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Abstract— Short circuit fault (SCF) in stator coils is one of the most common types of electrical faults. The 
expansion of this fault leads to the permanent demagnetization of the magnet, and causes irreparable damage to 
the machine in a short period. With the development of artificial intelligence technologies and various machine 
learning and deep learning techniques, an increase in fault detection accuracy has been achieved. In this paper, 
permanent magnet synchronous motor (PMSM) is investigated under normal mode and fault conditions, namely 
SCF in winding loops, phase to phase SCF and open circuit fault of one of the phases. Group Model of Data 
Handling deep neural network (GMDH-DNN) is used to produce a SCF detection model. Results of simulating 
the proposed method and the data extracted from the PMSM reveals that the accuracy rate of SCF detection in 
the winding loops of the PMSM in the proposed method is equal to 99.2%, which constitutes an improvement of 
1.7% compared to other existing methods such as conditional generative adversarial network (CGAN). Moreover,  
simulating other existing methods - namely support vector machine (SVM), k nearest neighbors (KNN), C4.5, 
multi-layer perceptron (MLP), recursive deep neural network (RDNN) and long short-term memory networks 
(LSTM) – and comparing them with  the proposed method, unveil that the accuracy of the proposed method for 
SCF detection in winding loops overweigh those of aforesaid existing methods. 

 
Keywords— Deep neural network; Short circuit fault detection; Permanent magnet synchronous motor. 
  

1. INTRODUCTION  

The existence of faults in information systems is one of the most important challenges in 

the world today. The occurrence of faults in complex systems can affect the behavior of the 

systems and cause irreparable losses. Electric machines are among the complex systems that 

are affected by SCFs. Also, the PMSM is one of the types of electric motors that are used in 

special and sensitive applications. Short circuit fault is one of the most common faults in 

PMSM and it may be thought that the occurrence of (SCF) in the inner rings is not important 

in the initial stages and with low intensity, but with the expansion of the fault and the increase 

in current caused by short circuit and field generation strong, leads to permanent 

demagnetization of the magnet and causes irreparable damage to the machine in a short 

period. 

In this paper, a model based on a deep neural network under healthy and fault 

conditions on PMSM is presented. Therefore, the Group model of data handling deep neural 

network is used for SCF detection in PMSM. A GMDH-DNN is used to generate a SCF 
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detection model. With the aim that the results of the proposed method will reduce the 

detection time, improve the accuracy, and improve the fault detection of the SCF in the PMSM. 

Various faults occur in the PMSM motor. Some of the most important faults that have 

attracted the attention of many researchers are: 

- SCF of stator coils 

- SCF of two-phase coils together 

- Connection opening fault 

"SCF of the stator coils" due to factors such as scratches and cuts on the winding, high 

amplitude of peak voltages, conductive pollutants, overheating of the winding, aging of the 

insulation, and looseness and vibration of the wires. A "SCF of two-phase coils together" when 

two phases are connected [1]. The "connection open fault" occurs when the connections are 

separated from each other and a fault is created in the system. This article focuses on the three 

mentioned faults. 

Fault detection methods can be classified into model-based methods, signal-based 

methods, artificial intelligence methods, and hardware-based methods. The use of these 

methods means that the detection of all types of faults can be effectively achieved. Many 

methods are applied to induction and reluctance motors, but not applied to PMSMs. In 

addition, PMSM fault detection has many research areas, the most important of which is that 

artificial intelligence-based methods are in the emerging field. Reinforcement learning, deep 

learning, and machine learning can be used in detection for higher accuracy. The subject of 

this research is deep learning. Deep learning is a branch of machine learning and a set of 

algorithms that try to model high-level abstract concepts using learning at different levels and 

layers. Deep learning is a new approach to the idea of neural networks that has existed for 

many years and shows itself in a new format every few years. 

In [2], they investigated fault modeling methods for PMSMs and compared them. In this 

paper, a detailed study of different fault modeling methods of PMSMs and their comparison 

in terms of accuracy and computational time is presented. Fault modeling methods are 

classified into electric, magnetic, and numerical circuit methods. It was observed that for faults 

related to the stator of a PMSM, the method based on the electric circuit is preferable to other 

modeling methods. In the case of faults related to the rotor such as demagnetization, the 

method based on the magnetic equivalent circuit is generally followed for modeling the fault. 

Numerical methods are generally used to obtain accurate thermodynamic results. 

In [3], a method for the SCF detection of the internal rings in the PMSM was proposed 

based on the residual current. After the effect of the first round, the fault was analyzed based 

on a simple mathematical machine model to evaluate the fault signatures, a finite element (FE) 

model was presented to obtain the healthy behavior of the machine, and the effectiveness of 

the proposed method was confirmed on a resistant PMSM with the help of permanent 

magnets. 

In [4], the modeling and detection of PMSM winding SCF was presented using stator 

current characteristic analysis. This model provides the possibility of investigating the position 

and severity of the stator coil fault by using the electric circuit. The power spectral density was 

used to identify the SCFs of the stator coil. It was found that the third harmonic amplitude of 

the current is a distinguishing feature for detecting the SCF ratio. In [5], an efficient and 

accurate method based on a CGAN and an optimized sparse auto encoder (OSAE) was 

proposed to diagnose the intermediate inter-turn (ITSC) problem for PMSMs. 
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In this research, a combination of two types of signals is created to create a training set, 

which is enhanced by CGAN, and OSAE parameters are determined by the process of training 

networks. The Test results indicate that the proposed method for diagnosing this fault has a 

high accuracy of 98.9%. 

In [6], a one-dimensional convolutional neural network was proposed to detect PMSMs. 

By analyzing the torque and current signals of the motors, it is possible to diagnose the motors 

under a wide range of speeds, variable loads, and eccentricity effects. By combining current 

and torque features, the classification accuracy of the proposed method reaches 98.85%, which 

is higher than classical machine learning methods such as k-nearest neighbor and support 

vector machine. 

In [7], fault detection of PMSM short circuits was investigated based on deep 

reinforcement learning. A dueling algorithm deep q-learning neural network (DQN) was used 

for training and learning the developed sample dataset. The results show that the fault 

detection accuracy of the algorithm can reach 97.5%, while the speed of convergence has been 

improved and the time cost of fault detection has been saved. 

In [8], a non-contact fault detection method using a magnetic leakage signal based on a 

wavelet scattering convolution network (WSCN) and a semi-supervised deep rule-based 

classifier (SSDRB) is proposed. Through the analysis of the magnetic equivalent circuit model, 

the magnetic leakage signal on the motor surface is selected as the fault signal. Defective motor 

prototypes are built for testing. By comparing with other methods, the superiority and 

efficiency of the proposed method are confirmed by using a small number of labeled data in 

different conditions. 

In [9], a new approach based on electromechanical inverter was presented to detect 

stator SCF in PMSMs. It was found that the amplitudes of the second and fourth harmonic 

components of the torque signal are distinctive features that can be used to detect the ISCF of 

the stator winding in PMSM. With the proposed 2nd and 4th harmonic torque components, an 

inter-turn fault can be easily detected at an early stage. 

In [10], a SCF detection method in PMSM for electric vehicles based on search coils (SC) 

was proposed. In this proposed method, the SCs are uniformly wound in the direction of the 

main flux of each phase, and the number of SCs is twice the number of phases, which leads to 

significant cost savings. Based on this structure, a new fault characteristic based on the 

negative sequence components of the sideband harmonics of the second carrier frequency in 

the SC voltage signal is proposed. As a result, this fault characteristic frequency component is 

not only clearer than the fundamental component used in the traditional SCs method. 

By reviewing previous research that have been done in SCF detection in PMSM, it was 

observed that each of the methods, despite their many uses,   still face challenges such as high 

error detection, low accuracy detection, complex model generation, high execution time, lack 

of generalizability and expandability. Therefore, in this paper, The GMDH-DNN is used to 

solve the most important challenge of previous research, SCF detection in PMSM. GMDH-

DNN is utilized on this paper due to its ability to support a high number of layers, model 

generation with acceptable accuracy, low error rate, ability to support a large amount of data, 

etc. Next, in section 2, the proposed method and relevant details are explained. Finally, in 

section 3, the results are obtained, and in section 4, the conclusions are presented. 
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2. THE PROPOSED METHOD 

In Fig. 1, the architecture of the proposed method for SCF detection in PMSM based on 

GMDH-DNN is shown. 

2.1. GMDH Deep Neural Network 

The GMDH or GMDH-DNN algorithm was first developed by Ivakhnenko [11] as a 

multi-variate analysis method for modeling and identifying complex systems. The main goal 

of GMDH is to establish an analytical function based on a feedforward network, each element 

of which forms a quadratic function whose coefficients are obtained using regression methods 

[12]. 

According to the GMDH algorithm, a model can be expressed as a set of neurons so that 

their different pairs in each layer are connected through a second-order polynomial equation 

and create new neurons in the next layers. The concrete and conventional definition of 

identifying a problem is to find the function 𝑓 such that it can be approximated instead of the 

actual value of f in order to predict the output 𝑦̂ for a given input vector 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 

in the closest possible state to the actual value of the output y is used. Therefore, M is a specific 

observation of a multi-input-single-output data pair such that Eq. (1): 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛)(𝑖 = 1,2, … . ,𝑀)                           (1) 

Now it is possible to train a neural network of GMDH type to predict the output values 

𝑦𝑖̂ for any specific input vector 𝑋 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … ) that is: 

𝑦̂𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛)(𝑖 = 1,2, … . ,𝑀)               (2) 

Now the problem is to determine a GMDH-DNN in such a way that the square of the 

differences between the actual output value and the corresponding predicted value is 

minimized, and thus: 

∑ [𝑓𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛) − 𝑦𝑖]
2

→ 𝑚𝑖𝑛𝑀
𝑖=1                (3) 

The general equations between inputs and output variables can be expressed using a 

discrete complex form of the Volterra series of functions in Eq. (4) [12]: 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑖 + ∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 + ⋯𝑛
1

𝑛
1

𝑛
1

𝑛
1

𝑛
1

𝑛
1                                               (4) 

This complete form of mathematical expression can be expressed as a system of several 

two-component sentences so that they contain only two variables (neurons) in Eq. (5): 

𝑦̂ = 𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2               (5) 

where the coefficient ai in Eq. (5) is calculated with the help of regression methods. So that the 

difference between the actual value (y) and the expected value (𝑦̂) is minimized for each pair 

of input variables Xi , Xj. In this regard, the coefficients of each relation of the order of two Gi 
are obtained for the optimal fitting of the output in the entire input-output data pairs. In other 

words: 

𝐸 =
∑ (𝑦𝑖−𝐺𝑖)

2𝑀
𝑖=1

𝑀
→ 𝑚𝑖𝑛               (6) 

In the main form of the GMDH algorithm, all possible states of two independent 

variables from the sum of n input variables are considered in order to form regression 

polynomials in the form of Eq. (5) so that the best fits of dependent observations (yi, i= 1,2,…, 

M)  in order to satisfy the least squares. As a result, (
𝑛
2
) =

𝑛(𝑛−1)

2
 neurons in the first layer of 

the forward feed network from observations {(𝑦𝑖 , 𝑥𝑖𝑝, 𝑥𝑖𝑞)(𝑖 = 1,2, … ,𝑀)} are expanded for 

different values of 𝑝, 𝑞 ∈ {𝑖 = 1,2, … , 𝑛}. In other words, in this case, it is possible to form M 
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triple data {(𝑦𝑖 , 𝑥𝑖𝑝, 𝑥𝑖𝑞)(𝑖 = 1,2,… ,𝑀)} from observations with the help of such form 𝑝, 𝑞 ∈

{𝑖 = 1,2,… , 𝑛} exists: 

[

𝑥1𝑝

𝑥2𝑝

⋯
𝑥𝑀𝑝

𝑥1𝑞

𝑥2𝑞

⋯
𝑥𝑀𝑞

⋮
⋮
⋮
⋮

𝑦1
𝑦2

⋯
𝑦𝑀

]               (7) 

 

With the help of a second-order subset in the form of Eq. (2) for each row of M triple 

data, the matrix equations are easily obtained as Eq. (8): 

𝐀 = 𝒀               (8) 

where a is the vector of unknown coefficients of the second-order polynomials of                                   

Eqs. (9) to (12). 

𝑎 = {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}               (9) 

𝑎𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀}𝑇             (10) 

where a variable is the vector of output values of observations. It can be easily seen that: 

𝐴 =

[
 
 
 1
1
⋯
1

𝑥1𝑝

𝑥2𝑝
⋯

𝑥𝑀𝑝

𝑥1𝑞

𝑥2𝑞
⋯

𝑥𝑀𝑞

𝑥1𝑝𝑥1𝑞

𝑥2𝑝𝑥2𝑞
⋯

𝑥𝑀𝑝𝑥𝑀𝑞

𝑥1𝑝
2

𝑥2𝑝
2

⋯
𝑥𝑀𝑝

2

𝑥1𝑞
2

𝑥2𝑞
2

⋯
𝑥𝑀𝑞

2
]
 
 
 

             (11) 

The least squares method of multivariate regression analysis leads to the solution of 

coefficient equations in Eq. (12): 

𝑎 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌                                  (12) 

Eq. (12) determines the vector of the best coefficients of Eq. (5) for the entire set M of 

triple data. It is worth noting that this method is repeated for each neuron of the next hidden 

layer according to the topology of the network [13-15]. Therefore, with this core, the model 

generation process is carried out for fault detection. 

2.2. The Proposed System Model 

As can be seen from Fig. 1, to implement the proposed method to reach the goal of the 

problem, which is to diagnose the short-circuit fault in the PMSM based on GMDH-DNN, first 

the data is the set of data extracted at different time points from the synchronous motor. The 

permanent magnet is included in the proposed method. Then this data is pre-processed and 

the unused data is removed. In the following, the data that was converted into a coherent form 

after applying pre-processing is converted into an acceptable form for simulation. At this 

stage, the data is usually converted into Excel and a consistent format. 

The next step is data normalization, explained in detail in the next section. In the 

modeling process, the data of the problem are placed between the range [0, 1]. Normalization 

makes the produced models not complicated and increases the accuracy of SCF detection in 

PMSM based on GMDH-DNN. 

The final data which is the output of the pre-processing phase algorithm should be 

divided into two parts, which are: Training and Testing data. Training data are proposed to 

teach GMDH-DNN methods. Training data usually make up 70% of the dataset. The Testing 

data that make up 30% of the total dataset are used to evaluate and validate the proposed 

method to SCF detection in PMSM based on GMDH-DNN. 

After the Training and Testing data are separated, the Testing data are applied as input 

to the GMDH-DNN model. Then a model is produced based on the Testing data. The Test data 
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are applied to this model and based on the available data, fault detection validation is done. 

Finally, the proposed method is evaluated and metrics such as accuracy, precision, recall, 

error, etc. are calculated. 

Train data
(70%)

Train data
(70%)

Test data
(30%)

Test data
(30%)

Separate Train and Test 
data

Separate Train and Test 
data

Final assessmentFinal assessment

ENDEND

Model evaluation

GMDH 
model

GMDH 
model

GMDH-DNNGMDH-DNN

Preprocessing dataPreprocessing data

Data preparationData preparation

Data normalizationData normalization

Create model

DatasetDataset

 
Fig. 1. Architecture of the proposed method for SCF detection in PMSM based-on GMDH-DNN. 

2.3. Data extraction using PMSM 

In this paper, one of the common types of electrical faults in electric motors, i.e. the SCF 

of the stator winding of the PMSM, has been evaluated. Therefore, first, the motor that is 

designed under fault conditions and can change the state from a healthy state to a fault state 

starts working, which is done in the simulation environment of MATLAB software. It is worth 

mentioning that in the simulation for the motor drive, after converting the three-phase current 

from the abc domain to the dq domain, these obtained currents are used for comparison at the 

input. Finally, by obtaining the voltage Vq and Vd and applying it to the PWM converter. The 

motor is started and controlled. In Fig. 2, the circuit model designed for the PMSM under the 

condition of SCF in the winding is shown. 
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First, the motor starts working in a healthy state, and the investigated faults are also 

generated in the motor in different intensities. At this time, the data required for the design of 

the intelligent fault detection system (FDS) [16] are extracted from the normal (healthy) state 

of the motor and the states to be evaluated. Then, 70% of the extracted data is used to train the 

GMDH-DNN algorithm and the other 30% of data is used to evaluate the designed system 

before it is used as a FDS on the motor. 

 
 

 
 

Fig. 2. Circuit model designed for PMSM under SCF condition of in the stator winding.  
 

2.4. SCF detection in PMSM 

In this section, simulation steps are explained to SCF detection in PMSM. 

2.4.1. Dataset 

In this paper, three-phase current value and rotor position information are collected at 

several consecutive sampling moments to be made into several sequences, which in turn are 

entered into the GMDH-DNN algorithm. After completing the input sequences, the final 

output value is obtained to pass through the fully connected neural network, and the output 

of the network is the predicted three-phase current value at the next sampling moment.  

In order to obtain a robust GMDH-DNN model and remove the interference of motor 

acceleration, deceleration or torque waves, etc., current waveform and rotor position 

information in different operating modes (different speed or different load torque) are 

collected as Training data. The trained GMDH is then imported into Simulink for current 

prediction.  

Then, 70% of the data received from the PMSM at different time points are used as 

Training data to generate the GMDH-DNN model. Moreover, 30% of the data are also used to 

test and evaluate the produced model for SCF detection in the PMSM. 
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2.4.2. Data pre-processing 

Before the data is introduced into the proposed method, the desired data is pre-

processed and the missing values are removed. Then, the data that was converted coherently 

after applying pre-processing is converted into an acceptable format for simulation tools. 

Various methods have been proposed to apply pre-processing on the data, which 

include: 

 Data Cleanup 

 Data Aggregation 

 Data Transitions 

 Data Reduction 

The proposed strategy is to analyze the data and identify if a row or column has useless 

values. Then examined the values before and after the sample that has an unused value and 

calculate their average. Finally, the unused value is replaced with the obtained average [17]. 

2.4.3. Data preparation 

After the unused data are destroyed, the data must be prepared. For this purpose, the 

pre-processed data is converted into an acceptable format for simulation tools. After the 

dataset superficially is analyzed, the normalization process should be done on the data. 

2.4.4. Data normalization 

In the pre-processing stage, in order to obtain better results, the values of each feature of 

the used Robin dataset are normalized from 0 to 1. In other words, the dataset is mapped in 

the form of a matrix, and by changing the rows of the matrix, the normalization operation is 

done. Normalization is due to achieving higher accuracy. The Eq. (13) has been used to 

normalize the dataset [18]. 

Normalize(𝑥) =
(x−Xmin)

(Xmax−Xmin)
                           (13) 

where Xmax and Xmin are the maximum and minimum values in the domain of the Xth feature. 

After normalizing the data, the values of all attributes are in the [0, 1] range. 

2.4.5. Separation of training and testing data 

Sampling the desired data is one of the steps of data mining that is considered in this 

paper. There are different sampling methods, the three most important of which are [19]:             

i) random sampling; ii) stratified sampling; and iii) balance sampling. 

Random sampling is one of the simplest sampling methods that operates randomly and 

separates data from the main dataset as training and testing data to the desired extent.  

The stratified sampling method is also one of the improved methods of the random 

method. This method performs the sampling process based on probability and still selects the 

data as a percentage. The balanced sampling method is one of the methods that select the 

required data in a balanced way from among the available categories and classes, which is 

used in this paper [19]. 

2.4.6. Application of GMDH-DNN algorithm 

In the proposed method, after extracting the dataset, some data are considered healthy 

data (normal conditions) and some as problem data (including the opening of the stator 
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winding connections (SWC), the short circuit of the two-phase windings, the intern turn short 

circuit of each phase) 70% of the data are used to generate the GMDH-DNN model. Fig. 3 

shows how to build a model for SCF detection in a PMSM by GMDH-DNN. After the correct 

operation of the designed system in the training and testing phase, it is used as an intelligent 

FDS that has a sampling, analysis, and analysis system based on the GMDH-DNN trained 

along with the PMSM. Therefore, the test data, which is 30% of the total dataset, is entered into 

the GMDH-DNN model and the SCF in the PMSM is detected. 
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Fig. 3. SCF detection model in PMSM by GMDH-DNN.  
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3. EXPRIMENTAL RESULTS 

In this paper, the MATLAB 2015a tool is used for simulation. Also, the dataset and data 

used by PMSM are produced. Therefore, PMSM starts producing data. The generated data are 

divided into two categories: training (70%) and testing (30%). The training data are 

implemented by MATLAB 2015a software to GMDH-DNN algorithm and a detection model 

is produced. Finally, the test data is entered into the model and results are obtained. In                     

Table 1, the parameters of the proposed GMDH-DNN are shown. 

3.1. Evaluation Metric 

In order to evaluate the results of the proposed method, metrics such as accuracy, 

precision, recall, error, and F- Measure are presented to the Eqs. (14) to (18). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (14) 

The True Positive (TP) parameter represents the number of data that are correctly 

detected. The False Positive (FP) parameter also indicates the number of data that were not 

correct, but the proposed method detected that sample as correct. Eq. (15) shows the recall 

metric. 

𝑅𝑒𝐶𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (15) 

The False Negative (FN) parameter indicates the number of data that are not correct and 

are also recognized as correct. Eq. (16) shows the accuracy metric. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                         (16) 

The True Negative (TN) represents the number of data that have the correct class and 

are detected as incorrect. Eq. (17) shows the F-Measure metric. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝐶𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝐶𝑎𝑙𝑙
                  (17) 

The error rate metric of the proposed method is calculated based on Eq. (18). 

𝐸𝑟𝑟𝑜𝑟 = 1 − 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (18) 

 

Table 1. GMDH deep neural network parameters 

Value Parameter 

0.001 [MS] Learning rate 

0.9 Reduction of reward 

200 Replace the target 

500 MB Memory size 

26 batch size 

3.2. Simulation Results of the Proposed Method  

In this section, the obtained results are analyzed to detect the following three types of 

faults: i) SWC opening fault; ii) SCF of stator coils and iii) two-phase short circuit fault. 

Therefore, the results of the proposed method will be examined and compared to detect 

the types of faults of the opening of the SWCs, the SCF of the stator winding rings, and the 

connection of the two-phase windings.  

By applying the dataset to the proposed method, results such as precision, accuracy, 

recall, error, mean squared error (MSE), Root Mean Square Error (RMSE), and MAPE were 
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obtained. Fig. 4 shows the results of GMDH-DNN training and testing on PMSM data to detect 

the opening fault of the SWCs. 

 

 
Fig. 4. The results of GMDH-DNN training on PMSM data to detect the stator winding rings of the SCF:            

a) random sample number training data and actual value; b) error among output and actual value;  
c) the standard deviation error value histogram. 

 

As can be seen from Fig. 4 and Fig. 5, the training error rate for detecting the SCF stator 

winding rings is approximately equal to 0.8% for the test process and 0.9% for the training 

process.  

 
Fig. 5. The results of GMDH-DNN testing on PMSM data to detect the stator winding rings of the SCF:             

a) random sample number testing data and actual value; b) error among output and actual value;                      

c) the standard deviation error value histogram.  

(a) 

(b) (c) 

(a) 

(b) (c) 
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On the other hand, the standard deviation of GMDH-DNN for PMSM data training is   

equal to 6571.5257 and for the GMDH-DNN model testing process is equal to 5640.1818. The 

results obtained from the training and testing process of the proposed method indicate the 

efficiency and optimal performance of the method used in this research. In Fig. 6, the results 

of accuracy, error, precision, and recall of the proposed method to detect the stator winding 

rings of SCF are shown. 

As can be seen from Fig. 6, the accuracy rate of SCF detection using the proposed 

method to detect the SCF of stator winding rings is equal to 99.2%. The precision rate of the 

proposed method is 99.6%, the recall rate of the proposed method is 98.4%, and the error 

rate of the proposed method is 0.8%. In another experiment, in order to evaluate the 

performance of the proposed method compared to other methods, several other algorithms 

have implemented and compared the obtained results with the proposed method results. 

In this section, the results of the proposed method are compared with other methods 

such as SVM [20], KNN [21], C4.5 [22], MLP [23], RDNN [24], and LSTM [25]. Thee methods 

are among the most important methods of artificial intelligence and data mining. The SVM 

algorithm works based on the feature vector. KNN algorithm based on similarity and 

neighbors, C4.5 algorithm based on decision tree and MLP, RDNN, and LSTM algorithms 

based on neural network and deep learning. 

 

 
Fig. 6. The results of accuracy, precision, recall, and error of the proposed method for detect the SFC in stator 

winding rings. 

 

Table 2 shows the comparison of precision, accuracy, recall, and error of the proposed 
method for the SCF of the stator coils with other methods. 

 
Table 2. Precision, accuracy, recall, and error of SFC of the stator winding rings of the  

proposed method compared to other methods. 

Method 
Accuracy  

[%] 

Precision 

[%] 

Recall  

[%] 

Error  

[%] 

The Proposed method 99.2 99.6 98.4 0.8 

LSTM 96 98.54 97.32 4 

RDNN 95.12 97.8 97.09 4.88 

MLP 92.34 94.76 97.1 7.66 

C4.5 92.64 94.44 97.72 7.36 

KNN 90.94 92.44 97.89 9.06 

SVM 89.94 90.96 98.3 10.06 
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As shown in Table 2, the accuracy of the proposed method is equal to 99.2%, the average 

accuracy of other methods is also equal to 92.83%, which is the accuracy of detecting the SCF 

of the stator coils in the proposed method compared to other methods. It has improved by 

about 6.37%. The precision rate of the proposed method is 99.6%, and the average precision of 

other methods is 94.82%. The degree of improvement in the detection precision of the SCF of 

the stator coils in the proposed method is about 4.77% compared to other methods. The recall 

rate of the proposed method is 98.4%, and the average recall of other methods is 97.7%. The 

rate of improvement in detecting SCF of the stator coils in the proposed method compared to 

other methods is about 0.695%.  

Table 3 shows the comparison of precision, accuracy, recall, and error of the proposed 

method to detect the opening fault of coil connections to other methods. 

 
Table 3. Precision, accuracy, recall, and error of connection opening fault of the proposed method  

compared to other methods. 

Method 
Accuracy  

[%] 

Precision  

[%] 

Recall  

[%] 

Error 

[%] 

The Proposed method (GMDH-DNN) 98.31 98.98 95.6 1.68 

LSTM-DNN 96.2 98.96 94.14 3.8 

RDNN-DNN 95.7 98.43 94.11 4.3 

MLP 93.28 95.79 94.12 6.72 

C4.5 93.19 95.06 94.73 6.81 

KNN 91.29 92.86 94.9 8.71 

SVM 90.46 91.59 93.31 9.54 

 

As shown in Table 3, the accuracy of the proposed method is equal to 98.31%, the 

average accuracy of other methods is also equal to 93.35%, and the accuracy of detecting the 

connection opening fault in the proposed method has improved by 4.96% compared to other 

methods. The precision rate of the proposed method is 98.98%, and the average precision of 

other methods is 95.49%. The recall rate of the proposed method is 95.6%, and the average 

recall of other methods is 94.21%. The recall rate of improvement in the detection of connection 

opening faults in the proposed method compared to other methods is about 1.38%. 

Table 4 shows the comparison of precision, accuracy, recall, and error of the proposed 

method to detect the fault of connecting two-phase windings compared to other methods. 

 
Table 4. Precision, accuracy, recall, and error of the proposed method to detect the fault of connecting two phase 

windings compared to other methods 

Method Accuracy [%] Precision [%] Recall [%] Error [%] 

The Proposed method 97.2 99.8 98.2 2.8 

LSTM 95 98.06 97.32 5 

RDNN 94.87 97.46 97.09 5.13 

MLP 91.41 93.68 97.1 8.59 

C4.5 91.03 92.65 97.72 8.97 

KNN 92.69 94.32 97.89 7.31 

SVM 88.44 89.13 98.3 11.56 

 
As shown in Table 4, the accuracy of the proposed method is equal to 97.2%, and the 

average accuracy of other methods is also equal to 92.24%, which is the accuracy of detecting 
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the fault of connecting two phase windings together in the proposed method compared to 

other methods. The methods have improved by about 4.96%. The Precision rate of the 

proposed method is 99.8%, and the average Precision of other methods is 94.21%. The 

improvement in the Precision of detecting the fault of connecting two-phase windings in the 

proposed method is about 5.58% compared to other methods. The recall rate of the proposed 

method is 98.2%, and the average recall of other methods is 97.57%. The rate of improvement 

in the fault detection of two-phase windings in the proposed method compared to other 

methods is about 0.63%. 

In this research, the results obtained from the implementation of the proposed method 

based on the algorithm according to the parameters mentioned in Table 1 of GMDH-DNN 

have been compared with those of the method reported in [7]. They show that the accuracy 

rate of the proposed method is 99.2% while it is 97.5% for the method reported in [7], which 

represents 1.7% improvement in the accuracy. 

4. CONCLUSIONS 

In simulating the motor under fault conditions, mfile, Simpower system and Simulink 

environments are used simultaneously and together. The PMSM is designed under fault 

conditions in the Simpower system environment, which is more accurate than the Simulink 

environment due to the use of circuit elements. Capabilities such as changing mutual 

inductance between phases and even creating mutual inductance within one phase due to the 

occurrence of faults have been taken into account. This has led to an increase in simulation 

accuracy. After examining several signals (patterns) that can be extracted from the motor 

under fault conditions, the values of the effective priority values of the three-phase stator 

currents have been selected as the best pattern for identifying the short-circuit fault and 

determining the defective phase, because - compared to other signals - it has the ability to 

identify the fault and the defective phase at the same time. By evaluating and testing the 

proposed method based on GMDH-DNN, it was observed that the training process of GMDH-

DNN was carried out with acceptable accuracy and minimal error and created a simple and 

strong model. By analyzing the results on the types of SWC opening faults, stator winding 

rings SCF and connecting two phase windings together, it was observed that the accuracy, 

precision, recall, and error of the proposed method - compared to other methods including 

LSTM, RDNN, MLP, C4.5, KNN, and SVM  - have improved significantly. 
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