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Abstract—This research focuses on the development of speech enhancement techniques for two-channel audio 
systems. Specifically, we explore the utilization of an efficient sparseness recursive algorithm to tackle this challenge. 
The algorithm is designed to identify and attenuate noise components present in the audio signals, with the aim of 
improving the overall audio quality. In this investigation, we propose innovative approaches and enhancements to 
the sparseness recursive normalized least mean square (NLMS) algorithm, denoted Backward µ-law Proportionate 
NLMS (BMPNLMS), making it more suitable and effective for two-channel speech enhancement. By capitalizing on the 
sparsity properties of the audio signals, techniques proposed in this paper aim to enhance the desired audio while 
suppressing unwanted noise. Performance of the presented algorithm was examined by rigorous experiments based 
on several criteria. The obtained results thoroughly confirm the effectiveness of the proposed approach in real-world 
situations. 

 
Keywords— Backward µ-law proportionate algorithm; Backward normalized least mean square algorithm; Signal to 
noise ratio; Cepstral distance; System mismatch; Speech signal. 
       

Nomenclature 
 

 

 

   

BMPNLMS Backward µ-law 

proportionate NLMS 

 SNR Signal to noise ratio 

BNLMS Backward NLMS  USASI USA standards institute 

BSS Blind source separation  𝜀 Regularization parameter introduced to 

avoid division by zero 

CD Cepstral distance  𝜇12, 𝜇21 two adaptation step-size 

DIR Dispersive impulse 

response 

 𝜌 Small parameter introduced to prevent 

the freeze of adaptation process 

NLMS Normalized least mean 

square 

 δ Initialization parameter to ensure the 

stability of the adaptation process 

SegSNR Segmental SNR  ɳ Positive number calculated from the 

noise power 

SIR Sparse impulse 

response 

 µ Reciprocal of ɳ, implying that µ = 1/ɳ 

SM System mismatch    
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1. INTRODUCTION  

In the system of telecommunications, noise reduction techniques play a vital role in 

mitigating the presence of unwanted noise. Researchers have been actively exploring various 

ways to enhance the reliability and performance of noise cancellation systems [1, 2].  

One approach that has garnered significant interest is the utilization of source separation 

techniques in two-channel convoluted dispersive systems, with the aim of separating speech 

signals from acoustic noise.  

This method holds considerable promise in improving the effectiveness of noise 

cancellation.  The fundamental objective of noise reduction techniques is to enhance the overall 

quality of transmitted or recorded audio by minimizing the impact of background noise. 

Undesirable noise can infiltrate audio during the stages of capture, transmission, or 

playback, resulting in a degradation of speech intelligibility and audio clarity. To combat this 

issue, researchers have dedicated their efforts to devising innovative strategies for noise 

cancellation. 

To further optimize the performance of noise cancellation systems, researchers have 

explored the integration of different adaptive algorithms. Among these approaches, the dual 

microphone backward technique has emerged as a crucial component for enhancing speech 

signals [3-5].  

Extensive research has been conducted on this structure, providing comprehensive 

analyses and insights into its application in noise cancellation. However, it is important to 

acknowledge that the dual microphone backward normalized least mean square (NLMS) 

algorithm [3, 6, 7] is a well-known structure.  

This latter exhibits poor performance when dealing with sparse impulse responses. This 

algorithm requires the adaptation of a relatively long filter, leading to adaptation noise in 

inactive tap weight regions. To overcome these limitations, it is essential to address the 

challenges associated with longer filters and mitigate adaptation noise during inactive tap 

weight regions [8-11]. 

In this research paper, we introduce a modification of the dual microphone backward 

NLMS algorithm based on µ-law proportionate approach, denoted BMPNLMS. This algorithm 

incorporates specific normalized step sizes and employs a µ-law proportionate technique        

[12, 13] to enhance its performance. By utilizing these techniques, the proposed algorithm 

improves both convergence speed and misadjustment.  

Our aim is to validate the effectiveness and advantages of the presented algorithm for 

two-channel backward NLMS noise reduction. Overall, this research aims to contribute to the 

field of noise cancellation by introducing a modified algorithm that addresses the limitations 

of the existing dual microphone backward NLMS algorithm.  

The proposed algorithm has the potential to enhance the performance of noise reduction, 

particularly in scenarios involving sparse impulse responses. 

The next organization of this paper is: In Section 2, we provide a detailed explanation of 

the two-channel convoluted system. Section 3 presents the conventional backward NLMS 

algorithm (BNLMS) which has been token as a reference. In Section 4, we introduce our 

proposed BMPNLMS algorithm, outlining its methodology and modifications. We present the 

simulation part and discussion results obtained from extensive experiments in Section 5. 

Finally, we present the conclusion of our findings and contributions in last Section. 
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2. CONVOLUTIVE SYSTEM AND RELATED WORKS  

2.1. The Problem of Two-Channel Convolutive System 

In our system, we analyze two source signals: The first signal: s(n) is an acoustic speech 

signal, the second signal: b(n) is an acoustic punctual noise. These signals undergo convolution 

with impulse responses of the mixture system. Specifically, s(n) is convolved with h12(n), and 

b(n) is convolved with h21(n) [3, 5, 14, 15]. The output signals of this analysis model are: 
 

𝑝1(𝑛) = [ℎ21(𝑛) ∗ 𝑏(𝑛)] + 𝑠(𝑛)           (1) 

𝑝2(𝑛) = [ℎ12(𝑛) ∗  𝑠(𝑛)] + 𝑏(𝑛)           (2) 

where ∗ represents the operation of convolution. The convolutive model with two sources and 

two microphones is shown in Fig. 1. 

 
Fig. 1. Convolutive model with two sources and two microphones [3, 5, 14]. 

 

In our assumption, we consider the physical arrangement of the microphones in relation 

to the speaker and the noise source. We assume that the first microphone is located close to 

the speaker, while the second microphone is positioned near to the noise. Based on this setup, 

we can assume that the direct impulse response from two sources to respective microphones 

respectively can be approximated as the Kronecker unit impulse [3, 4, 8]. This implies that the 

direct acoustic signals arrive at the microphones instantaneously without significant delays or 

distortions caused by the propagation medium.  

In various scenarios such as conference systems or hands-free systems for 

communication, there is a need for an acoustic noise canceler to estimate the acoustic impulse 

response. The duration of the acoustic impulse response is directly connected to reverberation 

in an enclosed area. The duration of reverberation is directly related to the size of the space 

and inversely related to the amount of surface area available for sound absorption [16]. When 

analyzing impulse responses, two distinct categories can be identified: Dispersive impulse 

response (DIR) and Sparse impulse response (SIR). To visually illustrate these impulse 

response types, Fig. 2, provides examples depicting the characteristics of both DIR and SIR 

with a length of 128 samples [17].  

In the case of DIR, the energy is evenly distributed across all coefficients, meaning there 

is no concentration of energy in specific coefficients. On the other hand, SIR indicates that most 

of the energy is concentrated in a few coefficients, the residual coefficients are close to very 

small in magnitude or zero. 
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2.2. Related Works  

Several techniques explore the application of the two-microphone technique to address 

the challenges posed by convolutive systems in acoustic noise reduction and speech 

enhancement. All these study aims to enhance the quality of speech signals in noisy 

environments by leveraging the information captured by two microphones. By employing this 

technique, the convolutive effects introduced by the acoustic environment can be mitigated. 

To enhance the speech quality by introducing an extended two-sensor sparse adaptive 

algorithm within sub-bands [17]. 

This algorithm is built upon the Forward structure. This extended version is developed 

to address challenges posed by the full-band sparse forward algorithm when faced with 

acoustical environments featuring dispersive impulse responses. In [18], the two-channel 

feedback normalized Decorrelation algorithms have been proposed to resolve two problems 

of noise reduction and speech enhancement when the acoustical mixing system. In this paper, 

three recent NLMS-based sparse adaptive filtering algorithms are implemented on two-

channel feedback BSS structures.  In [19], the authors propose a probe signal-based method for 

acoustic feedback cancellation in hearing aids. This method employs two adaptive filters: one 

quickly converges but can yield biased results, and the other is driven by an uncorrelated 

probe signal. Both filters are adapted using a delay-based normalized least mean square 

(NLMS) algorithm. Coefficient exchange ensures unbiased feedback estimation, and probe 

signal gain is adjusted to enhance performance during transient and steady states. Another 

research paper introduces a speech enhancement technique that relies on an adaptive filter 

using Recursive Least Squares (RLS) for processing speech signals. The authors proceed to 

evaluate the noise reduction capabilities of the proposed RLS algorithm by comparing it to the 

existing NLMS algorithm. This evaluation involves measuring Mean Squared Error (MSE), 

Signal to Noise Ratio (SNR), and SNR Loss metrics [20].  

 
Fig. 2.   a) DIR; b) SIR with L = 128. 
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In [21], they have presented a novel approach for enhancing speech quality through a 

dual channel double backward distributive weighted adaptive filtering algorithm. The 

method's effectiveness is assessed using objective measures such as Perceptual Evaluation of 

Speech Quality (PESQ) and Short Time Objective Intelligibility (STOI) across various noise 

conditions.  

Other research studies capitalize on the sparse characteristics of acoustic path impulse 

responses within the mixing model, resulting in enhanced speech quality when contrasted 

with conventional methods.  

3. BACKWARD BSS STRUCTURE BASED ON NLMS ALGORITHM 

Firstly, we will be introducing the Backward Adaptive Filtering NLMS algorithm, 

commonly known as BNLMS [18, 17]. To provide context, we first present the dual backward 

blind source separation (BSS) structure, illustrated in Fig. 3. This structure serves as the 

foundation for our algorithm. 

 
Fig. 3. Model of the BNLMS algorithm. 

The backward structure yields outputs that provide estimates for both the speech signal 

and the acoustic noise signal.  

𝑠 ̃(𝑛) = 𝑝1(𝑛) − [𝑤21(𝑛) ∗  �̃�(𝑛)]                      (3) 

𝑏 ̃(𝑛) = 𝑝2(𝑛) − [𝑤12(𝑛) ∗  �̃�(𝑛)]          (4) 

The perfect solutions of two filters presented by:  𝑤21(𝑛) = ℎ21(𝑛) and 𝑤12(𝑛) = ℎ12(𝑛). 

By substituting these optimal solutions and inserting the Eqs. (1) and (2), into Eqs. (3) and (4), 

we obtain the following expressions for the output signal relations: 

𝑠 ̃(𝑛) = 𝑠(𝑛)                      (5) 

𝑏 ̃(𝑛) = 𝑏(𝑛)                     (6) 

The adaptation relations by NLMS algorithm are: 

 𝐰12(𝑛 + 1) = 𝐰12(𝑛) + 𝜇12
 �̃�(𝑛)  �̃�(𝑛)

[ �̃�(𝑛)]𝐓  �̃�(𝑛)+𝜀𝑛𝑙𝑚𝑠
                                                                                  (7) 

            𝐰21(𝑛 + 1) = 𝐰21(𝑛) + 𝜇21

 �̃�(𝑛)  �̃�(𝑛)

[ �̃�(𝑛)]
𝐓
  �̃�(𝑛) + 𝜀𝑛𝑙𝑚𝑠

                                                                       (8) 

The selection of an optimal step-size within the range of 0 to 2 is crucial to achieve the 

desired convergence. 
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4. THE PROPOSED BMPNLMS ALGORITHM 

We introduce an enhanced variant of the backward NLMS that utilizes µ-law 

proportionate [12] and normalized step-sizes. The proposed efficient version incorporates two 

key enhancements: µ-law proportionate step-sizes and normalized step-sizes. 

 µ-law proportionate step-sizes: The concept of µ-law principle is applied to determine 

the step-size adaptation in the NLMS algorithm. This latter is a compression-expansion 

technique commonly used in telecommunications. By applying µ-law principle, we can 

emphasize smaller step-sizes for lower input amplitudes and larger step-sizes. 

Normalized step-sizes: Another enhancement is the introduction of normalized step-

sizes. These step-sizes are obtained by dividing the µ-law proportionate step-sizes by the input 

signal power. Normalization helps to counteract the effects of input signal variations, 

preventing excessively large step-sizes for high-power signals and ensuring stability and 

convergence for different input conditions. 

The BMPNLMS algorithm aims to optimize the performance of adaptive filters by reducing 

the time required to converge to the desired solution. By implementing this algorithm, we can 

achieve faster and more efficient convergence compared to traditional approaches. The 

updating formula of the proposed algorithm are given by: 

𝐰12(𝑛 + 1) = 𝐰12(𝑛) + 𝜇12

𝐐12(𝑛)  �̃�(𝑛)  �̃�(𝑛)

[ �̃�(𝑛)]𝐓 𝐐12(𝑛)  �̃�(𝑛) + 𝜀
                                                                  (9) 

𝐰21(𝑛 + 1) = 𝐰21(𝑛) + 𝜇21

𝐐21(𝑛)  �̃�(𝑛)  �̃�(𝑛)

[ �̃�(𝑛)]
𝐓
 𝐐21(𝑛)  �̃�(𝑛) + 𝜀

                                                              (10) 

Here, we introduce the Q12(n) and Q21(n) matrices, which are diagonal matrices of size  

L x L. By incorporating these matrices, we approximate the optimal proportionate step-size, 

enabling faster convergence and low steady state.  

The diagonal matrix 𝑄12(𝑛) and 𝑄21(𝑛) are given respectively by:  

𝑄12(𝑛)  =  

[
 
 
 
𝑞12,1(𝑛) 0 ⋯ 0

0 𝑞12,2(𝑛) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞12,𝐿(𝑛)]

 
 
 

                                                                              (11) 

𝑄21(𝑛)  =  

[
 
 
 
𝑞21,1(𝑛) 0 ⋯ 0

0 𝑞21,2(𝑛) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞21,𝐿(𝑛)]

 
 
 

                                                                             (12) 

𝑄12(𝑛) and 𝑄21(𝑛) are the matrix contains the coefficients 𝑞12,𝑙(𝑛) and 𝑞21,𝑙(𝑛) on its 

diagonal. The matrix 𝑄12(𝑛) and 𝑄21(𝑛) are used in the update equations to adjust the step 

size for all coefficients in the vectors 𝐰12(𝑛) and 𝐰21(𝑛) respectively. 

The calculations for 𝑞12,𝑙(𝑛) and 𝑞21,𝑙(𝑛) are presented in Eqs. (13) and (14) respectively. 

𝑞12,𝑙(𝑛) =
𝛾12,𝑙(𝑛)

∑ [𝛾12,𝑖(𝑛)]𝐿
𝑖=1

⁄                                                                                                       (13) 

𝑞21,𝑙(𝑛) =
𝛾21,𝑙(𝑛)

∑ [𝛾21,𝑖(𝑛)]𝐿
𝑖=1

⁄                                                                                                       (14) 

where  
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𝛾12,𝑙(𝑛) = 𝑀𝑎𝑥{𝜌 × 𝐹12, 𝐹𝐿𝑜𝑔,12 }                                                                                                        (15) 

𝛾21,𝑙(𝑛) = 𝑀𝑎𝑥{𝜌 × 𝐹21, 𝐹𝐿𝑜𝑔,21 }                                                                                                       (16) 

with  

𝐹12 = 𝑀𝑎𝑥{𝛿, 𝐹𝐿𝑜𝑔(|𝑤12,1(𝑛)|), … , 𝐹𝐿𝑜𝑔(|𝑤12,N(𝑛)|) }                                                                 (17)                        

           𝐹21 = 𝑀𝑎𝑥{𝛿, 𝐹𝐿𝑜𝑔(|𝑤21,1(𝑛)|), … , 𝐹𝐿𝑜𝑔(|𝑤21,𝑁(𝑛)|) }                                                                 (18) 

The parameter ρ is set to a very small coefficient, specifically ρ = 5/L, to prevent stalling 

during the adaptation process. By choosing a small value for ρ relative to L, we ensure that the 

algorithm continues to update and adjust the filter coefficients even when progress towards 

convergence slows down. This helps to avoid situations where the adaptation process gets 

stuck or stalls. The regularization term, δ, helps to stabilize the updating process when the 

filter coefficients are initialized to zero. δ, typically set to 0.01, introduces a small non-zero 

value that helps to regulate and stabilize the update process, facilitating the convergence 

towards the desired solution. 

The two logarithmic functions are given by: 

𝐹𝐿𝑜𝑔,12 =
𝑙𝑛(𝜇 × |𝑤12,𝑙(𝑛)| + 1)

𝑙𝑛(𝜇 + 1)
                                                                                                        (19) 

𝐹𝐿𝑜𝑔,21 =
𝑙𝑛(𝜇 × |𝑤21,𝑙(𝑛)| + 1)

𝑙𝑛(𝜇 + 1)
                                                                                                        (20) 

ɳ is a positive quantity that needs to be determined based on the level of noise. In the 

context of sparse impulse response identification, a common practical choice for ɳ is 0.001, 

indicating an extremely small range of convergence. Moreover, µ represents the reciprocal of 

ɳ, implying that µ = 1/ɳ, which offers insight into the resolution or precision of the algorithm. 

The detailed diagram, parameters, and instructions of the proposed backward µ-law 

proportionate algorithm (BMPNLMS) are presented respectively in Fig. 4 and Algorithm 1. 

 
Fig. 4. Detailed diagram of the backward µ-law proportionate algorithm (BMPNLMS). 

5. ANALYSIS OF THE SIMULATION RESULTS 

5.1. Measured Objective Criteria Used in Experiments 

We present in this section the values of parameters and measured objective criteria used 

in simulations of two algorithms: backward NLMS and the proposed BMPNLMS. Our primary 

focus is to thoroughly evaluate the performance of this proportionate algorithm, particularly 

 

 
  + 
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in terms of its ability to estimate speech. This evaluation is conducted by examining all first 

output and second estimated filter. To conduct the evaluation, we employ a convolutive model 

illustrated in Fig. 1. The model incorporates a speech that has been phonetically equilibrated, 

along with an acoustic noise component. The entire model operates at Fs = 8 kHz. The input 

SNR for both noisy signals is set to -6 dB. It is worth noting that the real impulse responses 

length is specifically chosen as L = 512 to ensure accurate modelling of the system. By 

thoroughly examining all simulation results and comparing the real performance of classical 

backward NLMS with the proposed BMPNLMS algorithm, we can gain valuable insights into 

the effectiveness and advantage of presented proportionate algorithm in accurately estimating 

speech signals under the given convolutive mixing model and challenging SNR conditions. 

 

Algorithm 1. Parameters and instructions of the proposed BMPNLMS algorithm. 
 

Initialize symbols 

𝜀 ← 10-6 

ɳ ← 0.001 

µ ← 1/ɳ 

ρ ← 5/L 

δ ← 0.01  

    for n = 1 to end-iteration do 

𝑠 ̃(𝑛) ← 𝑝1(𝑛) − [𝐰21(𝑛) ∗  �̃�(𝑛)] 

𝑏 ̃(𝑛) ← 𝑝2(𝑛) − [𝐰12(𝑛) ∗  �̃�(𝑛)] 

𝐹𝐿𝑜𝑔,12 ← 𝑙𝑛(𝜇 × |𝑤12,𝑙(𝑛)| + 1) 𝑙𝑛(𝜇 + 1)⁄  

𝐹𝐿𝑜𝑔,21 ← 𝑙𝑛(𝜇 × |𝑤21,𝑙(𝑛)| + 1)  𝑙𝑛(𝜇 + 1)⁄  

𝐹12 ← 𝑀𝑎𝑥{𝛿, 𝐹𝐿𝑜𝑔(|𝑤12,1(𝑛)|), … , 𝐹𝐿𝑜𝑔(|𝑤12,𝑁(𝑛)|) } 

𝐹21 ← 𝑀𝑎𝑥{𝛿, 𝐹𝐿𝑜𝑔(|𝑤21,1(𝑛)|), … , 𝐹𝐿𝑜𝑔(|𝑤21,𝑁(𝑛)|) } 

 for l =1 to L do                   

𝛾12,𝑙(𝑛) ← 𝑀𝑎𝑥{𝜌 × 𝐹12, 𝐹𝐿𝑜𝑔,12 } 

𝛾21,𝑙(𝑛) ← 𝑀𝑎𝑥{𝜌 × 𝐹21, 𝐹𝐿𝑜𝑔,21 } 

𝑞12,𝑙(𝑛) ←  𝛾12,𝑙(𝑛) ∑[𝛾12,𝑖(𝑛)]

𝐿

𝑖=1

⁄  

𝑞21,𝑙(𝑛) ← 𝛾21,𝑙(𝑛) ∑[𝛾21,𝑖(𝑛)]

𝐿

𝑖=1

⁄   

end for 

𝐐12(𝑛) ← 𝑑𝑖𝑎𝑔[𝑞12,1(𝑛), 𝑞12,2(𝑛), … , 𝑞12,L(𝑛)] 

𝐐21(𝑛) ← 𝑑𝑖𝑎𝑔[𝑞21,1(𝑛), 𝑞21,2(𝑛), … , 𝑞21,L(𝑛)] 

𝐰12(𝑛 + 1) ← 𝐰12(𝑛) + 𝜇12[𝐐12(𝑛)  �̃�(𝑛)  �̃�(𝑛) [ �̃�(𝑛)]𝐓 𝐐12(𝑛)  �̃�(𝑛) + 𝜀⁄ ] 

𝐰21(𝑛 + 1) ← 𝐰21(𝑛) + 𝜇21 [𝐐21(𝑛)  �̃�(𝑛)  �̃�(𝑛) [ �̃�(𝑛)]
𝐓
 𝐐21(𝑛)  �̃�(𝑛) + 𝜀⁄ ] 

𝒆𝒏𝒅 𝒇𝒐𝒓 
 

 

a) For comparing a convergence time of proportionate algorithm with non-proportionate 

algorithm, we employ the System Mismatch criterion (SM) as an evaluation metric. The 

SM is calculated by Eq. (21). This criterion allows us to quantitatively measure and 

compare the performance in terms of convergence speed. By analyzing the System 

Mismatch criterion, we can gain insights into how quickly the proposed algorithm 
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reaches convergence compared to the non-proportionate algorithm, providing valuable 

information for assessing the efficiency and effectiveness of the proposed approach. 

b) Secondly, for the evaluation of the quality of all estimated speech, we conducted 

additional simulations using objective speech quality measures. One widely used 

measure is the Segmental signal-to-noise ratio (SegSNR) criterion, which provides 

effective assessment of the similarity between output enhanced speech and the clean 

speech. The SegSNR is computed using the formula presented in Eq. (22). 

c) To further confirm a behaviour of proportionate algorithm in terms of distortion, we 

employed the Cepstral Distance (CD) as an evaluation metric. The CD measures the 

dissimilarity between output enhanced speech and the clean speech. It is estimated using 

the formulas of Eq. (23). 

𝑆𝑀𝑑𝐵 = 10 𝑙𝑜𝑔10 [
‖ℎ21(𝑛) − 𝑤21(𝑛)‖

‖ℎ21(𝑛)‖
]

2

                                                                                         (21) 

𝑆𝑒𝑔𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10 [
∑ |𝑠(𝑖)|2𝐵

𝑖=1
∑ |𝑠(𝑖) −  �̃�(𝑖)|2𝐵

𝑖=1
⁄ ]                                                            (22) 

𝐶𝐷𝑑𝐵 = ∑ 𝐼𝑆𝐹𝑇[𝑙𝑜𝑔(|𝑆(𝜔, 𝑝)|) − 𝑙𝑜𝑔(| �̃�(𝜔, 𝑝)|)]
2𝐵

𝑝                                                             (23) 

It's important to acknowledge that adaptive filtering is intricate and achieving 

optimality hinges on factors like the problem's nature, data characteristics, and algorithm 

design. The non-convex nature of optimization problems in adaptive filtering often 

complicates the pursuit of global optimality. The suitability of these parameter values can vary 

based on the specific problem and data available. Striking a balance between convergence 

speed, steady-state performance, and computational complexity is a typical challenge in 

robust and optimal parameter selection. Numerous simulations employing varied parameters 

were conducted to observe the proposed algorithm's behavior across diverse conditions. 

Metrics such as convergence speed, steady-state error, and overall performance were assessed. 

Through these experiments, parameter values were identified that elicited the intended 

algorithm behavior, tailored to the algorithm's specific acoustic noise reduction application. 

Table 1 provides a summary of the optimal parameters selected for both the classical BNLMS 

and the proposed BMPNLMS algorithms. It outlines the key parameter values chosen for each 

algorithm.  

Table 1. Values of the algorithms simulation parameters. 

Algorithms Parameters values 

Classical BNLMS 𝜀𝑛𝑙𝑚𝑠 = 10−6 

Proposed BMPNLMS 𝜀 = 𝜀𝑛𝑙𝑚𝑠 𝐿⁄ , 𝜌 = 5 𝐿⁄ , δ = 0.01,  µ = 1000 

5.2. Experimental Results and Discussion 

We will present the simulation results and discuss the findings obtained from the 

experiments conducted with the classical BNLMS and the proposed BMPNLMS algorithms.  

Fig. 5 displays the original speech signal along with all enhanced speech. This allows for 

a qualitative assessment of the algorithms' performance in accurately reproducing the original 

speech signal. Furthermore, Fig. 6 and Table 2 present the evolution of the SM with the length 
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of the adaptive filters is 512 coefficients. The SM provides insights into convergence behavior 

and performance of all algorithms. As we have done other simulations with very large impulse 

response L = 1024 that are presented in Fig. 7.   

 
Fig. 5. Evolution of enhanced speech. 

 

 
Fig. 6. Convergence speed of adaptive filter with L = 512. 
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Fig. 7. Convergence speed of adaptive filter with L = 1024. 

Table 2. Evolution of the final SM values. 

Time [s] 
SM [dB] 

Classical BNLMS  Proposed BMPNLMS 

After 1.6 s -11.05 -31.12 

After 3.2 s -20.21 -41.33 

After 4.8 s -27.53 -43.00 

After 6.4 s -30.95 -44.43 

After 8.0 s -30.00 -41.47 

After 9.6 s -32.41 -41.01 

 

From Figs. 6 and 7, it is evident that the proposed backward µ-law proportionate NLMS 

algorithm demonstrates superior convergence speed compared to the classical non-

proportionate backward NLMS algorithm, particularly in highly noisy environments with L 

equal 512 and 1024.  

Table 2 shows that the BMPNLMS algorithm achieves the lowest final SM values, 

indicating its ability to effectively lessen SM in sparse convolutive systems. 

In addition to these visual representations, we show further experiments for evaluating 

the algorithms performance based on various criteria. These included output SNR and CD 

measures. Four acoustic noises (white, USASI, babble, and street) were considered during the 

experiments.  

The real and adaptive filters lengths were set to a large value of L = 512 to ensure 

comprehensive analysis and robust evaluation of the algorithms. We present all obtained 

results of output SNR and CD measures in Table 3, Fig. 8, Table 4 and Fig. 9. 
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Table 3. Output SNR evaluation for the BNLMS and the proposed BMPNLMS algorithms. 

Noise type Input-SNR [dB] 
Segmental SNR [dB] 

Classical BNLMS      Proposed BMPNLMS 

White 

-6 46,75 50,92 

0 48,22 52,10 

6 50,02 54,80 

USASI 

-6 45,38 50,05 

0 48,69 51,77 

6 49,79 54,43 

Babble 

-6 44,01 50,23 

0 45,08 52,98 

6 48,89 53,71 

Street 

-6 45,03 50,22 

0 46,93 52,12 

6 49,25 54,99 

 
 

Table 4. CD evaluation for the BNLMS and the proposed BMPNLMS algorithms. 

Noise type 
Input SNR  

[dB] 

CD [dB] 

Classical BNLMS Proposed BMPNLMS 

White 

-6 -6.80 -7.30 

0 -7.01 -7.98 

6 -7.75 -8.53 

USASI 

-6 -5.95 -6.76 

0 -6.51 -7.21 

6 -6.96 -7.69 

Babble 

-6 -6.61 -6.98 

0 -6.69 -7.33 

6 -7.70 -8.76 

Street 

-6 -6.42 -7.00 

0 -7.09 -7.91 

6 -7.33 -8.24 

 
Fig. 8. Output SNR evaluation for the BNLMS and the proposed BMPNLMS algorithms. 
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Fig. 9. CD evaluation for BNLMS and the proposed BMPNLMS algorithms. 

 

This observation highlights the strong performance of the BMPNLMS algorithm, especially 

in challenging and noisy conditions. The algorithm combined with the µ-law adaptation, 

allows for improved convergence and better adaptation to the underlying system dynamics. 

These factors contribute to its ability to achieve lower system mismatch and enhance output 

speech. The results emphasize the potential of the proposed BMPNLMS algorithm as a suitable 

choice for applications where accurate estimation of speech signals in sparse convolutive 

systems is crucial, particularly in the presence of high levels of noise. 

Table 3 presents the SegSNR values obtained from the experiments conducted with the 

BNLMS and the proposed BMPNLMS algorithms. These values provide a quantitative measure 

of SNR and serve as indicators of the quality and accuracy of the estimated speech signals.  

On the other hand, Table 4 displays the CD values resulting from the evaluation of two 

algorithms. The CD values quantify the dissimilarity between the estimated speech signals 

and the clean speech signals. Lower CD values indicate reduced distortion and a closer 

resemblance to the original speech. By referring to this table, we can analyze and compare the 

performance of the classical BNLMS and the proposed BMPNLMS algorithms based on their 

SegSNR and CD values. This allows for a comprehensive assessment of the algorithm ability 

to accurately estimate speech signals and minimize distortion under various conditions and 

noise levels. 

Using the presented results in Fig. 8 and 9, it is evident that the BMPNLMS outperforms 

the other algorithm BNLMS in various scenarios. This superior performance is observed across 

different noisy types, including white, USASI, babble, and street noise, as well as different 

input signal-to-noise ratios (SNR) such as -6 dB, 0 dB, and 6 dB. The BMPNLMS algorithm 

consistently achieves higher output SNR values and lower CD values. This indicates that the 

proposed algorithm provides better speech signal estimation accuracy and lower distortion 

compared to the other algorithm. 

These findings suggest that the BMPNLMS, effectively mitigates the adverse effects of 

different noise types and improves the overall speech signal quality. The algorithm's ability to 

enhance the output SNR and reduce CD values indicates its suitability for various applications 

where accurate and high-quality speech signal estimation is essential. 
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6. CONCLUSIONS 

This study aimed to investigate and evaluate the performance of a proposed BMPNLMS 

for speech signal estimation in noisy environments. The algorithm was compared with the 

classical non-proportionate BNLMS algorithm across different scenarios, including various 

noisy types and input signal-to-noise ratios. The results obtained from the experiments 

conducted in this study have several noteworthy implications. Firstly, the BMPNLMS algorithm 

exhibited a significant advantage in terms of convergence speed when compared to the 

BNLMS algorithm. It demonstrated faster convergence, reaching an optimal solution more 

quickly. This characteristic is particularly beneficial in real-time applications where prompt 

and accurate estimation of speech signals is required. Furthermore, the BMPNLMS algorithm 

demonstrated superior performance in terms of output SNR and distortion reduction. It 

consistently yielded higher output SNR values, indicating improved estimation accuracy and 

noise suppression. Additionally, the algorithm yielded lower CD values, indicating reduced 

distortion and a closer resemblance to the original clean speech signal. These results highlight 

the effectiveness of BMPNLMS in enhancing the quality of estimated speech signals, even in the 

presence of various types of noise.  
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