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Abstract— The integration of electric vehicles (EVs) into power systems has introduced new challenges for load 
frequency control due to the additional charging load they impose. This research article investigates the design 
and analysis of automatic load frequency control in a two-area power system, considering the presence of EV 
charging load. The study employs Artificial Neural Network (ANN) based PI control to manage both traditional 
load demand and the dynamic charging requirements of EVs. Maintaining a stable power system frequency and 
balancing generation with the EV charging load have become crucial tasks. Automatic Generation Control (AGC) 
or Load Frequency Control (LFC) systems need to adapt and account for the variability and uncertainty associated 
with EV charging patterns. The integration of ANN-based PI control provides an intelligent and adaptive 
approach to address these challenges. Using MATLAB, a power system model is simulated to evaluate the 
effectiveness of the proposed control scheme. This investigation conducts a comparative analysis of the system's 
frequency responses under various scenarios, including different EV charging load profiles. It highlights the 
benefits and challenges of utilizing ANN-based PI control to manage the combined load of traditional demand 
and EV charging. Moreover, the load distribution among the distribution stations varied from 0.08% to 12.50% 
when compared between particle swarm optimization and genetic algorithm, respectively. By considering the 
dynamic interaction between power system operation and EV charging, this research aims to enhance the 
reliability, efficiency and sustainability of power systems in the context of evolving transportation trends and the 
increasing electrification of vehicles. 
 
Keywords— Load frequency control;  Electric vehicle charging load; Optimization; Load allocation; Two-area 
power system.  
  

     

Nomenclature 
 

ACE Area correction error  ΔPi Tie-line power dynamics 

ADD Additional symbols and terms  ΔPrefi Control action in ANN 

ANN Artificial neural network  ΔUi Prime mover and generation dynamics 

CA Control area  α Load characteristic coefficient 

CPF Contract participation factor  β Governor gain 

DPM Disco participation matrix  δ Rotor angle 

EV Electric vehicle  δ0 Equilibrium rotor angle 

GA Genetic algorithm  ε Tolerance 

GENCO Generation station  θ Totor angle 

PSO Particle swarm optimization  η Learning rate 

pu Per unit  μ(Δf(t)) Fuzzy logic controller 
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STD Standard deviation  ω Actual speed 

ωref Reference frequency  ωref Reference speed 

Δf Frequency deviation  ωs Synchronous speed 

ΔP_ec EV load control equation  Δωi Speed deviation 

ΔP_gc Generator control equation    

1. INTRODUCTION  

In recent years, the integration of electric vehicles (EVs) into the power grid has 

introduced new challenges and opportunities for the reliable operation of power systems. The 

increasing adoption of EVs, coupled with their charging load, adds an additional layer of 

complexity to the already existing load demand and generation control issues. Maintaining a 

stable power system frequency while efficiently managing the charging requirements of EVs 

has become a critical aspect of power system operation. Automatic load frequency control 

systems, which traditionally focus on balancing generation and demand, must now adapt to 

incorporate the charging load of EVs. This integration requires careful coordination to ensure 

that the charging demand is met while maintaining the stability and reliability of the power 

system. The charging load of EVs can have a significant impact on power system dynamics, 

especially during peak demand periods. 

The incorporation of electric vehicles (EVs) into power systems has sparked significant 

interest due to its implications for Load Frequency Control (LFC). This review delves into key 

studies that illuminate the complex relationship between EVs and LFC, showcasing their 

interplay and identifying research gaps that underscore our paper's significance. 

Khan et al. [1] delved into the participation of EVs in LFC using mixed H2/H∞ control. 

Their study revealed the potential of EVs as controllable resources for enhancing frequency 

stability in dynamic power systems. Khalil et al. [2] explored the impact of time delay on LFC 

in microgrids with plug-in EVs. This study emphasized the need to consider EV dynamics 

when designing LFC strategies. Farooq et al. [3] extended LFC considerations to multi-source 

electrical power systems integrated with solar-thermal and EVs. Their research highlighted the 

challenges and opportunities posed by renewable energy and EV integration in LFC. Pham and 

Trinh [4] introduced LFC strategies for power systems incorporating EVs and diverse 

transmission links. Their study showcased the integration of advanced control techniques to 

manage the evolving dynamics of modern power grids. Arya [5] investigated the effect of EVs 

on LFC in interconnected thermal and hydrothermal power systems. The study emphasized 

the role of control strategies in maintaining frequency stability in evolving power scenarios. 

Zhang et al. [6] focused on real-time adjustments of LFC based on the controllable energy of 

EVs. Their research shed light on the potential of EVs to provide ancillary services for frequency 

regulation. Dutta and Prakash [7] explored the utilization of EVs and renewable energy sources 

for LFC in deregulated power systems using an emotional controller. Their study introduced 

unconventional control methods for dynamic power systems. Tang et al. [8] proposed an 

intelligent LFC strategy utilizing GrADP for island smart grids with EVs and renewable 

resources. This work illustrated the adaptability of AI-based control approaches in addressing 

complex power system dynamics. Naveed et al. [9] studied the impact of EV aggregator 

communication time delay on stability regions and delay margins in LFC. Their work 

highlighted the significance of communication dynamics in shaping LFC performance. 

Khooban et al. [10] presented a new LFC strategy for microgrids considering EVs. This study 
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emphasized tailored strategies for managing frequency control in evolving energy paradigms. 

Aravindh et al. [11] designed an observer-based non-fragile LFC strategy for power systems 

with EVs. This research contributed to the development of robust control techniques for 

managing EV-related dynamics. 

1.1. Research Gaps and Implications 

While these studies collectively enhance our understanding of EVs' impact on LFC, a clear 

research gap surfaces: the integration of EVs within the broader context of LFC. The current 

literature lacks a comprehensive exploration of how EVs interact with LFC strategies. This 

research gap underscores the importance of our study, which aims to bridge this gap and 

provide insights into effective strategies for integrating EVs into LFC frameworks. In response 

to this research gap, our study endeavors to address the intricate relationship between EVs and 

Load Frequency Control. By shedding light on this interaction, we aim to contribute to a 

comprehensive understanding of power system dynamics, paving the way for innovative 

strategies that optimize frequency control in the presence of EVs. 

2. MATHEMATICAL MODELLING  

Modeling a power system with load frequency control involves simulating the system's 

behavior while considering the automatic control mechanisms that regulate the frequency in 

response to load changes. Key aspects include modeling governor systems on power 

generators, representing various load types and their response to frequency deviations, 

simulating automatic generation control (AGC) for coordinated frequency regulation, 

analyzing system dynamics and stability, evaluating frequency response performance, tuning 

controller parameters for optimal operation, and incorporating ancillary services. Load 

frequency control is crucial for maintaining frequency stability and reliable power system 

operation. Modeling enables the assessment of dynamic behavior, control performance, and 

response under different conditions and disturbances. The fundamental equation describes 

the rate of change of system frequency (
𝑑𝑓

𝑑𝑡
) is related to the mismatch between generation and 

load. The rate of change of frequency is proportional to the net difference between mechanical 

power input to the generators(𝑃𝑚𝑖), electrical power demand (𝑃𝑑𝑖), and a damping term: 
 

𝑑𝑓

𝑑𝑡
=

1

2𝐻
 (∑ 𝑃𝑚𝑖(𝑡) − ∑ 𝑃𝑑𝑖(𝑡) − 𝐷(𝑓 − 𝑓0) − 𝑃𝐸𝑉(𝑡)𝑁

𝑖=1
𝑁
𝑖=1                                (1) 

 

Where: 

 
𝑑𝑓

𝑑𝑡
 is the rate of change of frequency, 𝐻  is the total system inertia, N is the number of 

generators, 𝑃𝑚𝑖(𝑡) is the mechanical power input of generator i at time t, 𝑃𝑑𝑖(𝑡) is the electrical 

power demand of load i at time t, D is the damping coefficient; f  is the actual frequency, 𝑓0 is 

the nominal (desired) frequency and 𝑃𝐸𝑉(𝑡) is the electric vehicle charging load at time t. 

With Eq. (1) [2], we account for the impact of the EV charging load on the rate of change 

of frequency. When 𝑃𝐸𝑉(𝑡) is positive indicating EVs are charging and drawing power from 

the grid, it adds to the electrical demand (∑ 𝑃𝑑𝑖(𝑡))𝑁
𝑖=1 , which can result in a decrease in system 

frequency. Conversely, when 𝑃𝐸𝑉(𝑡)   is negative indicating EVs are discharging or not 

drawing power from the grid, it subtracts from the electrical demand, potentially leading to 

an increase in system frequency. 
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2.1. Power System Model 

Consider a multi-area power system comprising N interconnected areas. Each area includes 

generators, loads, and EV charging stations. The power system is represented by the following 

variables: 

Generator Parameters: Generator parameters are crucial in load frequency control (LFC) 

for regulating the frequency of a power system. The key parameters include governor droop, 

governor gain, governor and turbine time constants, generation limits, and rate limiting. 

Governor droop determines the generator's sensitivity to frequency deviations, while the gain 

determines the proportional relationship between frequency deviation and output change. 

Time constants represent the response time of the governor and turbine. Generation limits 

ensure generators operate within technical limits.  

Rate limiting prevents abrupt changes in output. Accurate modeling of these parameters 

is vital for realistic simulations and maintaining frequency stability within acceptable limits in 

LFC. Generation Power: P_gi(t), where i is the index of the generator in area A. Governor 

Control: ΔP_gi(t), representing the change in generation power due to governor control action. 

2.2. Load Parameters 

In load frequency control (LFC), load parameters, including electric vehicle (EV) 

charging, are important factors to consider. Key load parameters include load characteristics, 

load shedding, demand response, EV charging, load forecasting, load ramp rates, and load 

aggregation. Load characteristics capture the behavior of different load types in response to 

frequency deviations. Load shedding and demand response mechanisms prioritize and adjust 

load consumption during frequency emergencies.  

EV charging parameters encompass charging profiles, infrastructure availability, and 

the impact on load demand and frequency fluctuations. Accurate load forecasting, considering 

load ramp rates and load aggregation techniques enhances LFC modeling. Integrating EV 

charging parameters and load dynamics in LFC modeling enables effective frequency control 

and system stability.  

The load paprameters utilized in this investigation are L: Traditional Load P_li(t), where 

i is the index of the load in area A; EV Charging Load: P_evi(t), where i is the index of the EV 

charging load in area A; Tie Line Power Flow: P_ti(t), where i is the index of the tie line between 

areas A and B. 

2.3. Load Frequency Control Model 

The objective of load frequency control is to maintain power system frequency and tie-

line power within acceptable limits. The model comprises the following components: 

Frequency Deviation: Δf(t), representing the deviation of the system frequency from the 

nominal value; Generator Control Action: ΔP_gc(t), which adjusts the generation power to 

match the load demand and restore frequency; EV Load Control Action: ΔP_ec(t), which 

adjusts the EV charging load to manage the charging demand and frequency deviations. 

2.3.1. Control Parameters 

Proportional Gain: Kp, determining the strength of the proportional control action. 

Integral Gain: Ki, determining the strength of the integral control action. Fuzzy Logic 
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Membership Functions: μ(x), defining the membership degree of a variable x in a fuzzy set. 

Control equations are mentioned as follows: 

Generator Control Equation: 

ΔP_gc(t)  =  Kp ∗  (Δf(t)  +  Ki ∗  ∫Δf(t) dt)                                               (2) 

Eq. (2), describes the connection between the frequency deviation (∆f) and the 

corresponding adjustment in generator power (∆P_gc). This adjustment mechanism employs 

a proportional-integral (PI) control structure, utilizing parameters Kp and Ki, to maintain 

precise regulation of the system's frequency. 

EV Load Control Equation: 

ΔP_ec(t)  =  FuzzyLogicController(Δf(t))  +  ANNController(Δf(t))                   (3) 

Eq. (3) outlines the EV load control equation, in which adjustments (∆P_ec) are derived 

through a blend of Fuzzy Logic Controller and Artificial Neural Network (ANN) Controller. 

These adjustments are computed concerning the frequency deviation (∆f). 

Fuzzy Logic Controller: 

ΔP_ec(t)  =  defuzzify(μ(Δf(t))                                                                                                 (4) 

Eq. (4), signifies the process of translating the fuzzy output representing the adjustment 

to the electric vehicle load at a given time t, determined based on the degree of membership 

of the observed frequency deviation (∆f(t)) to linguistic labels, into a precise numerical value 

for regulating the power system's frequency. 

Artificial Neural Network (ANN) Controller: 

ΔP_ec(t)  =  ANN(Δf(t))                                                                          (5) 

Eq. (5), represents the calculation of the adjustment (∆P_ec(t)) to the electric vehicle load 

at a specific time t using an Artificial Neural Network (ANN) controller based on the observed 

frequency deviation (∆f(t)), enabling intelligent control of the power system. 

Tie Line Power Control Equation: 

P_ti(t)  =  P_gA(t)  −  P_gB(t)                                                            (6) 

Eq. (6), computes the tie-line power flow (P_ti(t)) at a given time t as the difference 

between the generation power of area A (P_gA(t)) and the generation power of area B 

(P_gB(t)), representing the power exchange between interconnected areas in a power system. 

2.3.1.1. Rule Base 

Definition of a set of rules that map the input variables to output control actions is 

represented in Table 1. 

 
Table 1. Fuzzy logic rules. 

Rule number Rule 

Rule 1 IF Δf(t) is NB THEN ΔP_ec(t) is Positive 

Rule 2 IF Δf(t) is NM THEN ΔP_ec(t) is Positive 

Rule 3 IF Δf(t) is ZE THEN ΔP_ec(t) is Zero 

Rule 4 IF Δf(t) is PM THEN ΔP_ec(t) is Negative 

Rule 5 IF Δf(t) is PB THEN ΔP_ec(t) is Negative 

 

We apply fuzzy logic inference methods, to determine the appropriate control action 

based on the fuzzy rules and input values. Convert the fuzzy control action into a crisp value 

using defuzzification methods, such as centroid or weighted average. The output of the fuzzy 
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logic controller, ΔP_ec(t), is used as the control action for adjusting the EV charging load to 

manage the charging demand and frequency deviations. 

2.3.1.2. Artificial Neural Network (ANN) Controller 

The mathematical model for load frequency control using an Artificial Neural Network 

(ANN) controller is represented as a set of equations. Here is a simplified mathematical model: 

System Dynamics: 

The dynamic behavior of the load frequency control system can be described using 

differential equations. A commonly used model is the two-area power system model: For each 

area i (i = 1, 2): 

Governor Dynamics: 

∆Pci/dt =  (1/Tgi)(Pgi −  Kpgi∆ωi −  Kdigi(d(∆ωi)/dt))                               (7) 

Eq. (7), represents the rate of change of the control signal (∆Pci) for a generator's power 

output and is determined by factors including the generator's inertia (Tgi), mechanical power 

input (Pgi), and the governor's proportional (Kpgi) and derivative (Kdigi) control gains. 

Turbine-Governor Transfer Function: 

Pgi =  Ktgi(∆Prefi −  ∆Ui)                                                            (8) 

Eq. (8), defines the power output (Pgi) of a generator, which depends on the turbine-

governor transfer function gain (Ktgi) and the difference between the reference power (∆Prefi) 

and the actual power (∆Ui) generated by the generator. 

Prime Mover and Generation Dynamics: 

D(∆Ui)/dt =  (1/Tdi)(∆Pi −  ∆Ui)                                              (9) 

Eq. (9), represents the rate of change of the internal state variable (∆Ui) of a generator, 

which depends on the difference between the generated power (∆Pi) and the internal state 

(∆Ui), with consideration for the governor's time constant (Tdi). 

Tie-Line Power Dynamics: 

D(∆Pi)/dt =  (1/Tki)(Pci −  ∆Pi –  Kpfi(∆ωi −  ∆ωr))                                           (10) 

Eq. (10), describes the rate of change of tie-line power deviation (∆Pi) for time, which is 

influenced by factors including the difference between the generated power at the control area 

(Pci), the tie-line power (∆Pi), and the proportional feedback control term, adjusted by the 

governor's time constant (Tki). 

The ANN controller aims to adjust the control action (∆Prefi) based on system 

measurements (∆ωi, ∆Pi) to maintain system frequency within desired limits. The ANN 

controller maps the input variables (∆ωi, ∆Pi) to the control action (∆Prefi) which is 

represented in Eq. (11). 

∆Prefi =  f(∆ωi, ∆Pi)                                                           (11) 

The function f represents the trained ANN controller, which is represented in Eq. (11) as 

a set of weighted connections and activation functions within the neural network architecture. 

The objective of load frequency control is to maintain system frequency within desired limits 

by adjusting the control action (∆Prefi). This is achieved by minimizing a performance index, 

such as the integral of the squared error (ISE): 

J =  ∫  [ωref − ∆ωi(t)]^2 dt                                              (12) 

where, ωref is the desired reference frequency.  Eq. (12), represents a performance index (J) 

used to evaluate the load frequency control system's effectiveness by integrating the squared 

deviation of the system's frequency (∆ωi(t)) from the reference frequency (ωref) over time. 
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3. SYSTEM DEVELOPMENT 

3.1. System Dynamics 

The mathematical model for load frequency control (LFC) involves representing the 

dynamics of the power system, generator models, control loop, and load models. Here is a 

simplified mathematical representation. 

3.1.1. Frequency Dynamics 

The rate of change of system frequency (df/dt) is proportional to the frequency deviation 

from the nominal value (Δf) and inversely proportional to the total system inertia (H) as shown 

by Eq. (13). 

df/dt =  −(1/H) ∗  Δf                                                           (13) 

3.1.2. Generator Models 

Generator Mechanical Dynamics: The mechanical equation of each generator represents 

the response of the generator's turbine to changes in output. Eq. (14), describes the mechanical 

dynamics of a generator, where M is the inertia constant, δ represents the rotor angle, Pm is 

the mechanical power input, Pe is the electrical power output, D is the damping coefficient, 

and δ0 is the equilibrium rotor angle. 

M ∗  d²δ/dt² =  Pm −  Pe −  D ∗  (δ −  δ0)                                           (14) 

where M is the generator's inertia constant, δ is the rotor angle, Pm is the mechanical power 
input, Pe is the electrical power output, D is the damping coefficient, and δ0 is the equilibrium 
rotor angle. 

3.1.3. Governor Dynamics 

Eq. (15) represents the governor dynamics of a generator, with ∆P as the change in 

generator output, K as the governor droop gain, ωref as the reference speed, ω as the actual 

speed, β as the governor gain, and ∆f as the frequency deviation. A typical governor model is 

the speed droop model, which is represented as: 

∆P =  K ∗  (ωref −  ω)  −  β ∗  ∆f                                                        (15) 

where ∆P is the change in generator output, K is the governor droop gain, ωref is the reference 
speed, ω is the actual speed, β is the governor gain, and ∆f is the frequency deviation. 

3.1.4. Control Loop 

Control Action:  

The control action adjusts the generator output (∆P) based on the frequency error (∆f). It 

is represented as: 

∆P =  Kc ∗  ∆f                                                                        (16) 

where Kc is the control gain. Eq. (16), represents the control action where ∆P is the change in 
generator output, Kc is the control gain, and ∆f is the frequency deviation used to adjust the 
generator's output in response to frequency deviations. 

3.1.5. Load Models 

Load Characteristics: Load characteristics capture the behavior of different types of 

loads. A simplified model for the load power response to frequency variations is represented 

as: 



247                                                    Jordan Journal of Electrical Engineering. Volume 10 | Number 2 | June 2024 

 

∆Pl =  −α ∗  ∆f                                                                                   (17) 

where ∆Pl is the change in load power, and α is the load sensitivity constant. 

Above Eq. (17), describes the change in load power (∆Pl) in response to frequency 

deviations (∆f), where α is the load sensitivity constant, and it signifies how to load power 

responds to variations in system frequency. 

The equations and control strategies discussed aim to regulate frequency deviations 

within acceptable limits. While tie-line power control and other aspects are integral to the 

broader power system operation, our primary focus in the derivation is frequency 

maintenance, as accurate frequency control is vital for overall power system stability. 

3.2. Discom Participation Matrix 

The Discom Participation Matrix shown in Fig. 1 is a tool used in power system analysis 

and planning. It outlines the involvement of distribution companies (Discoms) in various 

activities related to power system operation. The matrix lists activities/functions and Discoms, 

indicating the level of participation or responsibility for each activity. It helps define roles and 

responsibilities, ensures compliance with regulatory frameworks, and promotes coordination 

among stakeholders. The matrix facilitates efficient power system management and fosters 

collaboration between Discoms and other entities in the power sector. 

In the restructured system, power generation companies (GENCOs) sell electricity to 

different distribution companies (DISCOs) at competitive prices. This gives DISCOs the 

freedom to choose which GENCOs they want to enter into contracts with. The contracts may 

or may not be limited to GENCOs operating within the DISCOs' areas. This flexibility allows 

for various combinations of GENCO-DISCO contracts to be formed. To facilitate the 

visualization of these contracts, we introduce the concept of a "DISCO participation matrix" 

(DPM). The DPM is a matrix that has several rows equal to the number of GENCOs, and 

several columns equal to the number of DISCOs in the system. Each entry in the matrix 

represents a fraction of the total electricity load contracted by a DISCO (column) from a specific 

GENCO (row). Therefore, each entry indicates the proportion of the total contracted load that 

the DISCO has assigned to a particular GENCO. It is important to note that the sum of all the 

entries in each column of the DPM is equal to one, as it represents the complete participation 

of the DISCO in contracts with different GENCOs. The DPM provides a clear representation 

of the level of involvement of each DISCO in contracts with various GENCOs, which is why it 

is referred to as the "DISCO participation matrix." 

 

Fig. 1. DISCOM participation Matrix. 

where CPF refers to the “contract participation factor”. Suppose that DISCO demands                

0.1 pu MW power, out of which 0.025pu MW is demanded from GENCO 1, 0.03puMW from 
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GENCO 2, 0.035pu MW from GENCO 3, and 0.01puMW from GENCO 4. Then column 3 

entries are easily defined as: 

CPf13=0.025/0.1=0.25,        CPf23=0.03/0.1=0.3 
CPf33=0.035/0.1=0.35,       CPf43=0.01/0.1=0.1 

4. RESULTS AND DISCUSSION 

The model of the platform used for simulation consists of two interconnected control 

areas (CA). Every CA is represented with one substitute power plant and associated Load 

frequency controller. Using the proposed control algorithms (Fuzzy Logic and Artificial 

Neural Network), the frequency deviation of each area and the tie-line power have a good 

dynamic response in comparison with conventional control.  The simulation results of the 13 

parameters of the system are drawn in Fig. 2 to Fig. 14 comparing their responses with the 

proposed controllers.  Dynamic Response of LFC with different controllers is represented in 

Fig. 4 and Fig. 6 which shows reduction in area correction error (ACE). 

  
Fig. 2. Deviation of frequency in area 1. Fig. 3. Deviation of frequency in area 2. 

  
Fig. 4. Deviation of ACE in area 1.          Fig. 5. Deviation of ACE in area 2. 

  
Fig. 6. Deviation of GENCO1 power.                                Fig. 7. Deviation of GENCO2 power.  
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Fig. 8.  Deviation of GENCO3 power.                                       Fig. 9. Deviation of GENCO4 power.  

  
Fig. 10. Deviation of TURBINE1 power.                           Fig. 11. Deviation of TURBINE2 power.      

  
Fig. 12. Deviation of TURBINE3 power.                     Fig. 13. Deviation of TURBINE4 power.  

 
Fig. 14. Deviation of Tie-Line power flow. 

 
When comparing load frequency control shown in Table 2 strategies in terms of rise time, 

settling time, and peak overshoot, certain characteristics emerge. PI control, a classic strategy, 

offers reasonable rise time and settling time, but it may exhibit some peak overshoot in 

response to sudden load changes. Fuzzy logic control, leveraging linguistic variables and 

rules, provides fast rise time, satisfactory settling time, and effective mitigation of peak 
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overshoot by adapting to uncertainties. ANN control, utilizing artificial neural networks, can 

deliver fast rise time and good settling time, with the ability to learn from training data to 

reduce peak overshoot.  
 

Table 2. Comparative results of load frequency control strategies. 

Performance metric ANN Control Fuzzy Logic control PI control 

Rise time [s] 0.96 1.57 2 

Settling time [s] 1.27 2.1 2.36 

Overshoot [m/s] 0.07 0.16 0.31 

Steady-state error [m/s] 3.6 4.12 6.39 

 

Fuzzy logic control and ANN control, with their capabilities to handle nonlinearities and 

uncertainties, have the potential to outperform PI control. However, the selection of the most 

suitable strategy depends on system characteristics, tuning parameters, available training 

data, and the expertise of the control engineer. Proper evaluation and tuning are crucial to 

choosing the optimal control strategy for a specific load frequency control scenario. 

4.1. Optimization by using PSO for load allocation with each generation station  

As shown in Table 3, which represents the inertia weight in the PSO algorithm. The 

inertia weight (w) controls the balance between exploration and exploitation during the 

optimization process. c1 and c2- These are the cognitive coefficient and social coefficient, 

respectively, used in the Particle Swarm Optimization (PSO) algorithm. ev_mean- It refers to 

the mean value of the Electric Vehicle (EV) charging load deviation. ev_std-. The standard 

deviation quantifies the dispersion or variability of the EV charging load values around the 

mean. 

A compararison of the load distribution results for two different combinations of EV 

charging load deviation is shown in Table 4. EV charging load deviation with mean = 1 and 

standard deviation = 0.1: with EV charging load deviation with mean = 1 and standard 

deviation = 0.5. Comparing the two cases, we can observe that when the standard deviation is 

higher (0.5), the load distribution values for each GENCO are generally higher compared to 

when the standard deviation is lower (0.1).  

This higher variability in the EV charging load results in a wider range of load values 

assigned to each GENCO. On the other hand, when the standard deviation is lower (0.1), the 

load distribution values are generally lower for each GENCO, indicating less variability in the 

EV charging load and a more consistent load assignment among the GENCOs. The choice of 

the mean and standard deviation for the EV charging load deviation depends on the specific 

characteristics of the EV charging load in the given scenario, including the level of uncertainty 

and variability expected in the charging behavior. 
 

Table 3: PSO Parameters. 

Parameter Value 

Number of particles 10 

Max iterations 100 

w 2 

c1 4 

c2 4 
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Table 4: Deviation in load distribution. 

Parameter 
ev_mean 

0.2 
ev_mean 

0.4 
ev_mean 

0.6 
ev_mean 

0.8 
ev_mean 

1 
1 with 

ev_std 0.5 

GENCO 1 [pu MW] 0.0615 0.0880 0.0980 0.1080 0.0980 0.1180 

GENCO 2 [pu MW] 0.0799 0.0902 0.1002 0.1102 0.1002 0.1202 

GENCO 3 [pu MW] 0.1031 0.0979 0.1079 0.1179 0.1079 0.1279 

GENCO 4 [pu MW] 0.0196 0.0780 0.0880 0.0980 0.1079 0.1080 

 
From the comparison in Table 5, we can observe that there are differences in the load 

distribution values obtained from the PSO algorithm [12] and the GA algorithm. Specifically, 

we see variations in the load assigned to each GENCO. For example, in the case of GENCO 1, 

the PSO algorithm assigns a load of 0.0980 pu MW, while the GA algorithm assigns a slightly 

higher load of 0.1026 pu MW. Similarly, for other GENCOs, we can see variations in the load 

distribution values between the two algorithms. These differences in load distribution can be 

attributed to the distinct optimization approaches and mechanisms employed by the PSO and 

GA algorithms. Each algorithm has its own way of exploring and exploiting the search space, 

which can lead to divergent results in terms of load allocation. Ultimately, the choice between 

the PSO algorithm and the GA algorithm would depend on the specific requirements of the 

problem, including factors such as convergence speed, solution quality, and computational 

efficiency. 
 

Table 5: Comparison of PSO and GA. 

GENCO 
PSO Algorithm  

[pu MW] 
GA Algorithm  

[pu MW] 

GENCO 1 0.0980 0.1026 

GENCO 2 0.1002 0.1088 

GENCO 3 0.1079 0.0967 

GENCO 4 0.0880 0.0923 

 

The load distribution and allocation of resources among the generation units, as 

determined by the load distribution algorithms like PSO or GA, can have an impact on 

economic load dispatch (ELD). Economic load dispatch is the process of allocating the 

generation output among the available units in a power system to meet the load demand while 

minimizing the total operating cost. When the load distribution among the generation units is 

optimized using algorithms like PSO or GA, it affects the input parameters for the economic 

load dispatch problem. The allocated load to each generation unit, along with their associated 

costs, determines the total cost of generation. By optimizing the load distribution, the 

operating cost of the system can be minimized, leading to more efficient and cost-effective 

operation. Therefore, the load distribution results obtained from algorithms like PSO or GA 

can serve as valuable inputs to the economic load dispatch problem, allowing for better 

management of generation resources and improved cost efficiency. 

5. CONCLUSIONS 

 The load distribution results obtained from the Particle Swarm Optimization (PSO) 

algorithm and the Genetic Algorithm (GA) for the given EV charging load deviation 

parameters (ev_mean = 1 and ev_std = 0.1) highlight the variability in load allocation among 

the GENCOs. With their distinct optimization approaches, PSO and GA exhibit differences in 

load distribution values. We observed distinct variations in the load allocation to each 
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GENCO. For instance, in the context of GENCO 1, the PSO algorithm assigns a load of         

0.0980 pu MW, while the GA algorithm slightly increases it to 0.1026 pu MW. Similarly, other 

GENCOs exhibit differing load distribution values due to the unique optimization 

mechanisms of PSO and GA. These disparities are to be attributed to the fundamental 

differences in how the two algorithms approach the optimization task. 
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