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Abstract— Adaptive cruise control (ACC), cruise control (CC), and automatic emergency braking (AEB) serve as 
the basis of longitudinal automated driving, and as such have been the subject of much research. Model 
predictive control (MPC) and fuzzy logic are often considered to be the next steps in improving the capability of 
these systems, but the two control strategies have not been compared to each other in the ACC, CC and AEB 
applications.  Also, the three features (ACC, CC and AEB) have never been compiled into a single fuzzy logic 
controller. The purpose of this paper is to design a fuzzy logic-based ACC, CC, and AEB controller and compare 
it to an equivalent MPC controller. All three controllers control the desired longitudinal acceleration, and their 
functionality is tested using Matlab’s Fuzzy Logic Designer and other Simulink toolboxes. Ultimately, the results 
of the analysis demonstrate that the proposed fuzzy controller operates just as well if not better than the MPC 
controller and that the fuzzy controller is able to operate well in all tested scenarios. 

 
 

Keywords— Adaptive cruise control; Cruise control; Automatic emergency braking; Model predictive control; 
Fuzzy logic controllers; Matlab; Simulink.     

1. INTRODUCTION  

Adaptive Cruise Control (ACC) is a common feature in new cars that vastly improves 

on the existing Cruise Control (CC) system. When a vehicle is in front of the user’s car, the 

ACC maintains a correct headway distance between the two vehicles by altering either the 

brake pressure and throttle angle, or the wheel torques. When a vehicle is not in front of the 

user’s car, the ACC system operates as a basic CC system. The correct headway distance is 

innately a ‘fuzzy’ variable as the driver makes numerous snap decisions to decide how close 

is too close to the vehicle ahead of them. As such the function is well-suited to be implemented 

using a fuzzy controller. ACC has been a popular field of research and as such has had a wide 

range of research. The ACC system is generally split into a higher level, supervisory, controller 

and a lower level, actuator, controller. Generally, the higher-level system takes in the 

measurement data of the vehicle in front and commands the lower controller to actuate in such 

a way, either through throttle angle and brake pressure or wheel torque, to keep the 

appropriate headway distance between the lead vehicle and ego vehicle. The bulk of research 

in ACC is focused on researching different control methodologies to improve the functioning 

of the higher-level controller. 

There has been research published that looks to switch ACC modes depending on the 

situation the driver is in [1], create multi-loop switch strategies for the ACC system [2], and 

some researchers have even gone so far as to attempt to control the time gap between vehicles 
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rather than the distance [3]. As time has gone by higher level controller ACC research has been 

completed, MPC and fuzzy logic have become front runners to be used in the next generation 

of ACC systems. There has been MPC ACC research that looks to take fuel consumption into 

consideration when the ACC is operating [4] and there has been research that looks to tune 

the weights within the model in real time to improve performance [5]. 

On the fuzzy logic side there has been research published that discusses creating fuzzy 

if-then rules for ACC systems [6], research that looks to smooth out the transitions between 

ACC and CC modes [7], research that looks to guarantee string stability among many vehicles 

using ACC all in the same lane [8], and research has been done looking into neural network’s 

ability to approximate the behavior of the leading vehicle [9, 10]. 

From our literature review before starting this paper we noticed there had not been 

much research comparing fuzzy logic ACC systems to MPC systems. As they seem to be the 

leading methodologies in the ACC field, we believe that comparing the performance of the 

systems to be a worthwhile addition to the current state of research. As such three scenarios 

were created to test the capability of both the fuzzy ACC systems and the MPC ACC systems. 

The three scenarios are as follows: following a lead vehicle with varying levels of acceleration, 

a cut in scenario, and a suddenly stopping lead vehicle.  The proposed scenarios should cover 

a wide range of ACC operating conditions and test whether or not the controllers are capable 

of operating correctly during them. In creating the proposed fuzzy logic controller, we initially 

based the controller off the fuzzy ACC system within [8] and then improved upon it to get 

better performance. In our improvement we added a set of if-then rules to allow the controller 

to operate in an Automatic Emergency Braking (AEB) mode. 

This paper is organized into sections. In section 2, we talk about the controller 

methodology, or the basic layout and parameters of our controller setup. In section 3, we talk 

about the controller design and plant dynamics. In section 4, we talk about implementation of 

controllers and the plant in Simulink. In section 5, we discuss the simulations and analyze 

them. In section 6 we give a conclusion and comment on future work. 

2. CONTROLLER METHODOLOGY  

ACC is a feature commonly available in new vehicles that allows the vehicle to maintain 

a safe follow distance between the lead car and the ego car with minimal input from the driver. 

The ego vehicle, or following vehicle, takes in a measurement of the relative distance between 

the lead vehicle and the ego vehicle typically using LIDAR. The system generally takes in a 

relative distance measurement and a relative velocity reading and outputs a desired 

acceleration to allow the vehicle to maintain a correct headway distance. The requirements for 

a successful ACC system allow the vehicle to always maintain a correct headway distance as 

well as never exceed the set desired speed of the vehicle. Fig. 1 shows the basic functioning of 

the ACC vehicle. The general ACC system functions are based on the following equations: 

Relative Distance: d(t) = dlead(t) − dego(t)  (1) 

Relative Velocity: v(t) = vlead(t) − vego(t)  (2) 

∆d(t) = d(t) − ddes(t)  (3) 

∆v(t) = v(t) – vdes(t)  (4) 

ddes(t) = Thvego(t) + do = Thvego(t) + 2  (5) 
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where d(t) is the relative distance and ∆d(t) is the difference between the relative distance and 

the destination distance. The system functions are based on the relative distance and the 

relative velocity. The relative distance equation allows the system to gauge whether or not the 

ego vehicle is at a safe distance or not and the relative velocity equation allows the system to 

monitor the change in the headway distance. The whole system is predicated off the correct 

headway distance which is a function of the headway time (Thvego(t)), 2 s for our application 

(d0=2), two times the mass of the vehicle, and the speed of the ego vehicle. 

 

 

Fig. 1. Generalized function of ACC [11]. 

Generally, the ACC system is constructed of two different controllers, an upper-level 

controller and a lower-level controller as shown in Fig. 2. The upper-level controller is the 

system that detects the distance and relative speed between the vehicles. This upper-level 

controller sends a desired acceleration command to the lower-level controller to enact a wheel 

torque in order to satisfy the correct headway distance. The lower-level controller converts the 

desired acceleration input into a wheel torque using feed forward terms. Both these controllers 

working in tandem allow the system to operate correctly.  

 

 
Fig. 2. Control structure for ACC feature. 
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3. CONTROLLER DESIGN AND PLANT DYNAMICS 

The proposed controller is made of the following components: ACC Fuzzy Logic Based 

Controllers, ACC MPC Controller, Plant Model, and Lower-Level Controller. 

3.1. ACC Fuzzy Logic Based Controllers 

The fuzzy logic controller can be broken down into two main sections with three sets of 

data passing through it. The first main section is the fuzzy logic system. This system functions 

as the upper-level controller and it takes in a set of input linguistic variables and outputs a set 

of linguistic variables. The set of input linguistic variables was relative velocity, speed error, 

and relative distance for the basic fuzzy logic controller.  The relative velocity, speed error, 

relative distance, and lead acceleration are the set of linguistic input variables for the improved 

fuzzy logic controller. The fuzzy logic controller takes those variables in, assigns them to 

output variable states based on the if-then rules and outputs a set of output linguistic variables 

based on the input. For both the basic and improved fuzzy logic controllers the fuzzy system 

uses the Mamdani method to computer the fuzzy output and the centroid method for 

defuzzification. Ultimately, the fuzzy system would output a set of data in the form of the only 

output linguistic variable in the system, desired acceleration. This would be sent to the lower-

level controller as a defuzzified command signal that would enter the controller and be sent 

out that controller as a wheel torque command. The entire system is shown in the flowchart in 

Fig. 3. 

Fig. 3. Flowchart of fuzzy upper-level controller. 
 

In the course of our research two different fuzzy controllers were created and tested; one 

that included both Adaptive Cruise Control (ACC) and Cruise Control (CC) and the other that 

included ACC, CC, and Automatic Emergency Braking (AEB). Both of the fuzzy controllers 

were created and tested using MATLAB Simulink and the Fuzzy Logic System Designer 

Toolbox. 

The fuzzy logic controller that only included ACC and CC functionality took in three 

linguistic variables, Relative Distance, Relative Velocity, and Speed Error, and output only 

one, Desired Acceleration. Relative Distance was defined as the distance difference from the 

correct headway distance and used Eq. (6), where xi−1 is the location of the lead vehicle; xi is 

the location of the ego vehicle; A is the separation distance; Th is the time headway and V is 

the ego vehicle’s speed. 

ei = xi−1 − xi − A+ThV  (6) 

Relative Velocity was defined as the velocity difference between the lead car and the ego 

car. Speed Error was defined as the speed difference between the ego car’s speed and the speed 



31                                             Jordan Journal of Electrical Engineering. Volume 10 | Number 1 | March 2024 
 

 

the driver of the ego car set. Eqs. (7) and (8) were used for Relative Velocity and Speed Error, 

where vi−1 is the lead vehicle’s speed and vi is the ego vehicle’s speed. 
 

Δei(t)

Δt
=  𝑣𝑖−1  − 𝑣𝑖 

 (7) 

 𝑣𝑖 𝑒𝑟𝑟 = 𝑣𝑖 𝑑𝑒𝑠 − 𝑣𝑖  (8) 

The fuzzy logic controller that included AEB functionality used the same three input 

linguistic variables but also included one additional input linguistic variable, Lead 

Acceleration. Lead Acceleration was defined as a direct sensor measurement of the lead 

vehicle’s acceleration. This would allow the system to detect sharp decreases in speed and in 

turn activate the AEB system.  

Relative Distance, Relative Velocity, and Lead Acceleration were all broken down into 

five different states while Speed Error was broken down into three. Utilizing these states, we 

were able to construct membership functions and a set of if-then rules to regulate the desired 

acceleration based on the state of the input linguistic variables. Relative Distance was broken 

down into five states (linguistic values): Close, A Little Close, Correct, A Little Far, and Far. 

The membership function was created using three triangle membership functions and two 

trapezoidal functions. The membership function graph is shown in Fig. 4. 
 

 

Fig. 4. Membership functions (linguistic values) for relative distance. 

 

Relative Velocity was broken down into five states: Slow, A Little Slow, Zero, A Little 

Fast, and Fast. The membership function was created using three triangle membership 

functions and two trapezoidal functions. The membership function graph is shown in Fig. 5. 
 

 

Fig. 5. Membership functions (linguistic values) for relative velocity. 
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Speed Error was broken down into three states: Negative, Zero, and Positive. The 

membership function was created using one triangle membership functions and two 

trapezoidal functions. The membership function is shown in Fig. 6.  

 

Fig. 6. Membership functions for speed error. 

 

Lead Acceleration was broken down into five states: Slow Down, Slow Down A Little, 

Zero, Speed Up A Little, Speed Up. The membership function was created using three triangle 

membership functions and two trapezoidal functions. The membership function graph is 

shown in Fig. 7. 

 

Fig. 7. Membership functions for lead acceleration. 

 

The output linguistic variable consists of seven different states with a range of -6 m/s2 

to 6 m/s2. The states of the output linguistic variable are as follows: Slow Down A Lot, Slow 

Down, Slow Down A Little, Zero, Speed Up A Little, Speed Up, Speed Up A Lot. The 

membership function consists of five triangle membership functions and two trapezoidal 

functions. The membership function graph is shown in Fig. 8.  

 

Fig. 8. Membership function plots for desired acceleration. 
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The membership states and their bounds were established based on a series of papers   

[6, 7, 11] that detailed a number of different ACC fuzzy controllers. Utilizing the membership 

functions, a series of thirty-three rules were developed for the fuzzy controller without AEB 

functionality and thirty-four rules were developed for the fuzzy controller with AEB 

functionality. Rules one through twenty-five encapsulate the ACC functionality, rules twenty-

six through thirty encapsulate the CC functionality, and rules thirty-one through and thirty-

four encapsulate the AEB functionality. The set of if-then rules are shown as follows:  

 

ACC Rules: 

1) RULE 1: IF Relative Distance is Far and Relative Velocity is Slow and Speed Error is Negative 

then Desired Acceleration is Speed Up A Lot. 

2) RULE 2: IF Relative Distance is A Little Far and Relative Velocity is Slow and Speed Error is 

Negative then Desired Acceleration is Speed Up. 

3) RULE 3: IF Relative Distance is Correct and Relative Velocity is Slow and Speed Error is 

Negative then Desired Acceleration is Speed Up. 

4) RULE 4: IF Relative Distance is A Little Close and Relative Velocity is Slow and Speed Error is 

Negative then Desired Acceleration is Speed Up A Little. 

5) RULE 5: IF Relative Distance is Close and Relative Velocity is Slow and Speed Error is Negative 

then Desired Acceleration is Zero. 

6) RULE 6: IF Relative Distance is Far and Relative Velocity is A Little Slow and Speed Error is 

Negative then Desired Acceleration is Speed Up. 

7) RULE 7: IF Relative Distance is A Little Far and Relative Velocity is A Little Slow and Speed 

Error is Negative then Desired Acceleration is Speed Up. 

8) RULE 8: IF Relative Distance is Correct and Relative Velocity is A Little Slow and Speed Error 

is Negative then Desired Acceleration is Speed Up A Little. 

9) RULE 9: IF Relative Distance is A Little Close and Relative Velocity is A Little Slow and Speed 

Error is Negative then Desired Acceleration is Zero. 

10) RULE 10: IF Relative Distance is Close and Relative Velocity is A Little Slow and Speed Error 

is Negative then Desired Acceleration is Slow Down A Little. 

11) RULE 11: IF Relative Distance is Far and Relative Velocity is Zero and Speed Error is Negative 

then Desired Acceleration is Speed Up. 

12) RULE 12: IF Relative Distance is A Little Far and Relative Velocity is Zero and Speed Error is 

Negative then Desired Acceleration is Speed Up A Little. 

13) RULE 13: IF Relative Distance is Correct and Relative Velocity is Zero and Speed Error is 

Negative then Desired Acceleration is Zero. 

14) RULE 14: IF Relative Distance is A Little Close and Relative Velocity is Zero and Speed Error 

is Negative then Desired Acceleration is Slow Down A Little. 

15) RULE 15: IF Relative Distance is Close and Relative Velocity is Zero and Speed Error is 

Negative then Desired Acceleration is Slow Down. 

16) RULE 16: IF Relative Distance is Far and Relative Velocity is A Little Fast and Speed Error is 

Negative then Desired Acceleration is Speed Up A Little. 

17) RULE 17: IF Relative Distance is A Little Far and Relative Velocity is A Little Fast and Speed 

Error is Negative then Desired Acceleration is Zero. 

18) RULE 18: IF Relative Distance is Correct and Relative Velocity is A Little Fast and Speed Error 

is Negative then Desired Acceleration is Slow Down A 
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Little. 

19) RULE 19: IF Relative Distance is A Little Close and Relative Velocity is A Little Fast and Speed 

Error is Negative then Desired Acceleration is Slow Down. 

20) RULE 20: IF Relative Distance is Close and Relative Velocity is A Little Fast and Speed Error 

is Negative then Desired Acceleration is Slow Down. 

21) RULE 21: IF Relative Distance is Far and Relative Velocity is Fast and Speed Error is Negative 

then Desired Acceleration is Zero. 

22) RULE 22: IF Relative Distance is A Little Far and Relative Velocity is Fast and Speed Error is 

Negative then Desired Acceleration is Slow Down A Little. 

23) RULE 23: IF Relative Distance is Correct and Relative Velocity is Fast and Speed Error is 

Negative then Desired Acceleration is Slow Down A Little. 

24) RULE 24: IF Relative Distance is A Little Close and Relative Velocity is Fast and Speed Error 

is Negative then Desired Acceleration is Slow Down. 

25) RULE 25: IF Relative Distance is Close and Relative Velocity is Fast and Speed Error is Negative 

then Desired Acceleration is Slow Down A Lot. 

Cruise Control Rules: 

1) RULE 26: IF Speed Error is Positive then Desired Acceleration is Slow Down A Little. 

2) RULE 27: IF Relative Distance is Far and Speed Error is Positive then Desired Acceleration is 
Speed Up A 

Little. 

3) RULE 28: IF Relative Distance is A Little Far and Speed Error is Positive then Desired 

Acceleration is Speed Up A Little. 

4) RULE 29: IF Relative Distance is A Little Close or Close and Relative Velocity is Zero and Speed 

Error is Zero then Desired Acceleration is Slow Down A 

Little. 

5) RULE 30: IF Relative Distance is Close and Relative Velocity is Zero and Speed Error is Zero 

then Desired Acceleration is Slow Down A Little. 

Automatic Emergency Braking Rules: 

1) RULE 31: IF Relative Distance is Close and Lead Acceleration is Slow Down then Desired 

Acceleration is Slow Down A Lot. 

2) RULE 32: IF Relative Distance is Close and Lead Acceleration is Slow Down A Little then 

Desired Acceleration is Slow Down. 

3) RULE 33: IF Relative Distance is A Little Close and Lead Acceleration is Slow Down then 

Desired Acceleration is Slow Down A Lot. 

4) RULE 34: IF Relative Distance is A Little Close and Lead Acceleration is Slow Down A Little 

then Desired Acceleration is Slow Down. 

3.2. ACC MPC Controller 

The MPC design for the ACC system is based on [4, 12]. But the control design is not 

completely copied from these references and instead some modification is done by the 

addition of extra state and constraints. The control objective is to find the optimal acceleration 

that results in minimization of distance and velocity errors, while respecting other constraints. 
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To compute the optimal acceleration, the relationship between the ego and the lead car 

is established. However, to consider the time delay when applying the throttle and brake 

signal by the actuators, sensors etc. (the low-level controller), a first order time lag is 

considered in the construction of the vehicle following model as sown in Eq. (9). 
𝑑𝛼𝑒(𝑡)

𝑑𝑡
+  𝛼𝑒(𝑡) =  𝛼𝑑(𝑡)             (9) 

  

where 𝑑𝛼𝑒(𝑡)  is the first order lag caused by the actuators and sensors during the 

implementation; ae is the acceleration of the ego car and ad is the desired acceleration output 

from the upper-level controller. 

Since the relative distance and relative velocity changes with the time we can represent 

them as shown in Eqs. (10) and (11). 

Relative Distance: d(t) = dl(t) − de(t)                   (10) 

Relative Velocity: v(t) = vl(t) − ve(t)        (11) 

where dl & vl are distance and velocity of the lead car; de & ve are the distance and velocity of 

the ego car, respectively. 

Using the Eqs. (10) and (11), the error of relative distance and error of relative velocity 

can be respectively defined as in Eqs. (12) and (13). 

∆d(t) = d(t) − ddes(t)         (12) 

∆v(t) = v(t) – vdes(t)         (13) 

The term ddes is desired distance, which can be calculated by the constant time headway 

spacing policy that is given by Eq. (14). 

ddes(t) = Thve(t)+d0         (14) 

In Eq. (14), d0 is the default spacing distance which should be maintained when both the 

ego and lead car are at a complete stop and Th is the constant time headway that can be figured 

out within the range of human reaction time 1.5s to 2.5s. 

Using the above equations, we can define the ACC MPC controller model in the form of 

a continuous time state space representation as shown in Eq. (15) as follows: 

      (15) 

And the Output equation is shown as follows: 

      (16) 

To form the above system into an optimization problem that can be solved in real-time 

to find the required input, we need to discretize the above state space model using a zero-

order hold, giving matrices Ad, Bd, C and D. In MPC the current control action is obtained by 

solving an optimization problem, and the value of the solved incremental control signal ∆u(k) 

is firstly applied. Then the discrete time horizon moves one step ahead, and the process is 

repeated. Therefore, the incremental equation of the vehicle-following model is represented in 

Eqs. (17) and (18) as follows: 

∆x(k +1) = Ad∆x(k)+Bd,u∆u(k)+Bd,d∆w(k)        (17) 
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∆y(k) = C∆x(k)+y(k − 1)        (18) 

where the change in the system state is given by, ∆x(k) = x(k) − x(k − 1), and x(k) is the present 

state and x(k − 1) is the previous predicated states. ∆u(k) = u(k)−u(k −1) is the change in the 

control input and the change in disturbance is given by ∆w(k) = w(k) − w(k − 1). 

If p is the prediction horizon, m is the control horizon, then the future system states are 

predicted by the following predicted performance vector: 

Yp (k +1 | k) = Sx∆x(k)+Iy(k)+Sd∆w(k)+Su∆U(k) 

where the predictive performance Yp (k + 1 | k) at the sample time k is given by Eq. (19) as 

follows: 

         (19) 

The change in the control input vector ∆U (k) of the ACC system at the sample time k is 

given by Eq. (20). 

         (20) 

where, Sx, Sd, Su are the matrix parameters given by the following: 

 
At the sample time k, the relationship between the current disturbance and its previous 

state can be expressed as ∆w(k) = w(k−1|k). Assuming the disturbance remains constant in the 

prediction horizon, which most of the researchers uses while modelling the disturbance, then 

the disturbance matrix is given by Eq. (21). 

          (21) 

Cost function formulation for the performance of the vehicle following plant is given by 

Eq. (22). 

      (22) 

where the error matrix is given by the following: 
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Ep (k +1 | k) = R(k +1) − Sx∆x(k) − Iy(k) − Sd∆w(k) 

And R(k+1) is the set point vectors associated with each output vector at the sample time 

k+1, Γy = is the weight matrix of the output and Γu is the weight scale of the input increment. 

Eq. (22) is formulated based on the quadratic programming as shown in Eq. (23). 

J = ∆U(k)′ H∆U (k) − G(k +1|k)′∆U(k)        (23) 

Subjected to Cu∆U (k) ≥ b(k +1|k) 

where, Cu & b(k + 1|k) are the constraint variables whose values are defined in Table 1 and the 

weight matrix is given by the following: 

  
where wd is the corresponding weight of its inter vehicle distance error; wv is the corresponding 

weight of the velocity error; wae is the corresponding weight of acceleration and wve is the 

corresponding weight of the ego velocity. 
 

Table 1. Constraints and parameters used in MPC optimization problem. 

Parameter Value Parameter Value 

Prediction Horizon, p 30 wve 0 

Control Horizon, m 5 τ 0.05 

wd 5 Ts 0.05 

wv 5 d0 2m 

wa 1 U −0.61g ≤ u ≤ 0.5g 

wu 10 ad −0.61g ≤ u ≤ 0.5g 

g 9.8 ∆j(jerk) −2 ≤∆j ≤ 2 

Th 2s ve 𝑣𝑚𝑖𝑛 ≤  𝑣𝑒  ≤  𝑣𝑚𝑎𝑥  

3.3. Plant Model 

A double axle dynamic bicycle model is used to model the vehicle plant [13]. In this 

vehicle model, as shown in Fig. 9, there are 5 degrees of freedom (DOF) and the states, X, for 

the system are longitudinal velocity, Vx, lateral velocity, Vy, yaw rate, ωy, front tire rotational 

velocity ωf , and rear tire rotational velocity, ωr. The inputs, U, to the plant are steering wheel 

angle, 𝛿, and driving wheel torque, 𝜏𝑑.  

 
Fig. 9. Five-DOF bicycle plant model. 
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The schematic of the plant model and the respective equations of each state in the 

continuous time domain are provided in Eqs. (24) through (31). (The lateral portion of the 

model is not used in this work and is just provided for completeness of the model. Only the 

longitudinal portion of the above model is utilized.)  

 
Nonlinear Dugoff Tire Model 

Fyi = Fyi(αi,si,Fzi,µ) and Fli = Fli(αi,si,Fzi,µ)  

Where, Fzi is the normal force on front or rear tires and si is the longitudinal slip for front or 

rear tires given by: 

 

The tire model we used is a nonlinear model which develops tire forces in terms of the 

available friction of the tire. Hence the friction circle concept is used, and the square sum of 

longitudinal and lateral tire forces should be equal to the available friction force/vertical load. 

The equations and details of the model are provided in [14]. The vehicle and tire parameters 

used in this plant model are for a sedan vehicle are provided in Table 2. 
 

Table 2. Vehicle plant parameters. 

Parameter Value 

a, Distance from the center of gravity to front axle [m] 1.029 

b, Distance from the center of gravity to rear axle [m] 1.471 

J, Yaw moment of inertia [kgm2] 3100 

m, Vehicle Mass [kg] 1700 

R, Wheel radius [m] 0.334 

Jw, Wheel moment of inertia [kgm2] 3 

Fnf , Front Wheel Vertical Load [N] 9812.7468 

Fnr, Rear Wheel Vertical Load [N] 6864.2532 

n, Steering gear ratio 16 

Cornering stiffness, Cy [N/rad] 88964.4 

Longitudinal stiffness, Cx [N/rad] 88964.4 

Road Friction coefficient, µ 0.9 

Vehicle Body  

m(̇�̇� − V ω) = Flf +Flr                                                                                            (24) 

m(𝑉 ̇ +Uω) = Fyf +Fyr (25) 

Wheel Equations: 
J(�̇�) = aFyf +bFyr (26) 

 τf − RFlf = Jwω˙f (27) 

Tire Slip: τr − RFlr = Jwω˙r (28) 

 αf = δ − 
𝑉+𝑎𝜔

𝑈
 (29) 

 αr =  
−𝑉+𝑏𝜔

𝑈
 (30) 

 𝑠𝑖 = 
𝑅𝑤𝜔𝑖−𝑈

|𝑅𝑤𝜔𝑖
 (31) 
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3.4. Lower-Level Controller 

The lower-level controller (LLC) is composed of feedforward terms only. This choice is 

made in order to focus more on upper-level controller design. The main goal of LLC is to 

convert the controller acceleration to driving wheel torque for the autonomous vehicle, which 

is assumed to have inbuilt motors in each axle. The value of driving wheel torque is positive 

when the vehicle needs to move forward and negative when it needs to brake as shown in Eqs. 

(32), (33) and (34). 

FD(N) = 
𝑚

𝜏1𝑠+1
 ×T (m/𝑠2)− 

𝑚𝑡𝑎𝑛ℎ(0.8𝑉𝑥) 

𝜏2𝑠+1
 ×T ×B(m/𝑠2)          (32) 

 FDf = FDr = 0.5 × FD(N)               (33) 

τDf (Nm) = τDr(Nm) = FDf × Rw = FDr × Rw        (34) 
 

where, T= Throttle, B = Brake, FDf & FDr are front and rear driving force, FD= total driving force, 

τDf & τDr are front and rear driving torque, Vx= ego vehicle speed and τ1 = τ2 = 0.05s are the first 

order delay terms for throttle and brake. 

In the equations above a first order delay term is utilized to depict a realistic delay in 

throttle or brake actuation when the driver presses the gas or brake pedal. We do not use more 

complex engine dynamics in LLC since the plant dynamics are kept simple, and we do not use 

complete engine models available in CarSim or other software due to licensing issues. 

4. SOFTWARE IMPLEMENTATION 

The controller and plant implementation is carried out in Simulink using Fuzzy logic 

toolbox, MPC Toolbox and the general Simulink toolboxes. The solver chosen for the 

simulations is ode23s, which is a stiff solver and required for correctly dealing with the stiff 

plant model used in our simulation. Fig. 10 shows the MPC implementation in Simulink and 

Fig. 11 shows the Fuzzy Logic Controller implementation in Simulink.  

From both of these figures it can be seen that the lead car acceleration is a user defined 

input, which is done by using the signal generator block in Simulink. Furthermore, for 

calculating the relative distance between the lead and the ego car we use the Euclidean 

distance formula. 

Also, we can see that the lead car subsystem is shown, which models it as a simple 

particle with a double integrator model.  Eqs. (35), (36) and (37) shows this model as follows: 

𝑎𝑙𝑒𝑎𝑑 =
𝑎𝑙𝑒𝑎𝑑,𝑑𝑒𝑠𝑖𝑟𝑒𝑑

1+0.05𝑠
                     (35) 

�̇�𝑙𝑒𝑎𝑑 = 𝑎𝑙𝑒𝑎𝑑                     (36)  

�̇�𝑙𝑒𝑎𝑑 = 𝑣𝑙𝑒𝑎𝑑                                          (37) 

5. SIMULATION AND ANALYSIS 

To check the functionality of the three controllers (Base Fuzzy Controller, Improved 

Fuzzy Controller (FuzzyAEB) and MPC), they were tested in three different scenarios: 

1) Scenario 1: Verification simulation from [8], to check if the developed fuzzy controller 

has similar performance to the reference. This scenario has the lead car accelerating and 

decelerating from/to rest. 

2) Scenario 2: Cut in scenario, where a lead car suddenly cuts in front of the ego car. 

3) Scenario 3: Emergency Braking scenario, ego car encounters a lead vehicle that 

suddenly decelerates. 
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Fig. 10. MPC upper-level controller implementation. 
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Fig. 11. Fuzzy upper-level controller implementation. 
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Details for each of these scenarios are provided in their respective sections. In each of 

the results that will be shown; Fuzzy = Base Fuzzy Controller; FuzzyAEB = Improved Fuzzy 

Controller and MPC = ACC Model Predictive Controller. 

5.1. Scenario1 

Scenario 1 requires the ego vehicle to follow the lead vehicle under a varying level of 

accelerations and eventually results in the ego vehicle going into Cruise Control (CC) mode. 

In Fig. 12, the blue line represents the lead car velocity and the red line represents the velocity 

of the ego car with the controller developed in [8]. In this verification simulation our main aim 

is to replicate the fuzzy controller and see if its output is similar to the reference paper output. 

The results of this scenario are shown in Fig. 13. The results show that all three 

controllers do a good job of keeping the distance error at zero. Furthermore, we also see that 

the velocity plot for the ego car is very similar to that shown in the reference paper plots. These 

results show that the fuzzy controllers developed work similarly to the reference paper and 

now they can be tested in other scenarios. 

Furthermore, if we look at the plots, we can see that apart from the MPC, both fuzzy 

controllers undergo a big overshoot and undershoot in controller acceleration when we shift 

from ACC to CC mode at around 120 s. This may be due to the lack of fuzzy rules that  

represents the transition to CC mode. 

 

 

             (a )  (b)  

Fig. 12. a) Range error; b) speed plots that are to be replicated. 

 
Fig. 13. Scenario 1 results for all three controllers. 
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5.2. Scenario 2 

This scenario involves the lead car suddenly cutting into the ego car lane as shown in 

Fig. 14. This scenario is made to test the three controllers in the situation where deceleration is 

required to manage the spacing between the lead car. 

 
Fig. 14. Scenario 2 schematic explanation. 

The correct controller actuation should see the ego car immediately braking smoothly to 

get the distance error back to zero and then following the lead car speed. The results of this 

simulation are shown in Fig. 15. From the velocity and the distance error plots we can see that 

both the fuzzy controllers do a good job of minimizing the distance error and then tracking 

the lead car velocity. Also, we can see that they have a smoother acceleration output with less 

jerks (overshoots). On the other hand, the MPC undergoes large decelerations and 

accelerations at the start to rapidly bring the distance error back to zero. But due to this jerky 

acceleration the MPC has overshoots even after it has brought the distance error back to zero. 

This performance by the MPC is not desirable and will cause discomfort to the vehicle 

occupants. The reason for this behavior is going to be discussed in the controller comparison 

section. 

 

Fig. 15. Scenario 2 results for all three controllers. 
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5.3. Scenario 3 

This scenario requires the ego vehicle traveling at 50 km/h to suddenly break due to 

lead vehicle, 12m ahead, suddenly deciding to break (Fig. 16). This scenario is part of the CCrb 

EURO NCAP test carried out for testing AEB controllers [15]. 

 
Fig. 16. Scenario 3 schematic explanation, taken from [15]. 

By using this scenario for testing our three controllers we aim to figure out if they are 

robust, that is, can they work at large accelerations and low speeds without any big 

performance drop? The results for this scenario are shown in Fig. 17. From the distance error 

and velocity graphs it can be seen that FuzzyAEB is the controller that works the best and is able 

to bring the car to rest the fastest. The MPC does work for this scenario, but again it has a large 

jerky deceleration which does help reduce the distance error to zero very quickly. This though 

ends up giving a large overshoot in the distance error as the vehicle stops too much and ends 

up having a positive distance error. Therefore, the MPC then has to accelerate to bring the 

vehicle to zero distance error. 

Furthermore, we can also see that the base fuzzy controller does not work for this 

scenario as it is locked into the CC mode. This is because it does not possess the rules required 

for emergency braking scenarios or the lead acceleration input. 

 

Fig. 17. Scenario 3 results for all three controllers. 



45                                             Jordan Journal of Electrical Engineering. Volume 10 | Number 1 | March 2024 
 

 

5.4. Controller Comparison and Analysis 

To summarize the above results, Table 3 is constructed to show the controller 

performance in each scenario. In the Table 3 the red box indicates controllers which do not 

work correctly in the scenario, while the green box indicates vice versa. 

The improved fuzzy controller works in all scenarios. Furthermore, from the results we 

can also see that the improved fuzzy controller has smoother ego velocity and acceleration, 

which shows that the extra rules and inputs used serve their purpose well. 

On the other hand, the base fuzzy controller fails to work in scenario 3 completely and 

is stuck in CC mode due to it not having rules for that scenario. Therefore, the base controller 

cannot be considered a ‘smart ACC’ controller. 

Furthermore, the MPC is seen to work in all scenarios, but its performance in scenario 2 

is not very good and hence it fails that scenario. But this performance is closely related to 

weight tuning of MPC and the control structure is not at fault for it. The current output 

weighting for the MPC is [5, 5, 1, 0]. This results in distance and velocity error having equal 

weighting and means that the controller is going to be very aggressively reducing the distance 

error by large accelerations [4]. Due to this reason, the authors in [4] mention that a real-time 

weight-tuning MPC is required for optimal performance in each scenario. 

 
Table 3. Summary of controller pass/fail in each scenario. 

Scenario 
MPC 

Controller 
Base Fuzzy 
Controller 

Improved Fuzzy 
Controller 

Scenario 1: Base ACC    

Scenario 2: Lead vehicle Cut in    

Scenario 3: Sudden stop    

 

From the above comments, it can be concluded that the improved fuzzy controller and 

the MPC controller are the two controllers that can work in all scenarios. In the current form, 

the improved fuzzy controller is better than the MPC controller and this is also further 

emphasized by the comparison shown in Table 4. But, we cannot discount the MPC controller 

just yet, because we need further evidence with weight tuning of MPC weights for each 

scenario to see if performance improves and gets better than the fuzzy controller. This work is 

left for the future and not considered in this paper in order to keep the paper scope small. 

 
Table 4. Comparison of improved fuzzy controller and MPC. 

Improved fuzzy controller MPC controller 

Operates under all scenario conditions 

correctly - robust 

Not very robust unless weight tuning is done 

for each scenario 

Operates with less overshoot and less harsh 

acceleration commands 
Trends towards jerky response 

Easy to implement if-then rules 
Requires complicated, high-fidelity models 

for better performance 

Low memory cost when implementing 
High memory cost generally, and increases 

with higher-fidelity models 
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6. CONCLUSIONS AND FUTURE WORK 

This work aimed at comparing a fuzzy logic controller with a MPC in order to find a 

‘SMART’ ACC controller that can work in all scenarios. In order to carry out this comparison 

we developed two fuzzy logic controllers, one based on [8] and the second an improvement 

on the first by the addition of more rules and an input. Furthermore, we developed a MPC 

controller based on [4] but improved with the addition of another state variable to the model. 

Simulink toolboxes were used to implement the three controllers, and their output was 

connected to a 5 DOF vehicle bicycle plant model via a simple lower-level controller. Three 

simulations were carried out which looked at different aspects of longitudinal vehicle motion. 

The results showed that the improved fuzzy controller and the MPC controller work in all the 

scenarios, with the improved fuzzy controller being better than the MPC controller in the 

current form. But, no outright claim can be made for the improved fuzzy controller being 

better than the MPC since more work with real-time weight tuning of MPC weights is required 

for fair comparison. 

In the future, we would like to improve the behavior of the fuzzy controllers when 

switching between different modes or rules, since the current switching is jerky. For this 

purpose, additional inputs and rules pertaining to, acceleration rate or jerk, can be considered. 

Furthermore, we would like to compare the controllers with real-time weight tuning of MPC 

weights for each scenario, as this is expected to improve MPC performance. Lastly, for a 

realistic comparison, we should compare these controllers with a high-fidelity and realistic 

vehicle model that is available in software, like CarSim. 
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