for the practical implementation of any clustering, it 

is critical to carefully consider the characteristics of the fingerprint database. Furthermore, 

fingerprint database pre-processing techniques like noise reduction and database 

dimensionality reduction could be used to reduce or mitigate some of the limitations of using 

cosine and Euclidean distances as fingerprint similarity metric measures. 

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

In this paper, the clustering performance of the k-medoids algorithm using six different 

distance metrics, namely Euclidean, Chebyshev, Mahalanobis, Manhattan, Canberra, and 

cosine, is determined. The clustering performance of the k-medoids algorithm with the 

different distance metrics is determined using four publicly available RSS-based fingerprint 

databases with different fingerprint densities. Using silhouette scores as the clustering 

performance metrics, the results show that all six distance metrics had silhouette scores that 

were less than 0.5, indicating poorly generated clusters. However, the k-medoids algorithm 

with the Euclidean and cosine distance metrics generated the most clusters that were slightly 

better separated than the others, irrespective of the sizes of the databases. The Manhattan 

distance metric performance is similar to that of Euclidean and cosine distance metrics only on 

the larger density databases. A well-clustered fingerprint database increases localization 

accuracy and reduces the localization time of the system. Even though the clusters were poorly 

generated, fingerprint clusters generated using Euclidean, cosine, and Manhattan distances as 

fingerprint similarity metrics will have slightly better localization accuracy. As such, future 

work will focus on investigating how these poorly separated clusters will affect the overall 

localization performance of the fingerprint-based localization system.  
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