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Abstract— This paper presents EyePaint, a system that enables hands-free painting on canvas via webcam-based 
gaze estimation software, a custom graphical user interface (GUI), and a computer numerical control (CNC) 
modified for painting. The proposed system’s primary use is to assist a user with a physical disability in painting 
on canvas. Gaze estimation is administered using only a webcam through a unique combination of object 
detection algorithms, like Haar cascades, to localize facial features and learned linear regression models to 
translate facial features to gaze location. The custom GUI allows a user to draw a line or a circle in four different 
paint colors on a virtual canvas before committing their shape to a physical canvas solely through using the low-
accuracy webcam-based gaze estimation. The system and its prototype are found to have utility through basic 
acceptance and system testing, but the chosen gaze estimation solution is generally too low accuracy for a 
positive user experience. 
 
Keywords— Gaze estimation; Eye tracking; Computer numerical control; Assistive technology; Painting; 
Graphical user interface. 
 

1. INTRODUCTION 

People with upper limb disabilities are, for the most part, unable to express themselves 

through painting. It can be extremely challenging for them to learn other means of painting, 

and the assistive technology that currently exists is uncommon. Lowering this barrier could 

allow new voices into contemporary art that were previously unheard.  

Perera et al. [1] described existing assistive technology for artists with upper limb 

disabilities and the issues with those solutions. Technology for traditional painting is 

generally a simple tool, such as a mouth stick or head wand, which requires repetitive 

unnatural movement that can result in chronic pain and damage to the mouth. Digital 

painting assistive technology can use different inputs such as facial movements or voice 

control in the creation of art. This is an extremely time consuming and tedious process, and 

there are no off-the-shelf options available.  

A work by Creed investigated a similar concept [2]. They ran a small scale study with 

ten disabled artists using gaze estimation and two physical buttons to complete a series of 

simple digital art tasks. The participants found it very frustrating to use due to the significant 

time each task took and gaze estimation sensitivity making fine movements and selecting 

small icons difficult. Some of the participants struggled to use the buttons without looking 

away from the screen, causing issues with the gaze estimation. Some also felt physical 

discomfort from positioning themselves for gaze estimation and straining their eyes. The 

paper found that “there has been no work, however, that has investigated the potential of the 

technology to support the creative process of professional disabled artists.” 
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The system proposed in this paper is intended to avoid the issues with existing digital 

art assistive technologies, while still resulting in a physical painting. The design seeks to 

meet two simultaneous goals: i) to decouple the acts of creating art from physically touching 

a canvas and ii) to not be cost prohibitive. The first is achieved by designing around gaze 

estimation as the only input mechanism with a physical machine to replicate inputs and the 

second by requiring only a universal serial bus (USB) webcam to predict where a user is 

looking. In its ideal form, this could serve as a fast way to digitally input a rough painting 

and then, if the artist desires more detail, they could finish the painting using mouth or foot. 

This would be less tedious and require them to spend significantly less time physically 

painting and incurring physical strain. 

Some inspiration for the proposed system came from a yearly competition called 

RobotArt, where contestants created robots capable of making paintings in unique ways [3]. 

A common solution is to attach a drawing utensil to a computer numerical control (CNC) to 

create art from human inputs on a computer, similar to what is seen from Li et al. [4]. The 

closest existing product to the CNC portion of the proposed system is the WaterColorBot!, 

launched via Kickstarter, a commercial product that produces a watercolor painting from a 

scalable vector graphics (SVG) input file [5].  

There have been several attempts at creating a webcam-based gaze estimation 

software, both in the literature as well as commercial products. Zheng et al. [6], Kannan [7], 

and Falke et al. [8] have previously published works on the topic. WebGazer.js [9] and 

GazeRecorder [10] are existing products that claim to accomplish this goal. These works and 

products show that the approach can be made to work with a variety of methods and that it 

is viable to produce a custom implementation as a component of this system. 

The contributions of this paper include an implementation of a webcam-only gaze 

estimation software, a novel user interface for painting that is scalable and usable with a low 

accuracy gaze estimation solution and specific modifications to an existing 3D printer design 

that enables it for this use case. Section 2 details the approach taken towards creating and 

evaluating a solution to the problem. Section 3 describes the design of the system using block 

diagrams, flowcharts, user interface mockups and CAD drawings. Section 4 displays the 

results of the prototype including images of paintings created with the system and data 

summaries from system testing. Section 5 provides an analysis of the prototype, along with 

further research and development suggestions. Finally, section 6 offers a conclusion and 

closing thoughts.  

2. RESEARCH METHODOLOGY 

This paper presents EyePaint, an end-to-end system that produces a physical acrylic-

on-canvas painting while using webcam-based gaze estimation as its only input mechanism. 

The novel work provided in this paper is not only the custom implementation of gaze 

estimation, but the user experience work provided into how these pieces fit together into a 

coherent system.  

The prototype of the system, concept, and analysis presented in this paper is produced 

by following a slightly modified waterfall design methodology. The process begins with a 

survey of existing products and research to study previous solutions. The learnings are 

applied in the design process to synthesize a set of requirements and determine which 
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approaches to the problem may be viable to achieve the goal. The design is then taken and 

iteratively prototyped to a complete implemented system.  

The effectiveness of the final system is evaluated using a set of system and acceptance 

tests. The functionality of each system module is independently, quantitatively verified 

using custom testing software that collects data samples over the course of specific test cases 

and provides summary statistics for each case. These summary statistics are directly 

compared to internal requirements and expectations from existing research. Acceptance 

testing is performed qualitatively by the authors to determine whether the system broadly 

meets its goal of being human usable without hand input. 

This approach in addressing the problem statement is both time consuming and 

difficult to experiment with, but it is necessary because of the large amount of engineering 

that must be done to produce a system prototype with complex hardware and software that 

can be evaluated. 

3. SYSTEM ARCHITECTURE AND DESIGN 

The system architecture is broken down into three main modules: the gaze estimation 

software, the graphical user interface (GUI) and the CNC. The gaze estimation software and 

GUI are both part of the same software package that runs on a user’s personal computer. 

That computer is connected to the motherboard of a physical 3D printer-like CNC over a 

USB cable. The design of each of these three modules is enumerated in the following 

subsections. Fig. 1 shows a component breakdown of the system.  

 

 
Fig. 1. System block diagram. 
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Both primary software modules are implemented as a single application intended to 

run on a personal computer. Fig. 2 shows a UML class diagram that describes the 

architecture of the total PC software package. The software is broken down into 14 different 

classes. App is the main class that contains most of the program code. The Python script runs 

the ‘execute’ method upon launch. The three main user interface components inherit from a 

Button superclass because of their similar needs regarding reactivity and interactivity. Tool 

and Color enums are used by multiple classes to standardize the methods when a color or 

tool is referred to by different parts of the code. The main program runs in a superloop 

structure where the code runs the ‘loop’ method, followed by the ‘render’ method, and then 

repeating ad infinitum. 

 

 
Fig. 2. Software implementation class diagram. 

 

The gaze estimation code is contained within the GazeEstimationThread, 

GazeEstimation, and FeatureExtraction classes. The FeatureExtraction class provides code for 

taking in an image from the user’s webcam and all computer vision algorithms applied to it 

until the resulting feature vector. The GazeEstimation class provides calibration by 
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maintaining an internal dataset, and contains two Scikit-Learn LinearRegressors to provide 

the predictions. The GazeEstimationThread class wraps both classes in a separate processing 

thread so that the user interface can run independently. Running the much slower gaze 

estimation code in a separate thread allows the user interface’s loop to run as quickly as it 

can without being directly impacted. 

The GcodeGeneration class enables the main interface for communicating with the 

CNC. The software calls the ‘init’ method immediately upon opening. Shapes are drawn 

simply by calling the ‘generate’ method that takes in two-point tuples and Tool and Color 

objects. This method constructs a complete string out of the recipes discussed in Table 1 and 

then sends that string over USB to the motherboard of the CNC using the PySerial package. 

All of the code - for the design in this research - was written in Python because of the 

ease of prototyping and access to the existing computer vision and machine learning libraries 

to accelerate development. It makes use of the OpenCV, dlib, and Scikit-Learn libraries to 

implement the gaze estimation portions. The software uses the Python library PyGame to 

implement the GUI. Because of the lack of common existing user interface (UI) elements in 

its design, it makes sense to implement each display from scratch using basic shapes and 

text. The library also lends itself well to creating displays that animate and react to the user’s 

input. 

3.1. Gaze Estimation Software 

In the existing literature, there appear to be two general approaches to creating 

webcam based gaze estimation software. The first involves classical computer vision 

algorithms [3], while the other is to produce an end-to-end deep convolutional neural 

network to perform the task [4]. Based on the lack of the hardware necessary to train such a 

network, as well as the difficulty involved with building a dataset necessary to train it on, the 

classical perspective approach to the problem is taken with the design. 

The general flow is to first apply computer vision algorithms to create a vector of 

feature locations within the image, followed by mapping that feature vector to a Cartesian 

coordinate on the display. This approach is carried forward in this paper, while no specific 

implementation was followed as a set of instructions. 

3.1.1. Feature Extraction 

There are three primary steps and computer vision (CV) algorithms used in the Feature 

Extraction process. First, the user’s face is detected and localized within the image. Second, 

both eyes can be localized within the face. Third, the pupils must be localized within the 

eyes. Fig. 3 describes the Feature Extraction process as designed at a high level; note that 

each of the aforesaid three sub processes is broken down in more detail. 

Fig. 4 describes the designed process to localize the user’s face within the entire 

captured image. Face localization is provided by OpenCV’s pre-trained Haar cascade sliding 

window object detection model [11]. It is fast and accurate enough for the purpose. If 

multiple detections are made, only the largest box is used to filter out false positives or 

background faces. To help account for the high noise in detections, a time-weighted average 

with alpha value of 0.15 is applied to the detected bounding box.  
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Fig. 3. Flowchart of the feature extraction process. 

 

 
Fig. 4. Flowchart of the face localization process. 

 

Fig. 5 describes the process to find the user’s eyes, applied following the face 

localization. After the face region-of-interest has been cropped from the image, a pre-trained 

pose detection model provided by dlib is used. This algorithm fits a set of 68 landmark 

points with unique identifiers to the face region of interest (ROI) [12]. Haar cascades were 

also experimented with, but the chosen method was found to fit both eyes much more 

consistently with much less noise. The points numbered 37 and 40 are used to bound the 
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width of one eye, and the points numbered 43 and 46 are used to bound the other. These 

points each appear at one of the corners of the eye, and are used to calculate the width of a 

bounding box. The same value is used for the height so that each bounding box is square. 

 

 
Fig. 5. Flowchart of the eye localization process. 

 

Once each eye has a bounding box around it, those ROIs are cropped, and an eye 

center localization algorithm is applied to them. The algorithm is implemented according to 

the specifications in “Accurate Eye Centre Localization by Means of Gradients”, by Timm et 

al. [13]. Fig. 6 describes the algorithm at a high level. The algorithm determines the pixel in 

the image that maximizes a function which aims to find the center of a circular region using 

the image’s gradients. This proposal’s implementation works decently well but can struggle 

at points when the user is looking too far downwards or upwards. In order to meet the real-

time threshold defined early in the design of a frequency of 5 Hz, each eye ROI is scaled 

down to a 20-by-20-pixel image. 

Once the three CV algorithms are complete, the pupil locations are post-processed and 

passed to the gaze estimation stage. Because the pupil locations are found within the eye 

ROI, the X and Y values from each eye bounding box are added to the respective X and Y 

values for each pupil. This places the pupils within the face’s bounding box. The pupil 

locations are kept with respect to the face bounding box instead of the full image in an 

attempt to be invariant to changes in the location of the user’s face within the image. 

The pupil X and Y positions are then normalized by dividing them by the width and 

height of the face bounding box. This ensures that the values are always between zero and 

one and is an attempt to be invariant to changes in the distance from the camera. 
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Fig. 6. Flowchart of the pupil localization process. 

3.1.2. Gaze Estimation 

The mapping of pupil locations to gaze estimation is provided by two linear regression 

models. One takes the x-coordinate of both pupils and returns the predicted x-gaze, and the 

other takes the y-coordinate of both pupils and returns the predicted y-gaze. Their 

parameters are learned from a required calibration process upon software start-up. Training 

the regressors - from scratch with each use - accounts for differences between environments, 

such as location of the webcam in relation to the display, or implicit physical differences 

between unique users. 

The calibration process consists of tasking the user with looking at a sequence of dots 

spread across the screen. Only one dot appears at a time, with a continuously closing circle 

surrounding it that lasts for a period of three seconds. At the time that the dot closes, a 

snapshot of the pupil locations is taken and paired with the location of the dot to serve as a 

ground-truth for where the user should have been looking. This predictor-label pair is added 

to an internal dataset. The next dot in the sequence is then displayed and the process is 

repeated. This process is described as a flowchart in Fig. 7. No optimum total number of dots 
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has been determined but increasing the number of dots will result in a larger training set for 

the regressors and will presumably yield the effects associated with that. The final 

configuration chosen for the design is 16 dots set in a 4-by-4 evenly spaced grid across the 

entire display. This configuration works well enough for this purpose. 

 

 
Fig. 7. Flowchart of the calibration process. 

 

It should be noted that noise in the calibration process is a potential problem that 

should be addressed. There can be significant variations in how well the gaze estimation 

works for the end user depending on how well the data collection process went. If poor data 

is collected during calibration, the regression model will fit to that bad data and will not 

make predictions like the user is expecting. Solutions to this problem were not heavily 

investigated during development, but it should be possible to remove outliers from the 

dataset to keep the data clean or train a regression model with regularization to prevent 

overfitting to outliers. 

3.2. The GUI 

Designing the GUI around known constraints provided some of the key challenges. 

This module of the system is also the main piece that enables the gaze estimation and CNC 

to communicate and is how the user interacts with the product. Thus, every facet must be 

designed with gaze estimation in mind, with the additional knowledge that the gaze 

estimation is not particularly accurate.  
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The design also attempts to consider previously documented issues with user interface 

where gaze estimation is the only input mechanism. First, the Midas touch problem of gaze 

estimation, where each action the user takes is inherently input [14], makes it difficult to 

discern whether a user intends to take an action or not. There is not an easily differentiated 

click, so everywhere the user looks can be read as clicking on that button. This becomes an 

added concern when considering how a user should pick up or set down a brush with only a 

two-dimensional input. Secondly, the eye has a tendency to wander, so giving a user as small 

a button as possible to focus on during a ‘click’ is a priority. 

Because of the issues mentioned, the design constrains the user to only discrete shapes 

instead of freeform lines, with these shapes only being drawn to the canvas once a user is 

happy with the result. Li et al. [4] found that users preferred digital to physical painting 

systems where the user draws a line in two separate steps: by first inputting it on a display 

and then committing it to the canvas. They also found that users preferred this input system 

over one where the user’s input mapped live from digital to physical. 

The design intentionally limits the user to four possible colors, and two tools, a line 

and a circle. The number of colors is limited by the size of the painting tray and the accuracy 

of the gaze estimation. Although the choice of tools and colors is limited, there is no inherent 

limitation from adding more. 

The user interface consists of five distinct screens that will be individually described in 

the following section: 

a) Calibration 

b) Canvas 

c) Color Select 

d) Tool Select 

e) Confirmation 

Each screen is governed by the same set of design principles. All buttons have a hidden 

active area significantly larger than the visible button. Each starts with a full shape of 

varying size depending on type that proceeds to get smaller as the gaze prediction is held 

within that button’s active area. This draws the user's eye in while he focuses on the button. 

Upon the shape hitting the point at which it has zero area, the button is thereby clicked, the 

screen updates and the user can move on to their next action.  

In more simple terms, a user is interpreted to have clicked on a button if their gaze is 

held within the same active area for three continuous seconds. If the user’s gaze leaves a 

particular active area before three seconds have elapsed, the timer is reset and nothing is 

clicked. This is how the software is able to distinguish between the user’s intention while 

they are looking around. 

3.2.1. User-Facing Display 

Fig. 8 shows the design mockup for the calibration screen of the GUI. The calibration 

screen implements the process described in the previous section. It is the first screen shown 

to the user and runs on its own to completion. The software pauses for a few seconds upon 

start-up to give the gaze estimation algorithms time to get their bearings, as well as allow the 

user to orient themselves before the process begins. 
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Fig. 8. The calibration screen. 

 

Fig. 9 shows the design mockup for the canvas screen of the GUI. The canvas screen is 

the main display that each of the following three screens returns to. It contains two large 

buttons on the right and left sides of the screen. The left button is used to move to the color 

select screen, and the right button is used to move to the tool select screen. By selecting either 

button as described earlier, the screen immediately switches to the color select screen or tool 

select screen. After a selection has been made on either of the selection screens, the interface 

automatically returns to this display for the user to use the color or tool they just selected.  

 

  
Fig. 9. The canvas screen. 

 

The center of the screen is used as a virtual canvas. The locations that a user can select 

are discretized into a grid of anchor points that can be selected as buttons when drawing a 

shape. This choice constrains the user to a discrete set of points that can be used when 

drawing to allow the user to focus on a concrete point instead of a hypothetical continuous 

position on the canvas. Both shape types can be drawn by selecting two of the anchor points. 

For the line shape, the first point selected is the start of the line and the second point selected 

is the end of the line. For the circle shape, the first point selected is the circle’s center and the 

second point selected sets its radius. Based on the final accuracy of the gaze estimation a      

4-by-4 grid of points was chosen, but the software is implemented to allow for the size of the 

anchor point grid to be configurable at startup. 

Fig. 10 shows the design mockup for the color select screen of the GUI. This screen 

serves the task of allowing the user to choose which color their stroke will be drawn with. 

The system is designed around four color options, so this screen can be split into quadrants. 
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Each button rests in the center of a quadrant, and its active area takes up the entirety of its 

own quadrant. The borders of the active areas are depicted by the vertical and horizontal 

dashed lines shown. The color that will be selected is naturally depicted by the color of the 

button on screen. Once a color has been selected, the display can be returned to the canvas 

screen. 
 

 
Fig. 10. Color select screen. 

 

Fig. 11 shows the design mockup for the tool select screen of the GUI. The tool select 

screen allows the user to choose between the two tool options. The design is limited to just a 

line and circle tool due to their simplicity, but more can be added. Because there are only 

two, the screen is split into two equal halves vertically down the middle. Each entire half of 

the screen is used as each button’s active area.  

 

 
Fig. 11. Tool select screen 

 

Fig. 12 shows the design mockup for the confirmation screen of the GUI. The 

confirmation screen appears after a complete shape has been drawn on the canvas. It is 

represented by an overlay of the canvas screen with two options for the user to select. A 

small region in the center of the screen is kept as a neutral area for the user to look while 

making a decision. The left option cancels the stroke and deletes it from the canvas. The right 

option firmly commits the stroke to the canvas by initiating the G-code generation process 

that sends a set of commands to the CNC. 
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Fig. 12. The confirmation screen. 

3.2.2. G-code Generation 

The GUI controls the CNC by transmitting a G-code string over USB upon a stroke 

being committed. The G-code generation process, shown in Fig. 13, receives the currently 

active tool and color, and the two points entered on the canvas.  

 

 
Fig. 13. Flowchart of the G-code generation process. 
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These inputs are used to populate values into empty pre-written G-code recipes. A 

final string consists of the recipes for loading the brush with paint from a paint pot, drawing 

a circle or line depending on the tool, and cleaning the brush on the cleaning rag appended 

together. The points used for the draw recipe have a scale and bias applied to them to 

convert from the location on the virtual canvas to the location on the physical canvas.  

Table 1 shows the final G-code recipes that were used in the design. The speeds and 

locations for each routine are determined through some calculations and trial and error. The 

coordinates are measured in millimeters, and each motion is made with absolute positioning 

so that the software on the PC does not need to keep track of the position of the carriage. In 

the table, a <> denotes where a value is interpolated into the string during the G-code 

generation process. Any X, Y, or Z value that has a defined number in it is not modified at 

all. The setup string is sent as soon as the program begins to run, and it sends basic 

configuration commands to the motherboard.  
 

Table 1. The G-code recipes. 

Routine number Routine name G-code recipe 

1 Set-up G21              ; Set to measure in mm 

M92 X40.0 Y40.0 Z400.0            ; Set steps per unit 

G90              ; Set to absolute positioning 

G28              ; Rehome motors 

G01 Z34      ; move up to main height 

2 Draw straight line G01 X<> Y<> Z34   ; move over first point of line 

G01 X<> Y<> Z14   ; move down to canvas 

G01 X<> Y<> Z14   ; move to end point of line 

G01 X<> Y<> Z34   ; move back up from canvas 

3 Draw  circle G01 X<> Y<> Z34   ; move over beginning of circle 

G01 X<> Y<> Z14   ; move down to canvas 

G02 X<> Y<> R<>   ; draw first half of circle 

G02 X<> Y<> R<>   ; draw second half of circle 

G01 X<> Y<> Z34   ; move back up from canvas 

4 Clean brush G01 X295 Y54 Z34  ; move over water pot 

G01 X295 Y54 Z14  ; move down to water pot 

G01 X295 Y54 Z34  ; move back up from water pot 

G01 X270 Y20 Z34  ; move over cleaning rag 

G01 X270 Y20 Z14  ; move down to cleaning rag 

G01 X320 Y20 Z14 

G01 X320 Y0 Z14 

G01 X270 Y0 Z14 

G01 X270 Y20 Z14 

G01 X320 Y20 Z14 

G01 X295 Y20 Z34  ; move back up from canvas 

5 Load brush G01 X295 Y<> Z34  ; move over paint pot 

G01 X295 Y<> Z4   ; move down to paint level 

G01 X295 Y<> Z34  ; move back up to main level 
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A complete G-code string consists of a load brush recipe, followed by either a line or 

circle recipe, and finished with a clean brush recipe. Each time a shape is drawn, the CNC 

will go through the motions of reapplying paint to the brush and then cleaning the brush. 

While time consuming, this process guarantees that there is enough paint on the brush for 

each line, and it allows the color to be changed between every stroke. 

3.3. CNC 

The CNC module, as shown in Fig. 14, physically creates the painting with acrylic 

paint on canvas. It takes in G-code over USB and performs the given movements to create 

the final product, the painting. For the sake of simplicity, this design is heavily based on an 

open-source RepRap 3-D printer. The main source is the C201 by Makers Mashup which 

takes from other printers itself. The C201 design is altered slightly with some modifications, 

mainly to the bed, to facilitate painting. 

 

  
Fig. 14. Side-by-side CNC CAD assembly and WIP build. 

 

The frame is altered to allow a 10x10” canvas and a paint tray next to it, rather than the 

previous 8.4x8.4” print bed. In order to keep the CNC frame small, the paint tray plate 

overhangs its frame to allow movement over both sides of the CNC frame. The frame is 

19.7x18.3x14.6” which is small enough to fit on most tables. A simple alteration is the 

paintbrush mount which is 3D printed and uses two set screws to hold the brush. This 

replaces the extruder of a printer, and has the same back plate so it can be swapped in. The 

drawing of this custom part is shown in Fig. 15. 

The bed is the bulk of the unique mechanical design work. The main goal of the bed is 

to hold the canvas, paints, water and cloth in a way that makes swapping them out 

uninvolved. The secondary goal is to make the paint tray and canvas vertically level to 

eliminate unnecessary slow vertical movements of the CNC carriage. As shown in Fig. 16, it 

consists of four 10 mm coroplast plates and four 3D printed standoffs. Coroplast is cleanable, 

lightweight, and easy to machine, so it suits the application. The four plates connect to a 

large baseplate for mounting. 
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Fig. 15. Paintbrush mount CAD drawing. 

 

 
Fig. 16. Complete bed CAD assembly. 

 

The paint tray has a total of five holes, four for paints and one for water, and an open 

space for a cleaning cloth. These holes hold small paper cups, like the ones found to hold 

condiments at a fast-food restaurant, allowing the user to swap them out as they wish. The 

tray stands off the baseplate far enough to allow the cups to hang down through the tray. 

The canvas plate holds the wooden frame of the canvas from the inside, and the side 

guard and paint tray hold it from the outside. This boxes in the canvas enough to keep it 

from sliding but allows the user to simply set it in place without any complex mounting 

system. The canvas is lifted with standoffs to be at the same height as the paint tray. 

The main motherboard used in the CNC is the SKR Pro V1.3 by BigTreeTech. The 

stepper motor drivers used are BigTreeTech TMC2208. The board and stepper motors are 

powered by a 24 V power supply, capable of supplying a current of 20 A. 

The board is flashed with the Marlin2.0 firmware. Some parameters were modified by 

the authors to serve the purpose of the system. These include increasing the size of the 

CNC’s bed, tweaking the number of steps per unit for the Z-axis, and disabling additional 

motor drivers that are not used by the design. 
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4. RESULTS AND EVALUATION 

The final prototype came together almost entirely to the authors’ expectations. Fig. 17 

shows a sample of paintings made using the full EyePaint system. These examples show a 

good variety of the shapes it is possible to draw with the system prototype. 

 

 
Fig. 17. Example paintings created with the system. 

 

Fig. 18 depicts an image of the GUI as well as the physical painting that results from it. 

This example makes use of all four colors available, as well as a variety of examples of the 

two shape tools. It can be clearly seen how the lines on the digital canvas map to the physical 

version. 

 

 

 
Fig. 18. Side-by-side of how GUI input results in painting output. 
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Fig. 19 shows the complete bed of the CNC. The image on the left is prior to any paint 

or canvas being added. The stand-offs and canvas mount are clearly visible, as well as the 

five holes for paint pots and Velcro for attaching a cleaning rag. The image on the right 

shows the bed after paint pots, a cleaning rag and a canvas have been placed inside. 

 

  
Fig. 19. The CNC painting bed with and without materials. 

 

Each of the system modules are partially evaluated through a set of system tests. The 

computer used for testing and demoing the system contains a Ryzen 5 1600, six-core 3.6 GHz 

CPU, 32 GB of DDR4-3200 RAM, and a 1080p 24” monitor. The software does not make use 

of GPU acceleration. The webcam is a Wansview 101JD, with a 1080p image resolution and a 

capture rate of 60 FPS. The procedures and results of these tests are summarized in the 

following subsections. 

4.1. Gaze Estimation Testing 

Gaze estimation tests are performed using a special custom testing program that 

performs experiments and collects corresponding data samples. The program begins with 

the same calibration process as the main GUI, but instead of displaying screens for user 

input, the software will place a new calibration-like dot at a random position on the display. 

Behind the scenes, the software splits the display into a grid of rectangles of a size specified 

upon startup. After a dot has fully closed, the gaze estimation prediction will be recorded, 

and the software determines which grid square the gaze prediction lies within. The 

Manhattan distance is calculated between the predicted rectangle and the ground truth, and 

a new dot is shown and the process continues. For each trial during these tests, a total of 50 

dots are shown. Because of the potential variation in the quality of calibration data, it is very 

difficult to standardize the environment between each test. It may be a better idea to record 

samples of different grid sizes using the same calibration parameters, or switch between grid 

sizes in between samples, but that is not the approach taken. 

Table 2 shows the precision measurements taken over the course of six different trials 

of the testing software. The data are collected in a room lit primarily from the ceiling. They 

naturally show that as the grid size increases, the ability of the software to correctly predict 

the specific square the user should be looking at decreases. The second line shows the 

precision measurements taken on a very similar six trials, but in a dark room where the 

user’s face is lit only by the display. This change in environment massively increases the 
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performance of the software. In this environment, generally only the face is visible in the 

image, and it is possible that this allows for a decrease in noise in the face and pupil 

detections. 

 
Table 2. Results of the gaze estimation precision test. 

Environment 2x2 Grid 3x3 Grid 4x4 Grid 5x5 Grid 6x6 Grid 7x7 Grid 

Lit room 90% 82% 42% 22% 16% 14% 

Dark room 96% 68% 78% 36% 32% 46% 

 

Additionally, the accuracy of the gaze estimation software can be measured in an 

average error as a percentage of screen width or height that the prediction is off by. This 

metric is also recorded on the same testing samples as the precisions detailed previously, but 

it is calculated differently by finding the absolute value of the center of the grid rectangle 

subtracted by the raw gaze position. It is then divided by the width or height of the display 

in pixels to obtain a percentage for either the X or Y axis respectively. The mean error on the 

X-axis is found to be 8.75%, and the mean error on the Y-axis is found to be 14.64%. A 

boxplot of the 50 samples collected during a trial is shown in Fig. 20. These results show that 

the gaze estimation performs significantly more strongly on the X-axis than it does on the   

Y-axis. 

 

 
Fig. 20. Boxplots of raw gaze estimation error test samples. 

 

On average, gaze estimation predictions update at 5.18 Hz, with the histogram in     

Fig. 21 showing a set of period samples collected during a trial of the software. The software 

is tested on a computer with a Ryzen 5 3600 6-core 3.6 GHz CPU with no GPU acceleration. 

This test is performed to determine whether the software met an internally set real-timeness 

requirement of a 5 Hz update frequency. 
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Fig. 21. Histogram of gaze estimation update speed samples. 

4.2. CNC Motion Testing 

The speeds and accuracies of each of the three main CNC motion routines are tested by 

creating a small test set of inputs, sending those inputs to the CNC, and timing each routine 

and measuring how far from the specified point on the digital canvas the carriage ended up 

from on the physical canvas while drawing the line. The results from each of these tests are 

then averaged. 

The paint routine has an average completion time of 4.22 s, the load brush routine has 

an average completion time of 10.37 s, and the clean brush routine has an average 

completion time of 16.72 s. Overall, between the CNC receiving a string and motion ceasing, 

the routines average 31.31 s. On the paint routine, the average error measure between where 

a stroke is specified to end on the digital canvas versus where the CNC carriage ends up on 

the physical canvas is 0.64 inches. 

Some of these motions are intentionally kept slow to avoid splattering paint and 

maintaining clear strokes. The set paint routine and clean brush routine are clearly longer 

than the paint routine. This is a result of those two motions containing actions on the Z-axis. 

The design’s threaded rods that move the CNC’s Z-axis of motion have a hard limit on how 

fast they can be rotated. This mandates that motion on that axis is slow and most of the time 

spent in motion is spent on moving the brush up and down. 

5. DISCUSSION AND ANALYSIS 

5.1 Further Development 

The framework - provided in this paper - has multiple points at which it is easily 

extensible. The boundary between each of the three main modules is sufficiently abstracted 

away so that modifications to one can be made without impacting the others. With a high 
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accuracy gaze estimation solution, the resolution of the canvas display’s discrete anchor grid 

can be increased by a configuration variable for greater variety of control by the user. 

Adding an additional shape tool should be a matter of creating a new button on the tool 

select display, writing the code to render that shape on the virtual canvas, and formulating a 

new G-code recipe to be filled in and sent over USB to the CNC. Changing the set of four 

colors available in the palette can be easily configured with the color select screen. On the 

other hand, increasing the number of paint colors that can be used simultaneously would be 

significantly more difficult due to the physical nature of requiring room on the CNC’s bed to 

fit more paint pots. 

The linear nature of development on the prototype system gave little room for revision 

if a specific approach was not feasible. Given an opportunity to redesign the premise from 

scratch, the main points the authors would focus on would be first the quality of the gaze 

estimation, and second the specific way gaze estimation interacts with the CNC.  

A more ‘smart’ calibration process is one of the key priorities, as well as reevaluating 

and fine-tuning the used computer vision algorithms. More formal low-level testing should 

also be performed between different sets of possible inputs to the linear regression models, 

as well as trying a larger variety of more complex models to determine whether the 

approach used is actually the best. Additionally, it may be worth discarding the webcam-

based gaze estimation in favor of a more precise commercial product that may work better as 

an input to the system. 

With an improved gaze estimation solution, it may be worthwhile to explore other 

options for allowing a user to control the CNC using gaze, such as opening it up for free-

form shapes or potentially more real-time input tracking. These are interesting ideas that 

were not explored during this work due to time constraints. 

5.2 Comparison to Existing Research 

 Comparisons between this system and others may be difficult to draw because it 

appears to be the first end-to-end system of its kind. In addition, clinical trials were not 

performed to evaluate its true efficacy as an assistive technology. While these reasons make 

the entire system difficult to evaluate, comparisons can be drawn between an individual 

module of this system and those like it. 

 The accuracy of gaze estimations solutions with similar approaches can be directly 

compared. Authors in [6] provided testing results that were performed with a similar 

procedure to what is used in this work. Their design produced an accuracy of 94% on a 3x3 

grid and 78% on a 5x5 grid. Authors in [7, 8] used different testing procedures that are not as 

easy to directly compare. In [7], authors found an average error of 1.66 cm on a 13.94 cm 

iPhone display, making the total error 11.9% of the screen size. In [8], authors found an 

average error of 262 pixels on the X-axis and -487 pixels on the Y-axis on a 14“ 1080p display, 

making the error 13.64% of the total screen on the X-axis and 45.09% on the Y-axis. 

As described in section 4.1, the solution designed and implemented for this system 

provided results that were either more poor or in line with those found in these works. As 

previously stated, the best result obtained by this work’s gaze estimation is 82% on a 3x3 

grid and 36% on a 5x5 grid. Both are well below those described in the previous paragraph. 

By the second recorded metric, the average percentage error of 8.75% on the X-axis and 
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14.64% on the Y-axis places this solution roughly in-line or above the other two webcam-

based gaze estimations referenced. In the end, it appears that the implementation created 

could use a good deal more tuning or a reassessment of the design, and could hint that some 

of the negative user experience aspects could be averted with a better implementation of the 

same concept. 

6. CONCLUSIONS 

Overall, the final system satisfies the majority of the specifications and provides a 

potential solution to the problem posed. The webcam-based gaze estimation does not reach 

the original accuracy expectations, but still results in a product that is acceptable. This 

method of gaze estimation is overall the wrong choice for this concept, and it is not suited to 

be used as an input mechanism in its current state, but the work done in the user interface 

will still hold true with higher accuracy solutions. In general, any of the three main modules 

of the system can be swapped out with a different implementation and still achieve the same 

goal. 

As an independent research work, gaze estimation with a simple webcam is still an 

interesting concept that is worth pursuing, but does not currently have a clear state-of-the-

art. It is still very possible that there are innovations that have not been discovered during 

development of this work, and it is possible to produce gaze estimation software that is more 

accurate. The low-cost webcam only approach has application as a research tool when there’s 

a need to record approximate gaze.  

Aside from the issues produced by the choice in gaze estimation solution, the concept 

of the system proves to be strong given some potential changes in the design. It is clear that 

the technical aspects of the concept can work, although it still remains to be acceptance tested 

with persons with disability to evaluate the true viability of its intended application. 
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