
JJEE  
      

  Volume 10 | Number 1 | March 2024 | Pages 60-83 
 

 

 
 

 

* Corresponding author                                                                                                                            Article’s DOI: 10.5455/jjee.204-1679500132 
 

 
 

 

Jordan Journal of Electrical Engineering 
 

 

ISSN (print): 2409-9600, ISSN (online): 2409-9619 

Homepage: jjee.ttu.edu.jo 

 

 
A Two-Point Estimate Method for Optimal Dispatching of 
Large-Scale Electric vehicles into Distribution Networks 

under Uncertainty  
 

Armin Mohajeri1 , Abdolmajid Dejamkhooy1* , Sajjad Shoja-Majidabad2  

1 Department of Electrical Engineering, University of Mohaghegh Ardabili , Ardabil, Iran 
E-mail: majiddejam@uma.ac.ir  

 2 Department of Energy Technology, Aalborg University, Esbjerg, Denmark 
 
 

Received: March 22, 2023 Revised: June 9, 2023 Accepted: June 17, 2023 

 
Abstract— Electric vehicle (EV) charging irregularities have a massive effect on the distribution system. In recent 
years, research has focused on how to address the issue of large-scale charging and discharging of EVs while 
ensuring the grid's security. Distribution network operators should choose places where EV charging is 
practicable in terms of environmental and financial benefits. To establish how to best charge and discharge EVs 
in the distribution network, first comprehend and then determine the optimal position of EV parking lots in the 
distribution network. In this article, to solve this optimization problem, first the mathematical model of the 
problem is built, and then - according to the nonlinear features of the proposed optimization model - the second-
order cone method is used to find the optimal solution with high accuracy and speed. The objective functions 
can accomplish more realistic objectives like lowering losses and minimizing voltage deviation changes with the 
charging and discharging time control technique, in addition to optimizing the technical requirements of the 
distribution network. The two-point estimation method of Hang is used to describe the uncertainty in the loads 
and capacities of solar sources in the random state, and optimization is applied to the IEEE 33-bus distribution 
system. The obtained results reveal that the proposed method not only meets the charging and discharging 
requirements of large-scale EVs, but also ensures the stability of the power grid, demonstrating the effectiveness 
of the proposed method in the optimal planning of EVs. 

 
Keywords— Distribution network; Electric vehicles; Uncertainty; Hong's two-point estimation method. 
      

1. INTRODUCTION  

With the improvement of people's awareness of environmental protection and energy 

security, people have gradually realized the inherent shortcomings of the traditional power 

grid [1]. In the future, increasing demand for oil is expected to become an important issue in 

terms of cost and availability [2] In order to save energy and reduce greenhouse gas emissions 

and environmental pollution, the electric vehicle market has grown rapidly in recent years [3].  

Electric vehicles act as an energy storage system to transfer load from peak hours to off-

peak times [4]. From the point of view of the electric grid, electric vehicles are additional loads 

that are connected to the grid to receive charging and increase the cost of the system and losses 

due to electricity consumption. However, this situation can be changed by EV charging 

management, and with the rapid growth of infrastructure, electric vehicles are presented as a 

promising option to stabilize the power grid [5]. Because electric vehicles are clean, comfortable, 

network-capable, smart, and cost-effective [6]. Unlike a typical load, the spatial and temporal 
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distribution of an electric vehicle (EV) is random. Access to large-scale electric vehicles has 

become a trend, and the charging technology of electric vehicles should also widely respond to 

the use of this type of vehicle [7]. The main finding of many studies states that EVs' charging 

significantly reduces the stability of the power grid [8, 9]. Uncertainty in the charging of electric 

vehicles on a large scale has a negative effect on the grid [10], and their existence can lead to a 

series of problems such as a large difference between peak and valley loads, overload 

distribution network lines, and increase the distribution network losses [11]. It is necessary to 

understand how to reduce the impact of electric vehicles on the distribution network, and 

implementing some optimal dispatching measures can improve its performance indicators [12], 

[13]. For example, if the charging and discharging behavior of electric vehicles is regulated and 

controlled, a sudden increase in load caused by uncontrolled charging is prevented, and the 

goal of "shaving the peak and filling the valley" is also possible [14]. 

In controlled EV charging, the system cost will be significantly saved [15], which is greatly 

improved by the integration of renewable energy sources into the power grid. Besides these 

issues, since EV charging time is still high, the deployment of this work requires comprehensive 

studies to optimally plan the location of charging stations (CS) that ensure EV charging demand 

is met [16]. Many factors are considered when establishing this goal, such as EV losses, grid 

stability, development costs, and grid constraints. Of course, it is important to note that the use 

of coordinated charging strategies leads to greater complexity and cost, but they perform better 

than uncoordinated charging and discharging strategies. Uncoordinated strategies do not have 

a positive effect on the network, even if EVs are introduced in small amounts [17, 18]. 

The planning of large-scale electric vehicles changes the distribution of the total load in 

each period, so it is necessary to determine the total load information of each period, and for a 

large scale of electric vehicles that can be dispatched, the relevant dispatching plan should be 

formulated in the next day [19]. In the optimal planning process for electric vehicles, 

probabilistic methods such as analytical methods, simulation methods, and approximate 

methods are used to model the uncertainty in the loads and capacities of electric vehicles. These 

methods lead to single-level optimization problems and can control the strength of the 

constraints by changing the tolerance factors to avoid overly conservative solutions [20].  

The study of the integration of electric vehicles in the distribution system dates back to 

the 1980s, when coordinated charging of electric vehicles was investigated and papers such as 

[21] were published. The main approaches in these papers included aspects related to 

economics, impacts on distribution systems, and EV mobility [22]. After that, researchers began 

to study how to charge EVs to minimize the negative impact of their charging on the 

distribution network [23]. 

In [24], the simulation of a time-varying electric vehicle load model that was placed in 

different buses of a system was performed, and the number of electric vehicles that could be 

connected to one bus was determined based on the simulation results until the voltage level 

reached standard values. 

Most papers consider static analyses, which always start and stop EV charging processes 

during the day [25]. In the study conducted by Source [26], the authors showed the increase in 

losses as one of the main concerns in the widespread use of these types of cars and stated the 

reason for the high investment costs for distribution networks is the coincidence between the 
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daily peak load and the start time of charging, which they described as the worst-case scenario. 

They have shown a desire to solve the excessive impact of EVs in the paper. 

Other studies use probabilistic models that may represent the charge-load profile in a 

better way compared to using deterministic charge patterns. In sources [27, 28], the presence of 

electric vehicles in the network has led to a significant increase in system losses. Since accurate 

household load forecasting is not available, this study introduces stochastic scheduling to 

obtain the optimal coordinated charging load profile with minimum system losses. A three-

layer distributed multi-agent framework for optimal EV charging scheduling is proposed in 

[29]. This framework reduces the negative effects of EV charging demand on electrical     

networks [30].  

Authors in [31] proposed a probabilistic modelling approach that uses statistical analysis, 

stochastic simulation, and queuing theory to generate charging load distributions for electric 

vehicles. On the other hand, the simulation model presented in [32] shows the random nature 

of charging location and time, adds its effects on the distribution system, and evaluates the 

reliability performance of the distribution system using Monte Carlo simulation. 

In [33], the effect of electric vehicle charging station load on the voltage level, reliability 

indicators, power, and economic losses of the distribution network have been analysed for the 

steady state of the system. In [34], the establishment of parking lots is planned, considering the 

simultaneous benefits of the network and electric vehicle owners in the long term. This paper 

uses a multi-objective genetic algorithm to find the optimal location and capacity of EV parking 

lots, along with a distribution network enhancement plan. However, the joint planning of fast 

charging stations and DGs on a 33-bus system is also described in [35]. 

In [36], a management algorithm is developed for electric vehicle charging in real time, 

considering the operation conditions of the distribution system. In addition, in [37], it deals 

with electric vehicle charging management, considering wind power and tariff uncertainty, and 

uses a robust optimization approach in a model prediction framework. 

In Table 1, some examples of studies conducted in recent years are shown. In these 

studies, an overview of the proposed models used with the innovations made is briefly 

presented, the obtained results are expressed, and the research gaps of the studies are presented 

and based on this, the idea of starting research in this article is provided. 

In this paper, according to the scientific gaps raised in the previous literature review 

section, the model of load and solar resources as one of the sources of distributed generation is 

proposed, and they are defined in a definite and possible way during 24 hours in order to 

evaluate the economic effects, losses, and costs of investment and operation resulting from the 

integration of the theme. Also, a case study has been presented to the MILP model to determine 

the optimal size and placement of EV charging stations and PV units, taking into account 

deterministic quantification and uncertainty using the two-point estimation method (PEM). It 

has a more accurate and correct answer than the method based on repetition or meta-heuristic, 

with the lowest difference error. To ensure efficiency and acceptability, this paper has 

investigated and analyzed the success of electric vehicles in achieving technical and economic 

performance with network safety constraints and in the presence of solar sources in different 

scenarios. 
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2. OPTIMAL MODELLING 

2.1. Optimization Objectives  

Fig. 1 shows the general structure of the network under investigation. As can be seen, the 

network has power exchanges with electric vehicles and solar production sources. 

The study of electric vehicles as a type of load that is different from traditional examples and 

has random charging behaviour is essential. When electric vehicle owners get home from work, 

they charge their vehicles. This process adds to the existing peak load and results in a larger 

peak that puts a lot of pressure on the network. In this regard, in order to access electric vehicles 

on a large scale, the charging and discharging of these vehicles must be connected to the most 

suitable nodes in the distribution network.  

 

 

Fig. 1. General structure of the network. 

 

In this distribution network with high penetration of PV sources, the objectives of the 

operation include minimizing the cost of purchasing network energy, power losses, and costs 

related to investment and operation, along with meeting the limitations of the studied system. 

Therefore, by optimizing the objective function, the losses of the distribution network, taking 

into account the hourly load changes in the cycle of a day and night and the changes of solar 

radiation, are reduced to a minimum value, and with this process, not only can power losses 

be reduced but also the network load flow of the distribution system be optimized. 

The expression of the objective function for the optimal scheduling of the distribution 

network is expressed as follows: the objective function includes power loss (Floss), the cost of 

purchasing electricity from the grid (FGrid), the cost of a photovoltaic unit (FPV), and the cost of 

maintaining electric vehicles (FPEV), which are shown as Eqs. (1) to (5). 
 

min( ) min( )t loss Grid Ev PvF F F F F   
                                                                                       (1) 
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&

1
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T
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F CRF C P C P P
 

                                                      (5)   

where GridC  , PvCRF  , BatteryCRF , PvC , 
BatteryC  and &O MC  are the purchase cost per network 

capacity, the capital recovery factor of photovoltaic, the capital recovery factor of  the EVs, 
capital expenditure of photovoltaic, capital expenditure of the EVs and the operation and 

maintenance cost of the PV in $/kWh, respectively, and GridP is the imported power from the 

grid, srP  is the rated power of the PV unit, and pvP  is the generated power by the PV unit. 

Among them, S is the lifetime of PV in years,   is the rate of interest on the capital investment 

of the installed PV, sG is the solar irradiance at the determined location, and stdG  is the solar 

irradiance in a standard environment (1000 W/m2). 

2.2. Constraints 

2.2.1. Load Flow in the Radial Distribution Network Constraint 

Due to the complexity and interconnectedness of the network, the load flow model based 

on the voltage ( iV , jV ) and power values of each node has a non-linear structure. This model is 

generally used by users and analysts, but in this paper, it is used for easy analysis and non-

neglect. Based on the values of each branch (dist Bfm), the equations of the nonlinear load flow 

model have been transformed into an alternating model using the power losses. The errors in 

this method are smaller, so the performance of the proposed method is much better than the 

conventional methods. An intuitive explanation for the topology of the proposed model in            
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a 2-bus radial network is shown in [10], where nodes i and j are examples of connections in a 

multi-bus network, where i is the transmitting power bus and j is the receiving power bus. In 

the proposed model, active and reactive power ( ijS ) are used instead of currents ( ijI ) or 

impedances ( ijZ ) for calculations. The voltage drop between the buses( i jV V ) is proportional 

to the current of the communication line, and based on this, the power of the line is calculated 

according to the following equations: These equations are the constraints of line ij and can be 

referred to as the voltage and current equations of branch load distribution and the power 

balance equation. 

 

i j ij ijV V Z I 
                                                                                                                                  (6) 

*

ij i ijS V I
                                                                                                                                         (7) 

 

2

: :

( )j jk ij ij ij

k j k i i j

S S S Z I
 

   
                                                                                                  (8) 

     By replacing Eq. (7) with Eq. (8), we will take:  

                                         

                                                                                                               (9) 

 

 We will take the sides of Eq. (9) to the power of two to get the final Eq. (10). 
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After separating the active and reactive power ( ijP , ijQ )in order to analyze the load 

distribution, the limitations are stated as follows: 
2
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Eqs. (11) and (12) express the balance of active and reactive power, Eq. (13), the equation 

of voltage balance or the constraints of applying Kirschoff's laws and guaranteeing the radial 

performance of the distribution system, and Eq. (14), the power equation. 

2.2.2. Distribution Network Constraint 

When the electric vehicle is connected to the power grid, the operating limits of the 

distribution network, such as power limits, voltage range, and current limits, must be 

*

*

ij

i j ij

i

S
V V Z

V
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established. The power limits include active and reactive power, and for each node, the            

Eqs. (15) and (16) must be satisfied: 

, , ,Gn t dc i t ch n tP P P P P   
                                                                                                           (15) 

, , ,Gn t i t n tQ Q Q 
                                                                                                                           (16) 

Eqs. (15) and (16) show the limitations of active and reactive power balance, where ,Gn tP

, ,i tP and ,n tP  represent active power, and ,Gn tQ , ,i tQ , and ,n tQ  represent the reactive power of 

sources, loads, and nodes n at time t. chP  is the charging power of the electric vehicle, and dcP  

is the discharging power of it. 

In order to ensure the safety of node voltage values and network performance, node 
voltage and current in the distribution network must meet the following operational 
constraints: 

min , maxj tV V V 
                                                                                                                                 (17) 

min , maxj tI I I 
                                                                                                                                  (18) 

In Eq. (17), Vmin and Vmax show the minimum and maximum voltage range of the bus in 

period t, and in Eq. (18), the allowable range will be the critical value of branch load current. 

minI  is the minimum current, and maxI  is the overload current of the branch. 

2.2.3. Photovoltaic Production Capacity Constraint 

The injected power penetration from photovoltaic sources is determined by the countries' 

renewable energy policies. In this paper, it is assumed that the total active power injected by 

PV varies with the percentage factor of active load demand and is expressed as follows: 

1 1

pv i

i i

P P
 

  
                                                                                                                               (19) 

where   is the percentage penetration level of the PV unit. 

3. SECOND-ORDER CONE METHOD 

SOCP (second-order cone programming) is a very special large-scale convex optimization 

with a very efficient solution algorithm that deals with a class of optimization problems with 

conic structures that can be efficiently solved by interior point methods [45].To solve the 

distribution load flow optimization model, it is necessary to use the standard second-order cone 

technology to transform the nonlinear load distribution model; The intermediate variables Lij 

and Ui are a new series of current variables that are expressed by the square of current and 

voltage as follows: 
2

ij ijL I
                                                                                                                                                  (20) 

2

i iU V
                                                                                                                                                  (21) 

By using Eqs. (20) and (21) resulting from the second order cone and rewriting the power 

balance constraints mentioned in the previous section, we will take the new equivalent 

equations: 
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In order to convert Eq. (25) into a linear convex constraint, define the auxiliary variable 

of the conical constraint: 
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The new inequality constraint introduced in Eq. (26) can be shown through the equivalent 

transformation into a standard second-order cone according to Eq. (27): 

2

2 2
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                                                                                                                     (27) 

The objective function Eq. (2) and safety constraint Eqs. (17) and (18), which are cone 

optimization variables, are converted into Eqs. (28) to (30). 

,

1 ,

( ) )
T

loss ij t ij

t i j

F L R t
 

  
                                                                                                            (28) 

2 2

min , maxj tV U V 
                                                                                                                         (29) 

2 2

min , maxij tI L I 
                                                                                                                          (30) 

After the above transformation, the nonlinear part of the original model is transformed 

into a quadratic cone model, which is quickly obtained by the corresponding solver in each 

iteration of the optimal solution. 

3.1. Hong's point estimation method 

The presence of uncertainty in the input of a probabilistic problem causes the output to 

be uncertain. Predicting output is very difficult due to its probabilistic nature. Accordingly, the 

point estimation method based on the estimation of statistical information was proposed in 

1975 to solve possible problems [46], but this method was ineffective due to the need for a high 

number of simulations and caused the PEM method to prevail in 1989 developed on the 

problems that arose, and this development finally led to the introduction of the effective point 

estimation method by Hong for symmetric and asymmetric variables [47, 48]. 

In this method, the information provided by the central moments is used to find some 

representative points (points for each variable) called "focus." These representative points are 

used to solve the model, and the statistical information of the random output variable is 
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calculated using the obtained solutions [49]. They focus the problem's input random variable 

on k points for each variable, and using these estimated points, or the central moments, and the 

F function that relates the input and output variables, it is possible to obtain information about 

the uncertainty associated with the random variables of the output of the problem [50]. 

Mathematically, the function F can be defined as follows: 

( )U F I                                                                                                                                               (31) 

Considering m cases of the input random variable, (8) can be written as follows: 

( , )U F c X
                                                                                                                                   (32) 

It is assumed that a random variable with a mean value and standard deviation is the 

coefficient of skewness. Moreover, U is a stochastic function of X, and c is a set of certain 

variables under uncertainty with a probability function. Each random input variable ( lX ) can 

be defined as a pair consisting of a location ,l sX  and a weight. For lX the function F must be 

evaluated s times. 

As seen in Fig. 2, in general, the point estimation method can be implemented for 2 m 

points. In the implementation of the point estimation method, the steps of the work are as 

follows: 

 

 
Fig. 2. Flowchart of the proposed algorithm. 
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Step 1: Determining the value of m 

Step 2: Determining the value of E(Ui) = 0 for i = 1, 2, and 3. 

Step 3: Determining the value of l, which can be from 1 to m. 

Step 2: Determining the two primary locations of the standard random variable (Xl). 

Step 3: Determining the skewness coefficient and the standard position of the random 

variable based on Eqs. (33) and (34). 

3

,

,3 3

,

( )

( )

l x l

l

x l

E X 




  

                                                                                                                 (33)  
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                                                                      (34) 

In Eqs. (33) and (34), N is the number of Xl observations, and Prob(Xl,p) is the probability 

of each Xl,p observation determined by the system operator. ,3l  is skewness, 
lx  is mean value, 

and 
lx  is standard deviation. 

2

,3 ,33

, ( 1) 1,2
2 2

l lj

l j m j
 

   
     

                                                                                          (35) 

where ,l j  represents the standard location of the random variable. 

 

Step 4: Determining the position value of Xl,s 

,, , , .
x ll s x l l sX    

                                                                                                                        (36) 

Step 5: Determining the definitive value of U for two locations Xl,s calculated from the 

previous step: 

1 1, ,( , ,....., ,...., )
ml s z z l s zU F X  

                                                                                              (37) 

Step 6: Determination of weight coefficients 
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                                                                                                                      (38) 

where ,l sg  is the weight of the random variable. 

 
Step 7: Update E(Ui): 

2

, ,

1

( ) ( ) ( )i i i

l s l s

i

E U E U g U


 
                                                                                                     (39) 

Step 8: Repeat steps 2 to 7 until all input random variables are calculated. 

Step 9: Calculate and use statistical torques of the output random variable: 

2 2( ), ( )U U UE U e U    
                                                                                                  (40) 

where U , U  are the mean and standard deviation of the deterministic output calculated for 

the uncertain variable. 
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4. SIMULATION AND RESULTS 

The single-line structure of the 33-bus IEEE network has been considered for 

implementing the proposed model and analyzing the obtained results in order to select the type 

and size of photovoltaic sources, parking lots, charging positions, and the condition of the load 

profile and network voltage. The network buses are connected through 32 lines with a rated 

power of 1000 kVA at a voltage level of 12.66 kV, and for them it is possible to connect 8 types 

of photovoltaic sources to check the effects of renewable sources and 4 battery models to 

provide the energy needed to charge electric vehicles with 70–85% efficiency, according to the 

information listed in Tables 2 and 3. 

 
Table 2. Parameters of PV systems [51]. 

PV types 

Rate of 

return 

(ROR) [%] 

Life 

time (LT) [year] 

 

Energy cost 

(O&M) 

[$/kWh] 

Investment 

cost 

INV [$/kw] 

Power rating 

Pr [kw] 

PV1 10 20 0 0 0 

PV2 10 20 0.01 770 100 

PV3 10 20 0.01 770 500 

PV4 10 20 0.01 770 800 

PV5 10 20 0.01 770 1000 

PV6 10 20 0.01 770 1300 

PV7 10 20 0.01 770 1500 

PV8 10 20 0.01 770 2000 

 
Table 3. Parameters of the parking lot [52]. 

Battery 

types 

Rate of 

return 

(ROR) 

[%] 

Efficiency 

[%] 

DOD 

Depth 

of 

discharge 

)DOD( 

[%] 

Life 

time 

(LT) 

[year] 

 

Life 

time 

(LT) 

[cycle] 

Res. 

time 

(RT) 

[sec] 

Energy 

cost 

(O&M) 

[$/kWh] 

Investment 

power cost 

(Inv) 

[$/kW] 

Cap. 

rating 

[kWh] 

Power 

rating 

Pr 

[kW] 

Le-Ac 10 85 50 10 3000 10 300 200 2500 1000 

Li-On 10 75 80 15 2500 15 1200 600 2000 700 

Ni-Cd 10 80 50 16 3000 20 500 800 1500 500 

Zn-Br 10 70 80 8 1000 6 700 150 1000 400 

 

It is assumed that the bus voltage should be within the allowed range. For this purpose, 

the effectiveness of the proposed methods in the network under study is evaluated by 

comparing two scenarios: deterministic optimization (regardless of the uncertainty in the input 

parameters) and the characteristics of uncertainty using TPEM. The base load definitive data 

for the distribution system under study is shown in Table 4, based on which the values of hourly 

load and source profiles are determined in Figs. 3 and 4. The possible data for the system was 

also obtained in [39].  

These data were expressed annually and in the form of four seasons, through which the 

daily load and production of cars and production resources were calculated. The charging and 

discharging conditions of cars all follow the same timing order, and when the battery capacity 

is less than 10%, electric vehicles need to be charged, and the charging process is complete every 
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time. The cost of energy includes the cost purchased from the substation and the cost provided 

from renewable sources, which are equal to 0.06 and 0.96 with the capital recovery factor for 

the solar source of 0.1175. 

 
Table 4. Parameters of the basic load of the distribution grid under study. 

Time  

[h] 

Base load 

[MW] 

Time  

[h] 

Base load 

[MW] 

Time  

[h] 

Base load 

[MW] 

1 1.73 9 3.22 17 2.48 

2 1.86 10 3.46 18 2.72 

3 2.11 11 3.59 19 2.97 

4 2.35 12 3.71 20 3.47 

5 2.48 13 3.47 21 3.21 

6 2.72 14 3.22 22 2.72 

7 2.84 15 2.97 23 2.23 

8 2.97 16 2.6 24 1.98 

 

 
Fig. 3. Photovoltaic profile. 

 
Fig. 4. Daily load profile. 
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4.1. First Scenario 

In this case, all production values of photovoltaic sources and loads connected to the 

network are considered definitively, and according to the activity of electric vehicles and the 

implementation of their charging and discharging processes, first the size, type, and optimal 

location of connecting sources and car chargers are determined, and then the amount of 

change in the critical values of the network is analyzed. The values of the objective function as                    

4 separate objectives (F1 to F4) and the losses for this scenario are shown in Table 5, according 

to which the total costs are 2464003.997 and the costs of electric vehicles and casualties 

respectively have the lowest and highest share in the function. They will have a total cost. 

 
Table 5. Cost and amount of losses in the first scenario. 

 
F1. 

Cost of 
losses 

F2. 
Cost of purchasing 
from the network 

F3. 
Cost of 

renewable 
resource 

F4. 

Cost of 
electric 
vehicle 

Grid 
losses(kWh) 

Scenario1 58944.598 2251600.134 135834.99 17625.000 2691.534 

 

In Table 6, according to the network topology and the possibility of installing various 

types of batteries in the parking lots and solar production sources, Bus 10 is proposed as a 

place to install a type 7 solar source with a capacity of 1500 kw and Bus 11 as a connection 

point for charging and discharging electric vehicles with a capacity of 1000 kwh.  
 

Table 6. Capacity and installation location of the photovoltaic source and parking lots in the first scenario. 

 
EV 

 
PV 

 
BAT4,1000kWh Bus11 

 
PV7,1500kW Bus10 

 

Fig. 5 shows the connection point of the photovoltaic source and the electric vehicle 

parking lot in the single-line diagram of the 33-bus IEEE network. As shown in the figure, an 

optimal value for the battery and photovoltaic source has been selected from the standard 

values of Tables 2 and 3, and to ensure the stability of the distribution network and the voltage 

profile, it is suggested. Fig. 6 shows the changes in the voltage profile before connecting the 

photovoltaic source and the battery. 

 
Fig. 5. Single-line diagram of the 33-bus IEEE network. 
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Fig. 6. Voltage variation without EVs and PVs. 
 

Has been assuming the above placement, network utilization values are evaluated 
according to Figs. 7 to 14. Fig. 7 shows the diagram of the voltage changes of the network buses 
under study for every hour and when the electric vehicle is involved in charging and 
discharging. According to the Fig. 7, it can be seen that the amount of daily change in the 
voltage of all network buses is within the permissible range. 

 

 
Fig. 7. Voltage variation with EVs and PVs. 

 

The total grid losses in the basic state without the presence of PVs and processes of 

charging and discharging EVs is 3522.793 kWh, and with the presence of renewable 

production and the connection of electric vehicles to the network, this value is equal to 

2691.534 kWh. As can be seen from Fig. 8, the grid losses are displayed hourly, and the loss 

curve is a function of changes in load consumption and purchases from the network. With the 

increase in load resulting from the charging of electric vehicles and the decrease in impact of 

the photovoltaic source, the losses have increased in the early hours of the day. In this way, 

the losses for the network in this hour are very close to each other. Although in the peak hour, 

with the discharge of electric vehicles and the injection of power into the network with the 
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integration of the power of photovoltaic sources, the amount of losses has been significantly 

reduced. This network has lost 831 kw in 24 hours. The important point is that the target index 

has been effectively improved, and we are witnessing a decrease in the amount of loss 

difference in peak and non-peak hours, unlike the load changes in the base state. From the 

point of view of the optimization effect, the high peak is optimized, the peak-to-valley 

difference and the total network losses are reduced; This issue shows the ability of integration 

sources and vehicles in flattening the loss graph and transferring the time of occurrence of the 

maximum amount of losses from the peak hour to other hours of the day and night. 

Figs. 9 and 10 show, respectively, the time distribution and quantity of charging and 

discharging status of parking lots along with the amount of charging and discharging power 

of electric vehicles. 

In Fig. 9, it can be seen that the position of charging and discharging the batteries in the 

parking lots is changing. These parking lots are placed in the charge position in the early hours 

of the day based on the optimal timing strategy and are responsible for providing the power 

needed by the electric vehicles in the distribution network to be charged in a regular manner 

at the right time and with the optimal amount.  

 
Fig. 8. Losses of the network under study for deterministic and basic condition. 

 

 
Fig. 9. SOC values of electric vehicle parking lots under certain conditions. 
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Fig. 10. Charging and discharging power of parking lots to the grid under nominal conditions with 

forecasted data. 

 

Also, they are fully charged at peak times through the supply of power from the PV units 

and electric vehicles and are placed in charging position 1. This has made it possible to ensure 

that the changing needs of electric vehicle users are met. In Fig. 9, "discharge power" means 

the power injected into the network through electric vehicles, and as can be seen from the               

Fig. 10 it can be understood that the optimal timing strategy effectively prevents the 

phenomenon of charging peaks in the distribution network, and this process with the 

integration of production ensures the supply of the required load during peak consumption. 

Of course, in non-peak hours, the energy needed by cars is provided through the parking lots, 

and this makes it possible to connect cars during peak hours and can minimize the limits of 

operation in the network and ensure the safe and economical operation of the electricity 

network. 

4.2. Second Scenario 

A In the configuration of the second scenario, the policy introduced in Section 3 for the 

internal skewness and elasticity considered as 0.5 and 2, respectively, for the random 

generation of solar sources and load becomes the curves of Figs. 11 and 12. Table 7 examines 

the losses and non-comparable objective functions with non-comparable actions and standard 

deviation. In the two-point estimation method, two points at the top and bottom of the value 

are used. According to this issue, in Figs. 11 and 12, there are three random values for weight 

determination and estimation of load and production. Corresponding to sc1 in Table 7 as the 

upper limit of the loss with the higher cost value, sc2 is the lower limit with the minimum 

value, and sc3 is the middle one, which is equal to the value of the limit obtained from the first 

scenario. 

By using random load and production values and implementing the two-point 

estimation method, the results are shown in Table 8 and Figs. 13 and 14. 
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Table 7. Cost and amount of losses in the uncertainty scenario. 

Scenario 
F1. 

Cost of 
losses 

F2. 
Cost of purchasing from 

the network 

F3. 
Cost of 

renewable 
resource 

F4. 

Cost of 
electric 
vehicle 

Grid 
Losses [kWh] 

Sc1 80766.493 2596453.593 135863.589 17625.0 3687.968 

Sc2 46153.097 2018385.268 135814.354 17625.0 2107.447 

Sc3 58944.598 2251600.134 135834.399 17625.0 2691.534 

 

In the proposed method, the values of the load and production of the source are 

expressed as a scale in units of 24 hours. By using the input variables in the implementation of 

the two-point estimation method for the studied network, it is possible to display the average 

value and the deviation, and these results are shown in Table 8.  

 

 
Fig. 11. Uncertainty load profile. 

 
Fig. 12. Uncertainty production profile of photovoltaic sources. 
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Table 8. Cost and amount of losses in the second scenario. 

σ μ E(y)  

0.58873 7.7749 2.7255 
Grid 

losses [kw] 

 
12858.29781 

 

 
3728791465.053688 

 
58694.68688 

F1. 
Cost of 
losses 

 
 
 
 
 
 
 

O.F 

 
 

213521.7681 

 
 

51218686439.73 

 
 

2253059.4973 

F2. 
Cost of 

purchasing from 
the network 

 
1358.288826 

 
18452829728.69472 

 
135847.98371 

F3. 
Cost of 

renewable 
resource 

 
176.2588123 

 
31067689.0625 

 

 
17626.7625 

F4. 

Cost of electric 
vehicle 

 

In Figs. 13 and 14, soc parking lot charges and loss values are compared in two definite 

states with blue color and random with the criteria of the two-point estimation method with 

red color. The values obtained in the optimization using the two-point estimation method have 

a curve very close to the deterministic state, which shows that the proposed method 

implemented on the network has an acceptable performance and the slight difference in the 

graph can be ignored. It proceeded on the assumption of sacrificing some indicators. This 

means that if the results of the deterministic approach are considered, the operating cost and 

the number of violations will not be acceptable in practice, so it is necessary to consider the 

probabilistic approach instead of the deterministic approach to deal with the real conditions 

because the real conditions of the system should be ignored in the deterministic analysis. 

 
Fig. 13. SOC of deterministic and random charging. 

 

Table 9 compares the costs of the objective functions and the amount of losses in three 

cases without resources and without the presence of electric vehicles and after using them with 

the production and load values in a deterministic and random manner. The first column shows 

that the total objective function is caused by the costs of losses and purchases from the 

network, and renewable sources and electric cars have no effect.  
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Fig. 14. Losses of deterministic and random state. 

 

Table 9. Cost and amount of losses in the uncertainty scenario. 

Uncertainty case Deterministic case Basic case  

59694.686888 58944.598 77149.161 F1.  Cost of losses 

 
2253059.4973 

 
2251600.134 

 
2704624.936 

F2. Cost of purchasing 
from the network 

 
135847.98371 

 
135834.399 

 
0 

F3. Cost of renewable 
resource 

 
17626.7625 

 
17625.00 

 
0 

F4. Cost of electric 
vehicle 

2725.5 2691.534 3522.793 Grid losses(kWh) 

 
However, after their optimal placement, the total objective function consists of four 

parts, in which the values of the loss objective functions decreased from 77149.161 to 58944.598, 

purchase from the network decreased from 2704624.936 to 2251600.134, and the amount of 

expenses related to electric cars and renewable resources increased from zero to 135834.399, 

17626.7625, and 17625.000, respectively, and these changes caused an 11% decrease in the 

function. The goal has been achieved. The most important point in comparing the values in 

Table 9 is the small difference between the deterministic and random values, which has been 

shown using the two-point estimation method, this confirms the power of the proposed 

method in optimising the processes of reducing losses and costs compared to the deterministic 

state and it shows the possibility that in the case of uncertainty of resources and load, the 

calculations can be converged by relying on this method so that no significant change in the 

results is achieved. Therefore, according to the obtained results, with optimal integration of 

PV units to minimise grid losses along with other costs by considering hourly variations of 

solar radiation and load characteristics, a two-point estimation method for a large-scale electric 

vehicle network planning model, and optimal allocation of solar units and parking Electric 

vehicle charging methods have been proposed considering the uncertainty of the load and 

power of the solar source and have been determined in order to reduce the negative impact of 

charging electric vehicles connected to the power grid on the distribution network.  
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5. CONCLUSIONS 

This paper compared the costs of objective functions and the amount of losses - in a 

deterministic and uncertain manner - in three cases with and without the presence of resources 

and electric vehicles, as well as their presence with production and load values. The parking 

lot was considered as a large storage facility that can be charged and discharged, and the 

number of cars in it cannot be less or more than a certain limit. So according to the charge and 

discharge profile, the parking lot starts to discharge at peak hours, and when the photovoltaic 

source starts producing power, the cars also start charging in the parking lot, which balances 

- economically and technically - the distribution network in the presence of renewable sources. 

As can be seen, the losses and costs associated with them are highest in the absence of 

renewable resources and without managing the charging and discharging of electric vehicles. 

After the optimal location of PV and EV buses and the application of definite values, the 

amount of cost due to losses decreased by 23%, which was achieved using the proposed 

method with a difference of less than 1%. 

Pertaining to the objective function of purchasing from the network, the presence of 

renewable production sources and the managed capacity of charging and discharging 

resulting from the connection of cars to the network resulted in 16% saving. However, this cost 

reduction was accompanied by a 100% increase in the costs of resources, and electric cars had 

caused the total cost savings to be reduced to 11%. Nonetheless, this indicated the acceptable 

performance of the second-order cone model and the implementation of the two-point 

estimation method on the IEEE-33 bus network for optimizing the charging and discharging 

of electric vehicles in the power grid. 
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