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Abstract— There is a growing interest in quantum image processing (QImP) that rose from the desire to exploit 

the properties of quantum computing to improve the performance of classical techniques and their applications. 

While Fourier transform (FT) is one of the most important algorithms used in signal and image processing, it is 

also considered a key ingredient in most modern quantum algorithms. A quantum Fourier transform (QFT) differs 

from the classical (FT) in that it takes a quantum state in which the initial data have been encoded into probability 

amplitudes. It alters the amplitudes of the corresponding discrete Fourier transform (DFT).  The classical 

algorithms take an entire complex valued vector; and return the entire DFT in the form of another vector of the 

same length.  These computations are proven to be exponentially faster on quantum computers than those of 

classical computers. In this paper, we demonstrate a framework of QImP where image information including pixel 

values and their positions are encoded in a pure quantum state. This framework is more efficient in terms of the 

number of the required qubits. This framework is supported with an experimental demonstration of the quantum 

image encoding, processing, and decoding along with a detailed comparison with the conventional ones. Quality 

assessment of the restored images is also provided where different common measures such as Mean-Squared Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) are used. In general, our 

experimental results, which were conducted on a classical computer, show similarity of quantum image 

transformation to its classical counterpart. 

 

Keywords— Quantum computation, quantum image processing, quantum Fourier transform, quantum image 

representation. 

 

I. INTRODUCTION 

Image processing is one of the largest research paradigms in computer science and 

engineering. It is most attractive to researchers who are keenly interested in applications that 

directly affect human life such as in medical imaging [1], [2]. Research in this field has 

recently flourished due to the high availability of images datasets for human interpretation, 

high ability of techniques improvement, and the use of processed scene data for artificial 

intelligence processes.  However, most of the current image processing techniques are 

considered time consuming for a real time application that is sensitive to the incorporated 

delays.  

In the last decade, QImP has witnessed a rise as an emerging field in quantum computing that 

provided innovative solutions to some challenges faced by current image processing 

techniques. In general, QIP has three steps as shown in Fig. 1. First, store the image into a 

quantum system, which is also known as quantum image preparation. This step is the 

classical-quantum interface. Then, process the quantum image which is the main step of QIP. 

It means using a quantum computer to process quantum images. Finally, obtain the result by 

the measurement which is the quantum-classical interface. 

In 1982, the famous physicist Feynman has recognized more powerful computing ability of 

quantum computers than that of classical computers [3]. Some of the astonishing properties 

inherited from quantum computation, such as superposition, significantly reduce both space 
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complexity and time complexity. Hence, quantum computers can help us solve the problems 

that cannot be solved by classical computers efficiently. This is the main reason to develop 

QImP technologies that are anticipated to grant better capabilities and higher performances 

than the conventional ones [4], [5]. 

 

 
Fig. 1. Framework of QImP 

 

One of the major functions used in many techniques in the discipline of information and 

image processing is the Fourier Transform Function (FT).  It comes as no surprise that its 

quantum version plays a key role in quantum computational algorithms as it can directly 

impact the field of image processing. The Quantum Fourier Transform (QFT) is analogous to 

the classical (FT) with an additional benefit that it can overcome the limitations of classical 

computations by exploiting the advantages of quantum mechanics [6]. Most known quantum 

algorithms such as Shor’s factoring algorithm [7] and Grover’s searching algorithm [8] 

incorporate QFT as a subroutine. Those algorithms themselves are integrated in a lot of 

quantum applications like quantum error-correction, encryption and image processing [9]-[11]. 

While QFT is undoubtedly one of the most important transformations that has a wide range of 

applications, it is not yet thoroughly investigated. 

To understand QImP, it is important to introduce the basics of quantum states and quantum 

gates [12]. In Quantum Computing, the states of a quantum particle are called qubits 

(quantum bits). Somewhat analogous to their Boolean counterparts, a quantum particle can 

exist in two fundamentally distinct states or basis states such as an electron spins of ±
1

2
 or 

two orthogonal polarizations of a photon. In the Dirac notation, these states are denoted as |0〉 

and |1〉 . However, unlike Boolean variables a quantum particle can also exist in a 

superposition of the basis states. The corresponding state space is a 2-dimensional complex 

Hilbert space 𝒞2 , spanned by these two basis states. An arbitrary qubit |𝛂〉 in a state of 

superposition can be expressed either using the Dirac notation as a linear combination of the 

two basis states, or in the equivalent 2 × 1  vector as, |𝛂〉 = 𝑎0|0〉 + 𝑎1|1〉 = [𝑎0 𝑎1]𝑇 . 

Where the quantities 𝑎0  and 𝑎1  represent the amplitudes, the probability of observing the 

above particle in states |0〉 and |1〉 are respectively |𝑎0|2 and |𝑎1|2. 

Since 𝑎0 and 𝑎1 are complex quantities, they possess both magnitudes as well as phases. A 

global phase shift can be imparted by multiplying both coefficients with the factor e𝑖𝜔, where 

𝜔 is an arbitrary angle. However, such global phase shifts have no observable effect on the 

qubit. In fact, a global phase can be factored out of |𝛂〉, so that the amplitude 𝑎0 is strictly real, 

leading to the following equivalent representation: 

|α〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 = [

cos
θ

2

eiϕ sin
θ

2

] 

 

Step 1: Input
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: Process2Step 
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(Measurement)Image Result

Classical Quantum Classical
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A complex quantity 𝑐 = 𝑎 + 𝑖𝑏 can also be represented in a polar form as 𝑚𝑒𝑖𝜃, where 𝑚 =

√𝑎2 + 𝑏2  and 𝜃 = tan−1 𝑏

𝑎
 are its magnitude and phase. This allows us to express any 

arbitrary qubit in the following manner: 

|φ〉 = eiω (cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉) 

where 𝜔, 𝜃, 𝜙 are real numbers. The factor 𝑒𝑖𝜔 is referred to as the global phase of the qubit. 

As the probabilities of observing |𝛗〉 in the basis states, P(|0〉) = cos2 𝜃

2
, P(|1〉) = sin2 𝜃

2
, do 

not incorporate the quantity 𝜔. The global state has no observable effect. Although 𝜙 does not 

appear either, it does play a significant role when qubits are processed by quantum circuits. 

Hence, the global phase of the qubit can be dropped without any discernible effect, which can 

be rewritten as: 

|φ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 

Expressing |𝛗〉 in the above manner allows us to visualize it as a unit vector in spherical 

coordinates with 𝜃 ∈ [0, 𝜋] being the polar angle, i.e. the angle that the vector |𝛗〉 forms with 

the z-axis, while 𝜙 ∈ [0,2𝜋], the azimuthal angle, i.e. that is between |𝛗〉 and the xy-plane. In 

this representation, the unit circle is called the Bloch sphere. Bloch sphere representation is a 

very handy visualization tool in investigating the role of the quantum equivalents of Boolean 

gates. The vectors |0〉 and |1〉 are directed towards and against the z-axis; and can be regarded 

as the north and south poles of the Bloch sphere. Similarly, those of the form 
1

√2
(|0〉 +

𝑒𝑖𝜙|1〉) lie on the xy-plane and define its equator. The Bloch sphere representation is shown 

in Fig. 2. 

 

 

Fig. 2. Block sphere representation of a qubit |φ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. A qubit |φ〉 is shown as a red arrow 

in this plot 

 

The quantum counterparts of the classical gate are the quantum gate, which simply performs 

some operations on qubits. One major difference between the two gates is the property of 

reversibility [13]. A gate is said to be reversible if the input can be uniquely recovered from 

the output. Hence, there is no loss of information; and as a direct implication, the number of 

outputs should be equal to the number of inputs. 

The quantum gates are reversible and correspond to linear transformations on individual 

qubits [12]. These transformations can be expressed as matrices. In such matrices, if the gate 

acts on 𝑛  input qubits, the matrix will be of size  2𝑛 × 2𝑛 . As a direct outcome of 
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Schrodinger’s equation, such matrices must be unitary and have determinants of unity. It is 

often the case that for the sake of convenience, a quantum gate is represented by a matrix with 

det(𝐔) ≠ 1 . In such cases, its equivalent transformation can be obtained simply by 

multiplication with an appropriate scalar. Any gate G transforms the input state |φ〉 into the 

2n vector UG|φ〉 representing the output qubits. Here UG|φ〉 is the result of premultiplying UG 

with|φ〉. 

 
Fig. 3. a) Hadamard gate, b) Phase shift gate 

 

One of the most popular gates that is important to the subject of this paper is the Hadamard 

gate (𝐇). It acts on a single qubit; and creates an equal superposition of the input state. It maps 

the basis state |0〉 to 
1

√2
(|0〉 + |1〉) and state |1〉 to 

1

√2
(|0〉 − |1〉). Another commonly used set 

of gates is phase-shift gates (𝑹𝑚) which is a family of single-qubit gates. Each integer 𝑚 ≥

2 leaves the basis state |0〉 unchanged; and shifts the phase of the state |1〉 of the input by a 

factor of  𝑒2𝜋𝑖 2𝑚⁄ . The structure of the gates Hadamard and phase-shift gate are shown in Fig. 

3. They can be represented by the unitary operators.  

H =
1

√2
[
1 1
1 −1

],  and  Rm = [
1 0

0 e2πi 2m⁄ ] 

The rest of this paper is organized as follows. In section II, we present the most relevant work 

in literature review.  In sections III, we introduce the basic framework of QImP based on the 

quantum probability image encoding (QPIE) model for quantum image representation 

(QImR). In section III, we show the experimental demonstration for the quantum Fourier 

transform with its implementation on sample images. Finally, in section IV, we conclude the 

work presented in this paper; and give perspectives for future work. 

II. LITERATURE REVIEW 

Utilizing quantum power in the field of image processing can be traced back to the late 

nineties [14]. It was followed by many attempts that fall under one of two categories [5], [15]. 

The first is a Quantum-assisted that aims to exploit the properties of quantum computing to 

improve classical image processing tasks and applications. The second is referred to as a 

classically inspired in that it focuses on extending classical image processing tasks and 

applications to the quantum computing framework. This follows the expectation that quantum 

computing hardware will soon be physically realized [5]. Therfore, several QImP models 

have been proposed.  

In 2003, Venegas-Andraca and Bose proposed a technique for storing, processing and 

retrieving images based on quantum techniques. The proposed technique uses the "qubit 
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lattice" model for images representation as quantum images [16]. Since each pixel is 

represented using a single qubit, it requires a 2𝑛 qubits to represent an image of 2𝑛 pixels. 

The proposed model is only a quantum-analog presentation of classical images without any 

benefit from quantum efficiency and speed-up efficiency.  In a more recent study, a flexible 

representation of quantum images (FRQI) was proposed by Le, P.Q. etc al. [17]. Their 

representation can be used for polynomial image preparation, image compression, and image 

processing techniques. The technique is basically based on integrating the pixel value and 

position information in an image into a (𝑛 + 1)  qubit quantum states as 

follows,
1

√2𝑛
∑ (cos 𝜃𝑘 |0〉 + sin 𝜃𝑘|1〉)2𝑛−1

𝑘=0  |𝑘〉, where the angle 𝜃𝑘 in a single qubit encodes 

the pixel value of the corresponding position |𝑘〉. 

The results of simulations for different experiments, including images storage, retrieval and 

line detection in binary images, are done by applying the quantum Fourier transform as the 

processing operation. The proposed FRQI provides a foundation to express images and 

explore theoretical and practical fields of image processing in quantum computing. 

As an extension from a 2D grayscale representation, Sun et al. provide the multichannel 

representation for quantum images (MCQI) as a new model for colored images (RGB) 

representation [18]. The model uses the three channels of a colored image (R, G, and B 

channels) to represent different color information of the image while using the state 

normalization technique. Since there are three channels, the model is accomplished by 

assigning three qubits to encode color where the RGB information of an image is stored 

simultaneously. The proposed model is represented by the equation as 

follows, 
1

2𝑛+1 (∑ |𝐶𝑅𝐺𝐵𝛼
𝑖 〉 ⊗22𝑛−1

𝑖=0 |𝑖〉, where the color information |𝐶𝑅𝐺𝐵𝛼
𝑖 〉_ encoding the RGB 

channels information is defined as: 

|CRGBα
i 〉 = cosθR

i |000〉 + cosθG
i |001〉 + cosθB

i |010〉 + cosθα
i |011〉 + +sinθα

i |100〉

+ sinθG
i |101〉 + sinθB

i |110〉 + sinθα
i |111〉 

where {𝜃𝑅
𝑖 , 𝜃𝐺

𝑖 , 𝜃𝐵
𝑖 } ∈ [0, 𝜋 2⁄ ]  are three angles encoding the colors of the R, G, and B 

channels of the 𝑖𝑡ℎ pixel, respectively; and 𝜃𝛼 is set to 0 to make the two coefficients constant 

(cos 𝜃𝛼 = 1 and sin 𝜃𝛼 = 0 ) to carry no information. 

A novel enhanced quantum representation (NEQR) was presented by Yi Zhang et. al. [19]. 

The proposed representation improves the latest flexible representation of quantum images 

(FRQI) by Le, P.Q. et al. [17]. The novel method uses the basis state |𝑓(𝑘)〉 of 𝑑 qubits to 

store the pixel value instead of angle information encoded in a qubit as in FRQI. That is, an 

image is encoded as a quantum state  
1

√2𝑛
∑ |𝑓(𝑘)〉2𝑛−1

𝑘=0  |𝑘〉, where|𝑓(𝑘)〉 = |Ck
0Ck

1 … Ck
d−1〉. 

Yao et. al. proposed a new quantum probability image encoding (QPIE) model for quantum 

image representation [20]. The model encodes the image pixel values in probability 

amplitudes and their positions into computational basis states. The model speeds up the 

computation time required for either image representation or QImP techniques, which 

represent the main potential of QImP fields for highly efficient image processing in the big 

data era. Table 1 provides a detailed comparison between some methods mentioned in the 

literature. 
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TABLE 1 

A COMPARISON BETWEEN DIFFERENT QUANTUM IMAGE REPRESENTATION MODELS  

(FRQI, MCQI, NEQR, AND QPIE) 

Image 

Representation 
FRQI MCQI NEQR QPIE 

Quantum State 

 

1

2𝑚
( ∑ (cos 𝜃𝑘 |0〉

22𝑚−1

𝑘=0

+ sin 𝜃𝑘|1〉) |𝑘〉 

1

2𝑛+1
( ∑ |𝐶𝑅𝐺𝐵𝛼

𝑖 〉 ⊗

22𝑛−1

𝑖=0

|𝑖〉 
1

2𝑚
( ∑ |𝑓(𝑘)〉

22𝑚−1

𝑑=0

|𝑘〉 

|𝑓(𝑘)〉

=  ∑ 𝑐𝑘|𝑘〉

22𝑚−1

𝑘=0

 

Pixel-Value 

Qubit 
1 C d 0 

Pixel Value 𝜃𝑘 

|𝐶𝑅𝐺𝐵𝛼
𝑖 〉 = 𝑐𝑜𝑠𝜃𝑅

𝑖 |000〉

+ 𝑐𝑜𝑠𝜃𝐺
𝑖 |001〉

+ 𝑐𝑜𝑠𝜃𝐵
𝑖 |010〉

+ 𝑐𝑜𝑠𝜃𝛼
𝑖 |011〉

+ +𝑠𝑖𝑛𝜃𝛼
𝑖 |100〉

+ 𝑠𝑖𝑛𝜃𝐺
𝑖 |101〉

+ 𝑠𝑖𝑛𝜃𝐵
𝑖 |110〉

+ 𝑠𝑖𝑛𝜃𝛼
𝑖 |111〉 

 

𝑓(𝑘)

= 𝐶𝑘
0𝐶𝑘

1 … 𝐶𝑘
𝑑−1 

𝑐𝑘 

Pixel-Value 

Encoding 
Angle Probability Amplitude Basis of Qubits 

Probability 

Amplitude 

 

Only few works in literature addressed the general applications of QFT for image processing; 

and to the best of our knowledge all were used in either watermarking or enhancing security. 

A recent study in [21] has utilized Quantum Fourier Transformation (QFT) in a protocol to 

enhance the security of NEQR of quantum images with a blind trent. The suggested protocol 

uses a QFT and key encrypted signature for image security. A reordered output Qubit of QFT 

with permutation of a blind trent is used to improve the security of the protocol. This protocol 

was shown to enhance the transfer of images with a secured and efficient secret key. Another 

algorithm that is based on QFT for image encryption is introduced in [22]. The encryption 

algorithm proposed is supported by quantum Fourier transformation. As in [21], the algorithm 

showed an enhanced image security.  

In [23], a Quantum Image classification schema which uses quantum K-Nearest-Neighbor 

algorithm is introduced. To achieve parallel computing of similarity, features extracted from 

classical computers are inputted into a quantum superposition state.  The image is then 

classified by quantum measurement after using a minimum quantum search algorithm. 

Results showed high classification accuracy while improving classification efficiency. 

III. FRAMEWORK OF QUANTUM IMAGE PROCESSING 

Earlier in this paper, we discussed the basics of quantum computations that are important to 

the scope of this paper. However, before introducing our experimental framework, it is 

important to first discuss the quantum Fourier Transform (QFT) itself.  

A) Quantum Fourier Transform 

The quantum Fourier transform acts on a quantum state |𝐱〉 =  [𝑥0 𝑥1 ⋯ 𝑥𝑁−1]𝑇. It maps 

it to a quantum state |𝐲〉 =  [𝑦0 𝑦1 ⋯ 𝑦𝑁−1]𝑇 according to the formula: 

yk =
1

√N
∑ xjwn

jk

N−1

j=0

,                  k = 0, 1, … , N − 1, 



© 2019 Jordan Journal of Electrical Engineering. All rights reserved - Volume 5, Number 1                              17 

 

where wn = e
−2πi

N  is a primitive Nth root of unity. 

The factor 𝑤, which is called the primitive roots of unity, can be viewed as a phase introduced 

by the QFT. Equivalently, the QFT can be viewed as a unitary matrix or a quantum gate 

acting on quantum state vectors. The unitary matrix QFT𝑁 is given by: 
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where 𝑤𝑛 is defined as above. 

Therefore, the 𝑛 −qubit QFT transforms an input state |𝐱〉  to an output state |𝐲〉  as follows: 

|𝐲〉 = QFT𝑁|𝐱〉. 

This linear transformation is unitary; and can be realized using a quantum circuit that consists 

of a set of quantum gates connected together (Fig. 4). The gates labelled 𝐇 are Hadamard 

gates as described before; and the gates labelled 𝐑𝑚 represent a series of one-qubit phase shift 

gates. However, in the QFT circuit, each 𝐑𝑚 gate is controlled by another qubit. This means 

that depending on the value of the control bit, controlled−𝐑𝑚  gate performs the identity 

transformation, or the 𝐑𝑚 (i.e. phase shift) transformation. The controlled−𝐑𝑚 is indicated 

by a large dot connected to the gate by a vertical line; and the unitary matrix is given by: 

Rm =























mie 22000

0100

0010

0001



 

This circuit is implemented by the sequence of the shown operations, where the bit values of 

the result appear in reversed order. The qubits must be reversed; and this can be achieved by a 

sequence of SWAP operations on pairs of qubits (not shown in the circuit).  

 

 
Fig. 4. A schematic of the quantum circuit which implements the n-qubit QFT using qubit-selective Hadamard and 

two- qubit controlled-phase gates 
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H

H

H

| ⟩ | ⟩
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B) A Framework for Quantum Image Representation 

Of particular interest in our context is the recent work of Yao et. al. [20] where a QImR 

model is introduced. It is based on encoding the image transformation in a pure quantum state 

which provides a flexible representation of quantum images.  

Given a 2D image 𝐹 = (𝐹𝑖,𝑗)𝑀×𝐿 , 𝐹𝑖,𝑗  represents the pixel value at position (𝑖, 𝑗) with 𝑖 =

 1, … , 𝑀 and  𝑗 =  1, … , 𝐿 . The quantum representation model adopted in this paper is to 

convert the (𝑀 × 𝐿) matrix 𝐹 into a column vector 𝑓 of length 𝑀𝐿. The procedure is made by 

letting the first 𝑀 elements of 𝑓 be the first column of 𝐹, the next 𝑀 elements, the second 

column, etc. such that: 

T

LM
F

ji
FF

M
FFFf




















,

....
,

....
2,11,

....
1,21,1

 

The vector 𝑓 can be mapped into a pure quantum state of 𝑛 qubits, that is 

|f〉 = ∑ ck

2n−1

k=0

|k〉,  

where |𝑘〉 represents the (𝑖, 𝑗) position for each pixel with 𝑛 = ⌈𝑙𝑜𝑔2(𝑀𝐿)⌉; and 𝑐𝑘 represents 

the pixel value such that, 

ck = {

Fi,j

√∑ Fi,j
22n−1

k=0

, k < ML

0 k ≥ ML

 

This step is important to ensure that the final quantum state of pixel values is normalized. By 

adopting this procedure, the final quantum images are represented in the form of a normalized 

state which captures information about colors and their corresponding positions in the images.  

In our work, we consider the special case where 𝑀𝐿 = 𝑁 = 2𝑛 . Image transformation is 

linear in nature. In the quantum context, the linear transformation can be represented as 

follows: given an input image state |𝑓〉, the output image state |𝑔〉 = 𝐔|𝑓〉. The corresponding 

unitary operator 𝐔 is given by: 
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where 𝑤𝑛 = 𝑒
−2𝜋𝑖

2𝑛  

In general, a comparison of image processing performed by the classical and quantum 

methods is illustrated in Fig. 5. Classically, the image is represented as a matrix; and it is 

encoded with 2𝑛  bits. The image transformation is conducted by matrix computation. In 

contrast, the same image is represented as a quantum state; and encoded in 𝑛 qubits. The 

quantum image transformation is performed by unitary operator 𝐔. 
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Fig. 5. Comparison of image encoding, processing, and decoding by classical and quantum methods 

 

IV. EXPERIMENTAL DEMONSTRATION 

For demonstrating our framework, a classical computer is used to simulate the experiments on 

quantum images. The simulations are based on linear algebra with complex vectors as 

quantum states and unitary matrices as unitary transforms. MATLAB 2015a is used as a 

programming language; and the experiments are performed on desktop computer with Intel 

Core 2 Duo 1.86 GHz CPU and 2 GB RAM.  

A set of different sample images is used to experimentally demonstrate the quantum image 

transforms while comparing them with the conventional transforms.  As a simple test image, a 

window of a 2 × 2  pixels cropped from an image is chosen. The image encoding and 

processing require four qubits represented by a 4 × 1 column vector. The image 

transformation operator that need to be considered is defined by 𝐔 = 𝑄𝐹𝑇4. That is 

𝑄𝐹𝑇4 =
1

2





























ii

ii

11

1111

11

1111

 

The corresponding quantum circuit with the actual gate sequences in our sample experiment 

is shown in Fig. 6. If we split the circuit up, each unitary transformation output is 

implemented separately as illustrated in the figure.  

 

Classical Forward Fourier Transform

Classical Inverse Fourier Transform

Quantum Inverse Fourier Transform

Quantum Forward Fourier Transform
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Fig. 6. a) Quantum circuit that implements a 2-qubit QFT, b) The serial implementation of the QFT circuit 

 

The output QFT can be obtained by evaluating the decomposed circuit in Fig. 4b with  

|A〉 = 𝑼𝟏|𝑓〉, |B〉 = 𝑼𝟐|A〉, |C〉 = 𝑼𝟑|B〉, |𝑔〉 = 𝑼𝟒|C〉. 

 

It can be easily shown that, 

𝑼1 =
1

√2



























1010

0101

1010

0101

, 𝑼2 =
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Then we have, 𝑼 = 𝑼𝟒𝑼𝟑𝑼𝟐𝑼𝟏 =
1
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This is the same as what can be obtained by doing the calculations directly (𝑄𝐹𝑇4). Therefore, 

we have verified that this circuit does indeed perform the QFT. 

The QImP method discussed earlier is applied to different selected images. Fig. 7 shows 

sample images that were chosen along with their Fourier transformations using the classical 

FFT and QFT. The reconstructed images conducted by the inverse FFT and QFT are also 

plotted. It is visually clear that the original and the reconstructed quantum images are 

identical (image 5 for example). This result can also be inferred by calculating the Mean-

squared error (MSE). Specifically, the resulting transformation of image 5 has a MSE of value 

0 (last column in table 2) defined by the equation,  
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MSE =
1

M ∗ N
∑ ∑[F′(m, n)  − F(m, n) ]2

N

n=1

M

m=1

, 

where M and N are the number of rows and columns in the compared images (the original 

image F(𝑥, 𝑦) and the reconstructed image F′(𝑥, 𝑦)), respectively.  

Mean-Squared Error (MSE) assesses the quality of an image. Values of MSE may be used for 

comparative purposes. Two or more images may be compared using their MSEs as a 

measurement of image distortion because they can represent the overall gray-value error 

contained in the entire image, and are mathematically tractable as well [21]. MSE values are 

always non-negative; and values closer to zero are better. In our simulations, most MSE 

results are of zero value or very close to zero as represented in Table 2. 

 

 
Fig. 7. Sample images used in the simulation (image 1 to the left, image 5 to the right) 

 

Other quality measurements between the original and reconstructed images such as Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [25], [26] are 

considered. The PSNR represents a measure of the peak error. The lower the value of MSE, 

the lower the error is. A higher PSNR generally indicates that the reconstruction is of higher 

quality. Based on PSNR results in our simulation, QFT is shown to perform better compared 

to FFT (Table 2). It is evaluated using the following equation: 

PSNR = 10 ∗ Log10 (
peakval 2

MSE
), 

where peakval is taken from the range of the image datatype (e.g. for unit 8 image it is 255). 

The Structural Similarity Index (SSIM) is used for measuring the similarity between two 

images: the original image 𝐹(𝑥, 𝑦) and the reconstructed image 𝐹′(𝑥, 𝑦). In general, a higher 

SSIM value indicates higher image quality. Our simulations give similar results for both QFT 

and FFT (Table 2). It is calculated using the following equation: 
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SSIM =
(2µF′µF + c1)(2σF′F + c2)

(µF′
2 + µF

2 + c1)(σF′
2 + σF

2 + c2)
 

where: 

µ𝐹′  and µ𝐹 are the mean of 𝐹′(𝑥, 𝑦) and 𝐹(𝑥, 𝑦) respectively. 

𝜎𝐹′  and 𝜎𝐹 are the variance of 𝐹′(𝑥, 𝑦) and 𝐹(𝑥, 𝑦) respectively. 

𝑐1 = (𝐾1𝐿)2and 𝑐2 = (𝐾2𝐿)2 are variables to stabilize the division with weak denominator 

𝐿 = 2# 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 − 1  

𝑘1 = 0.01 and 𝑘2 = 0.03 by default. 

Table 2 provides a sample comparison between the two methods (FFT and QFT) with respect 

to (Forward and inverse elapsed time, MSE, PSNR, and SSIM) applied to five different 

images. Figs. 8 and 9 show the results for the set of test images with respect to MSE and 

SSIM respectively. The results indicate that both methods FFT and QFT perform similarly on 

a classical computer. We should emphasize here that it is expected that the QFT method 

outperforms the classical one if experiments were conducted on a quantum computer.  

One of the main goals in quantum computing is to design quantum algorithms that are more 

efficient (i.e. faster) than their classical counterparts. This goal usually has an implicit 

assumption that both quantum and classical algorithms are to be executed on general-purpose 

computers. Unfortunately, the quest for QImP algorithms running on general-purpose 

computers has left behind the superiority of quantum image processing algorithms especially 

with respect to time complexity. 

 

 

 

 
Fig. 8. The MSE results of the two methods (FFT and QFT) for different test images 
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Fig. 9. The SSIM results of the two methods (FFT and QFT) for different test images 

 

 

 

Moreover, the relationship between the consumption time needed to reconstruct the quantum 

image with respect to the resolution of the image is also considered in our simulations 

(illustrated in Fig. 10). The QImP method performs better than the classical one specifically 

with when the number of qubits is less than 5 (i.e.  n < 5).  

 

 

 

 
Fig. 10. Consumption time for different image resolutions 
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TABLE 2 

A COMPARISON BETWEEN THE TWO METHODS (FFT AND QFT) FOR FIVE DIFFERENT IMAGES 

Image 

No. 
Method 

Forward 

Elapsed 

Time 

Reconstruction 

Elapsed Time 

Mean-

squared 

error (MSE) 

Peak Signal-to-

Noise Ratio 

(PSNR) 

Structural 

Similarity Index 

(SSIM) 

1 
FFT 0.002033 0.000804 0.0045 46.8906 0.9767 

QFT 0.002367 0.002242 0.0045 46.8906 0.9767 

2 
FFT 0.000448 0.00063 0 319.4987 1 

QFT 0.002154 0.001708 0 229.4296 1 

3 
FFT 0.000509 0.000522 0 315.9064 1 

QFT 0.002061 0.002361 0 230.783 1 

4 
FFT 0.000819 0.000476 0.005 45.9777 0.9954 

QFT 0.002159 0.00165 0.005 45.9777 0.9954 

5 
FFT 0.000553 0.000598 0 319.7095 1 

QFT 0.001844 0.001882 0 230.2293 1 

 

V. CONCLUSION AND FUTURE WORK 

In conclusion, the potential of quantum computing in the field of image processing is 

demonstrated. A QImP model is used where image information is encoded in a pure quantum 

state where pixel values of an image of interest are encoded in the probability amplitudes 

while the pixel positions are encoded in the computational basis states. Moreover, the 

implementation of the model on sample images is illustrated. Their encoding, processing, and 

decoding are experimentally demonstrated. The processing operations are performed 

classically using FFT and in a quantum context using QFT. These resulting transforms are 

compared; and the comparison results are reported.  In this comparison, different measures of 

image quality are used for both FFT or QFT reconstructed images.  Results from a three 

quality measures are reported: The Mean-Squared Error (MSE) to estimate the error between 

two images, the Peak Signal-to-Noise Ratio (PSNR) to evaluate the quality of reconstructed 

image and the Structural Similarity Index (SSIM) to assess the similarity between two images. 

In general, the QFT results are shown to be similar to FFT in all cases.  

Our experiment serves as the first experimental study towards practical applications of 

quantum computers for image processing. However, it might be of interest not to read the 

output image itself only but to find some significant statistical characteristics or useful global 

features about image data. It is a possibility to explore this area instead of decoding the image 

explicitly. In addition to the theoretical base presented in this paper, quantum computing still 

has much to offer. The QFT model can be employed in other areas such as machine learning, 

face and pattern recognition, and image and video coding. 
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