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Abstract—This paper presents demand side management (DSM) for integrated energy systems of dairy farms - 
in order to lower the energy consumption - utilizing a variety of energy devices and load types, in addition to 
Peer-to-peer (P2P) energy trading. The decision tree regression model is used to anticipate the day-ahead PV 
power generation, utility grid energy pricing, and various loads consumption based on real-world data in order 
to implement DSM and P2P energy trading (P2P-ET). To handle the growing uncertainties - brought on by 
bidding actions, transaction volumes, and forecasted data on load profiles, the generation of renewable 
resources, and energy prices - a modified multi-agent reinforcement learning (MARL) is used for decision-
making. To address such a situation, the DSM and P2P-ET problem is formulated as a finite Markov decision 
process. The mixed uncertainty is included as additional stochastically represented states and action scenarios 
in the modified MARL. It is found that incorporating additional stochastic states and action scenarios 
significantly enhances the RL agent's ability to adapt to diverse and dynamic environments, particularly when 
faced with unexpected variations in PV generation and energy price. These extra states and actions allow the 
agent to learn more nuanced strategies and respond effectively to probabilistic circumstances. The simulation 
result unveil that by using the proposed MARL algorithm to optimize the P2P-ET and DSM strategies, the 
average load can be reduced by 20.73%. Moreover,, the optimal P2P-ET results in buying 82.1% of the energy 
needed from the P2P community, while the remaining 17.9% is bought from the utility grid. Finally, by applying 
both the optimal DSM and P2P-ET, the average daily cost of energy can be reduced by 23.57%. 

 
Keywords—Peer-to-peer energy trading; Demand side management; Integrated energy system; Modified multi-
agent reinforcement learning.   
     

Nomenclature 

PtH2 Power Content of the 
Electrolyzer’s Produced Hydrogen 
Gas [kW] 

EL Electrolyser Efficiency 

PtPV-EL PV Electrical Power Supplied to 
Electrolyzer [kW] 

c, e, h Cold, Electric, and Heat Efficiencies of 
CCHP, respectively 

Ptc-CCHP, Pte-

CCHP, Pth-CCHP 
Cold, Electric, and Heat Power 
Output of CCHP, respectively 
[kW] 

e-HCH Electricity to Cold Efficiency of HCH 

Pte-HCH, Ptc-

HCH 

Input Electric Power, and Output 

Cold Power of HCH, respectively 

[kW] 

𝑃𝑚𝑖𝑛
𝐸𝐿 , 𝑃𝑚𝑎𝑥

𝐸𝐿  Minimum and Maximum Electric 

Power Input to the Electrolyzer, 

respectively [kW] 

ptbn Energy Buying Price of  

Buyer N [$/kWh] 

𝑃𝑚𝑎𝑥
𝐻2−𝐶𝐶𝐻𝑃, 

𝑃𝑚𝑎𝑥
𝐻2−𝐶𝐶𝐻𝑃 

Minimum and Maximum Hydrogen 

Power Input to the CCHP, respectively 

[kW] 

ptsn Energy Selling Price of Seller N 
[$/kWh] 

𝑃𝑚𝑖𝑛
ℎ−𝐻𝐶𝐻, 𝑃𝑚𝑎𝑥

ℎ−𝐻𝐶𝐻 Minimum And Maximum Heat Power 
Input to the HCH, respectively [kW] 
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MCPt Market Clearing Price [$/kWh] 𝑃𝑚𝑖𝑛
𝑒−𝐻𝐶𝐻, 𝑃𝑚𝑎𝑥

𝑒−𝐻𝐶𝐻 Minimum and Maximum Electric 
Power Input to the HCH, respectively 
[kW] 

cte Net Energy Trading Cost [$] 𝑃𝑚𝑎𝑥
𝑒−𝐶𝐶𝐻𝑃 Maximum Electric Power Output from 

the CCHP [kW] 
ctD Total Dissatisfaction Cost [$] 𝑃𝑚𝑎𝑥

ℎ−𝐶𝐶𝐻𝑃 Maximum Heating Power Output from 
the CCHP [kW] 

ctD,n Dissatisfaction Cost of Nth Load [$] 𝑃𝑚𝑎𝑥
𝑐−𝐶𝐶𝐻𝑃 Maximum Cold Power Output from 

the CCHP [kW] 
ptS, ptB Sell And Buy Prices of Energy of 

the UG, respectively [$/kWh] 

𝑃𝑚𝑎𝑥
𝑐−𝐻𝐶𝐻 Maximum Cold Power Output from 

The HCH [kW] 
ptD Dissatisfaction Price [$/kWh] 𝑃𝑚𝑎𝑥

𝑒−𝑙𝑜𝑎𝑑 Maximum Electric Load [kW] 
ptP2P P2P Energy Trading Price [$/kWh] 𝑃𝑚𝑎𝑥

ℎ−𝑙𝑜𝑎𝑑 Maximum Heating Load [kW] 
EtSet,n Rated Energy of Nth Load [kWh] 𝑃𝑚𝑎𝑥

𝑐−𝑙𝑜𝑎𝑑 Maximum Cooling Load [kW] 
Etn Selected Energy of Nth Load [kWh] 𝑃𝑚𝑎𝑥

𝑃𝑉  Maximum PV Generated Power [kW] 
EtP2P Energy Traded with P2P 

Community  
[kWh] 

𝑃𝑚𝑎𝑥
𝑃2𝑃 Maximum P2P Traded Power [kW] 

EtUG Energy Traded with UG  
[kWh] 

𝑃𝑚𝑎𝑥
𝑈𝐺  Maximum UG Traded Power [kW] 

EtPV PV Energy Generated  
[kWh] 

𝑃𝑚𝑎𝑥
ℎ−𝑆𝐷 Maximum Charging/Discharging 

Power of Heat Storage Device [kW] 
Ete-CCHP Electric Energy Output of CCHP 

[kWh] 

𝑃𝑚𝑎𝑥
𝑐−𝑆𝐷 Maximum Charging/Discharging 

Power of Cold Storage Device [kW] 
Etlight, Etvent, 
Etfeed 

Lighting, Ventilation, And Feeding 
Load Energy, respectively [kWh] 

D 
Dissatisfaction Coefficient 

EtPV-EL PV Energy Input to Electrolyzer 
[kWh] 

n Tolerance Energy of Nth Load [kWh] 

Ete-HCH Electric Energy Input to HCH 
[kWh] 

SOCtSD State of Charge of SD [kWh] 

Eth-SD, Etc-SD Charging/Discharging Energy of 
Heat and Cold SD, respectively 
[kWh] 

Etheat, Etcool Heating And Cooling Load Energy, 
respectively [kWh] 

Eth-CCHP Heat Energy Output of CCHP 
[kWh] 

Etc-CCHP, Etc-HCH Cold Energy Output of CCHP and 
HCH, respectively [kWh] 

 
Parameters 
EL Electrolyser Efficiency 𝑃𝑚𝑎𝑥

𝑐−𝑙𝑜𝑎𝑑 Maximum Cooling Load [kW] 

c, e, h Cold, Electric, And Heat 
Efficiencies Of CCHP, respectively 

𝑃𝑚𝑎𝑥
𝑃𝑉  Maximum PV Generated Power [kW] 

e-HCH Electricity To Cold Efficiency Of 
HCH 

𝑃𝑚𝑎𝑥
𝑃2𝑃  Maximum P2P Traded Power [kW] 

𝑃𝑚𝑖𝑛
𝐸𝐿 , 𝑃𝑚𝑎𝑥

𝐸𝐿  Minimum And Maximum Electric 
Power Input to the Electrolyzer, 
respectively [kW] 

𝑃𝑚𝑎𝑥
𝑈𝐺  Maximum UG Traded Power [kW] 

𝑃𝑚𝑎𝑥
𝐻2−𝐶𝐶𝐻𝑃,  
𝑃𝑚𝑎𝑥
𝐻2−𝐶𝐶𝐻𝑃 

Minimum And Maximum 
Hydrogen Power Input to the 
CCHP, respectively [kW] 

𝑃𝑚𝑎𝑥
ℎ−𝑆𝐷  Maximum Charging/Discharging 

Power of Heat Storage Device [kW] 

𝑃𝑚𝑖𝑛
ℎ−𝐻𝐶𝐻,  
𝑃𝑚𝑎𝑥
ℎ−𝐻𝐶𝐻 

Minimum And Maximum Heat 
Power Input to the HCH, 
respectively [kW] 

𝑃𝑚𝑎𝑥
𝑐−𝑆𝐷 Maximum Charging/Discharging 

Power of Cold Storage Device [kW] 

𝑃𝑚𝑖𝑛
𝑒−𝐻𝐶𝐻,
𝑃𝑚𝑎𝑥
𝑒−𝐻𝐶𝐻 

Minimum And Maximum Electric 
Power Input to the HCH, 
respectively [kW] 

D Dissatisfaction Coefficient 

𝑃𝑚𝑎𝑥
𝑒−𝐶𝐶𝐻𝑃 

Maximum Electric Power Output 
from The CCHP [kW] 

n 
Tolerance Energy of Nth Load [kWh] 

𝑃𝑚𝑎𝑥
ℎ−𝐶𝐶𝐻𝑃 

Maximum Heating Power Output 
from The CCHP [kW] 

N 
Number Of Loads 

𝑃𝑚𝑎𝑥
𝑐−𝐶𝐶𝐻𝑃 

Maximum Cold Power Output 
from The CCHP [kW] 

Emin , Emax Minimum And Maximum Load 
Energy, respectively [kWh] 
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𝑃𝑚𝑎𝑥
𝑐−𝐻𝐶𝐻 

Maximum Cold Power Output 
from The HCH [kW] 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑆𝐷 , 

 𝑆𝑂𝐶𝑚𝑎𝑥
𝑆𝐷  

Minimum And Maximum State of 
Charge Of SD, respectively [kWh] 

𝑃𝑚𝑎𝑥
𝑒−𝑙𝑜𝑎𝑑  Maximum Electric Load [kW] 

RSD Rate Of Charge/Discharge of SD 
[kWh] 

𝑃𝑚𝑎𝑥
ℎ−𝑙𝑜𝑎𝑑  Maximum Heating Load [kW]   

    

Sets 

𝑠𝐸𝑡
𝑃𝑉  States Set of PV Generation 𝑎𝐸𝑡

𝐶𝑜𝑜𝑙  Action Set of Cooling Loads 
𝑠𝑝𝑡

𝐵,  
 𝑠𝑝𝑡

𝑆 
States Sets of UG Buying and 
Selling Energy Prices, respectively 

𝑎𝐸𝑡
𝐻𝑒𝑎𝑡 Action Set of Heating Loads 

𝑎𝐸𝑡
𝐿𝑖𝑔ℎ𝑡

 Action Set of Lighting Loads 𝑎𝑝𝑡
𝑃2𝑃 Action Set of P2P Energy Trading Price 

𝑎𝐸𝑡
𝑉𝑒𝑛𝑡 Action Set of Ventilation Loads 𝑎𝐸𝑡

𝑃2𝑃  Action Set of P2P Energy Traded 
    

1. INTRODUCTION  

For dairy farms, electricity is a significant and inevitable expense. Dairy farmers are 

under more and more strain due to rising energy prices and worries about energy security. 

Investigating ways to lower energy expenses is crucial to addressing these issues. Negotiating 

advantageous supplier contracts and prices while highlighting the significance of peer-to-peer 

energy trading (P2P-ET) is a typical strategy. Peer-to-peer (P2P) energy trading has several 

advantages, including establishing a competitive energy market that lowers electricity costs, 

lowering power outages, improving power systems' overall efficiency, and enhancing 

alternative energy sources. Another option is to use demand side management (DSM) 

programs to reduce on-peak power use.  

In addition to reducing greenhouse gas emissions, the deployment of renewable energy 

sources (RES) on dairy farms can also reduce the cost of network-dependent energy 

consumption. Solar energy options provide dairy farmers with a more cost-effective and 

energy-efficient alternative. The location of a farm also affects how other renewable energy 

sources, such as hydrogen, are evaluated. Dairy farms are among the many types of farms 

located along Egypt's northwestern coastline. Consequently, the integrated energy system of such 

farms depends on the synthesis of green hydrogen from seawater, as proposed in [1], using PV-

generated power. 

Managing the farm's demand within reasonable comfort levels and utilizing the most 

efficient, sustainable, and cleanest energy generation technologies are important aspects of cost-

effective energy use. Peer-to-peer energy markets have been shown to be a successful way to 

facilitate energy trading among prosumers, which can maximize profits for surplus or needed 

energy [2]. 

The P2P-ET platform facilitates energy sharing between consumers and prosumers 

through bidding processes. Through these bids, participants can negotiate prices and specify 

the amount of energy they wish to exchange. The market coordinator then coordinates the 

clearing and transaction processing of the market while taking into account the operating 

limits of the power system [3]. In [4], two different double-auction trading algorithms for 

energy trading were proposed. The research focused on the pricing issue in shared parking 

but did not address DSM or P2P-ET. In [5], the authors introduced a discriminating k-double 

auction approach. However, the research goal was to enhance the efficiency of P2P energy 

trading by applying double auction mechanisms and did not consider the issue of energy 

management.  
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The combination of DSM and P2P-ET to assist participants reduce their electricity 

expenditure has attracted the interest of numerous researchers. This combination was applied 

effectively to different sectors such as residential, commercial, and industrial sectors [6]. In [7], 

a P2P energy exchange model that considered user welfare was introduced. Different pricing 

mechanisms were compared and evaluated based on their influence on welfare distribution. 

A method that accounted for the unpredictability of wind-generated electricity was proposed 

in [8] to identify the optimal P2P trading strategies among a large number of microgrids. The 

proposed method adopted a transformed optimal power flow model for energy trading with 

optimal topology planning. The objective of [9] was to determine the best P2P-ET plan for 

prosumers who wanted to reduce their electricity costs while maximizing their utilization of 

renewable energy sources through power consumption control. However, authors in [7-9] did 

not take DSM into account. 

Nevertheless, there are two significant issues with the integration of DSM and P2P-ET. 

First, this integration complicates the decision-making process because the choice factors are 

highly unpredictable. Furthermore, the large search space produced by the mixed DSM and 

P2P-ET decisions makes the calculation challenging. Better decision-making is demonstrated 

by reinforcement learning (RL). There are various benefits of using reinforcement learning in 

decision-making. First, reinforcement learning does not require prior information, which 

could be challenging to handle in practice, as it learns the best course of action through contact 

with its environment. Second, by employing both offline training and online implementation, 

reinforcement learning (RL) may be used flexibly for a variety of applications. Thirdly, 

compared to traditional optimization techniques, RL is simpler to apply in practical settings. 

Because of its high computational efficiency, RL can generate the best results in a look-up table.  

The application of reinforcement learning (RL) to energy management issues is of great 

interest to many academics. To help energy suppliers adjust their selling prices to meet the 

demand from energy customers, the authors in [10] used the K-means methodology. In [11], a 

Q-learning method based on neural networks (NNs) was used to obtain the best DSM with 

predicted solar power generation and energy pricing. The ability of Q-learning to solve 

optimization problems in discrete action space has been shown. It must, however, discretize 

this space while handling P2P-ET and DSM situations that call for a continuous space of 

activities, which significantly affects the accuracy of the results. In [12, 13], data-driven DRL 

algorithms were introduced for the optimal DSM of residential participation with expected load 

behavior. Using a multi-agent DRL algorithm and considering each machine as an agent, [14] 

was able to assist an industrial customer in calculating their energy use. However, the P2P-ET 

was not addressed in [12-14]. In an attempt to streamline the energy trading process, a system 

for trading energy was presented more recently in [15] but without considering DSM or mixed 

uncertainty. A P2P-ET and DSM model for residential homes was developed in [16] using a 

multi-agent DRL technique to determine both the P2P energy traded and the energy 

consumption of various equipment. In order to reduce the cost of dissatisfaction and the 

electricity bill, the suggested multi-agent DRL was then applied to the competitive challenge 

that was designed. However, the states-actions pairs of each agent did not consider the demand 

uncertainty. 

In [17], the authors used RL to create a double-auction based mechanism that maximizes 

P2P market participation. Additional challenges with P2P-ET data transfer include security and 

latency. Authors in [18] addressed these problems by proposing a Prosumer Recommender 
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System for P2P-ET using RL and blockchain, and authors in [19] suggested a Secure Energy 

Trading scheme for P2P-ET based on Smart Contracts that controls the energy load of EVs, 

businesses, and residential homes. A secure DSM solution for residential energy management 

using RL and Ethereum blockchain was introduced in [20] to address data security issues. The 

RL-based energy management research in [17-20] did not integrate all the factors taken into 

account in this paper regarding the P2P-ET, DSM, data-driven prediction, and various 

uncertainties in RES, energy prices, and various load types. 

Dairy farms require three types of energy usage, which DSM programs are responsible 

for managing: power, heating, and cooling. In order to save energy, it is also recommended to 

use the low-grade waste heat from the power generation process for both heating and cooling 

instead of relying solely on the P2P community/utility grid (UG) to meet all of these demands. 

The "waste heat" can be used in two ways: trigeneration and cogeneration. Trigeneration, the 

method of producing useful electricity, cooling, and heating from the same energy conversion 

process, is also known as combined cooling, heating, and power (CCHP). 

Natural gas, a limited fossil fuel, powers most of the trigeneration systems currently in 

use; more environmentally friendly fuels must be used in its place. Hydrogen has been 

identified as the option that produces the fewest pollutants and shows the greatest promise for 

long-term renewable energy sources. In [21], a study using hydrogen was carried out to 

investigate the performance of a diesel-based micro-scale trigeneration engine-generator 

combo. The findings demonstrated the potential of hydrogen as an energy vector, which is 

required to meet the upcoming, stricter greenhouse gas emission regulations. According to the 

calculations, hydrogen has a very high chance of beating traditional diesel fuel in terms of 

energy efficiency and nearly carbon emissions. 

The integrated energy system (IES) for the farm is recommended to satisfy load demands. 

Unlike other types of integrated energy systems (IES), the unique characteristics of dairy farms 

influence the design and operation of their IES. They have precise and consistent energy needs 

for milking, cooling, ventilation, and other agricultural processes. Dairy farms employ a 

combined cooling, heating, and power (CCHP) system that can generate electricity and capture 

waste heat for a range of agricultural uses. Additionally, such an IES includes a variety of device 

types, including energy storage systems and power to gas (P2G) [22]. However, depending on 

the farm's location, different energy carriers can be available. There might not be as much 

natural gas accessible because dairy farms are usually located in rural areas. This makes it 

necessary to identify an appropriate fuel source for the CCHP. Seawater-produced hydrogen 

can be used as a CCHP fuel instead of diesel because the dairy farm being studied in this work 

is located near the seaside. Additionally, the location is perfect for PV unit installation, which 

creates the possibility of green hydrogen production. On a farm, such energy device 

considerations lead to a clean and sustainable IES. 

A detailed comparison of the research mentioned above and this paper is given in                

Table 1 to enable a better understanding of the motivation and contributions of this study. 

As indicated in Table 1, the author is aware of no prior use of data-driven based RL for 

decision support of the integrated P2P-ET and DSM problem with mixed uncertainty. RL 

algorithms were used by researchers in [10 - 20], but none of them integrated all the factors 

taken into account in this article concerning P2P-ET, DSM, data-driven prediction, and various 

uncertainties in RES, energy prices, and various load types. Furthermore, although some 

studies examined the use of heat and cold storage systems in conjunction with natural gas-
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fueled CCHP, others focused on the use of green hydrogen as a fuel for CCHP without taking 

into account both types of storage systems. Additionally, a decision-making technique that had 

not previously been discussed in the literature—modified multi-agent reinforcement learning, 

or MARL—is used to resolve the uncertainties brought on by the uncertain forecast of PV 

generation and the UG's buying/selling energy prices. 

 

Table 1. Comparison between this work and other - reported in literature – research works. 

Ref. P2P ET DSM 
Uncertainties 

Data-driven prediction RL 
RES Energy price loads 

[3]        

[7]        

[8]        

[9]        

[10]        

[11]        

[12]        

[13]        

[14]        

[16]        

[17]        

[18]        

[19]        

[20]        

This paper        

  

Multi-agent reinforcement learning techniques previously used to solve optimal energy 

management problems were formulated with states representing the deterministic PV 

generation and UG energy prices. Based on these states, the actions were taken. However, due 

to the forecasting of these states, different values of each of these states result, which are 

stochastically represented with different probabilities. As a result, in a time slot, each of these 

states have more than one value. These values are also taken into consideration when deciding 

the corresponding actions of RL agents at that time slot and hence determining the 

corresponding rewards. 

Therefore, in the proposed MARL, it is found that incorporating additional states and 

action scenarios significantly enhanced the RL agent's ability to adapt to diverse and dynamic 

environments, particularly when faced with unexpected variations in PV generation and 

energy price. These extra states and actions allow the agent to learn more nuanced strategies 

and respond effectively to probabilistic circumstances. 

Furthermore, in addition to taking into account a P2P trading mechanism for additional 

electricity bill reduction, this paper explores DSM for lowering both the energy consumption 

cost and the discontent cost. Additionally, the MARL is used for decision making in order to 

address the increasing uncertainties brought about by bidding actions, transaction amounts, 

load profiles, and the generation of renewable resources. Therefore, the following is a summary 

of this paper's primary contributions: 
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 The DSM and P2P-ET problem is formulated as an finite Markov decision process 

(FMDP) using a data-driven framework, and decision support for various load types is 

provided by a modified multi-agent RL methodology that takes mixed uncertain 

situations into account.  

 Utilizing real-world data, the Decision Tree Regression (DTR) model forecasts utility 

grid energy costs, PV power generation, and other load usage. To account for varying 

prediction accuracies, the improved RL incorporates extra stochastic scenarios.  

 A double auction-based clearing energy price is suggested for a fair P2P-ET, taking into 

account the DSM and P2P-ET for a dairy farm with various loads.  

 To evaluate the effectiveness of the suggested strategy for handling uncertain decision-

making problems, the outcomes of the suggested MARL methodology are contrasted 

with those of alternative optimization techniques that incorporate probabilistic 

uncertainty functions.  

 Consideration is given to a clean and sustainable integrated energy system that includes 

heat and cold storage devices as distributed resources, hydrogen-fueled CCHP, and PV-

power to hydrogen (green hydrogen).  
 

2. SYSTEM DESCRIPTION 

The integrated energy system of the dairy farm under study consists of PV-supply device, 

in addition to energy storage and energy conversion devices, and loads as shown in Fig. 1. 

 

Fig. 1. The integrated energy system of the dairy farm. 



XXX                                                        Jordan Journal of Electrical Engineering. Volume X | Number X | Month 20XX 

 

2.1. The Electrolyzer 

The efficiency of a hydrogen electrolyzer (EL) is typically measured by its electrical-to-

hydrogen conversion efficiency. This efficiency represents the portion of the energy contained 

in the produced hydrogen gas to the electrical energy supplied to the EL. The PV-powered 

electrolyzer has the relationship given in Eq. (1). 

{
𝑃𝑡
𝐻2 = 𝜂𝐸𝐿 ∗ 𝑃𝑡

𝑃𝑉−𝐸𝐿

𝑃𝑚𝑖𝑛
𝐸𝐿 ≤ 𝑃𝑡

𝑃𝑉−𝐸𝐿 ≤ 𝑃𝑚𝑎𝑥
𝐸𝐿                         (1) 

2.2. CCH Power 

CCHP produces electricity from a hydrogen-fueled gas turbine in addition to waste heat. 

This heat is utilized for heating and cooling. For the cooling part, multiple hybrid 

electricity/heat cooling chillers (HCH) are used. The energy conversion relationships and 

operational constraints of the CCHP and HCH are given in Eqs. (2) and (3), respectively. 

{
 
 

 
 𝑃𝑡

𝑒−𝐶𝐶𝐻𝑃 = 𝜂𝑒 ∗  𝑃𝑡
𝐻2

𝑃𝑡
ℎ−𝐶𝐶𝐻𝑃 = 𝜂ℎ ∗ 𝑃𝑡

𝐻2

𝑃𝑡
𝑐−𝐶𝐶𝐻𝑃 = 𝜂𝑐 ∗ 𝑃𝑡

𝐻2

𝑃𝑡
𝑐−𝐻𝐶𝐻 = 𝜂𝑒−𝐻𝐶𝐻 ∗ 𝑃𝑡

𝑒−𝐻𝐶𝐻

                       (2) 

{

𝑃𝑚𝑖𝑛
𝐻2−𝐶𝐶𝐻𝑃 ≤ 𝑃𝑡

𝐻2 ≤ 𝑃𝑚𝑎𝑥
𝐻2−𝐶𝐶𝐻𝑃

𝑃𝑚𝑖𝑛
ℎ−𝐻𝐶𝐻 ≤ 𝑃𝑡

ℎ−𝐻𝐶𝐻 ≤ 𝑃𝑚𝑎𝑥
ℎ−𝐻𝐶𝐻

𝑃𝑚𝑖𝑛
𝑒−𝐻𝐶𝐻 ≤ 𝑃𝑡

𝑒−𝐻𝐶𝐻 ≤ 𝑃𝑚𝑎𝑥
𝑒−𝐻𝐶𝐻

                       (3) 

2.3. Dairy Farm Loads 

There are three types of loads in the dairy farm, namely electrical, heating and cooling 

loads. These loads represent the lighting, feeding, ventilation, heating and cooling loads, in 

addition to the electric power needed for the electrolyzer. Different energy resources should 

fulfill these loads within the constraints given in Eq. (4). 

{

𝑃𝑚𝑎𝑥
𝑒−𝐶𝐶𝐻𝑃 + 𝑃𝑚𝑎𝑥

𝑃𝑉 + 𝑃𝑚𝑎𝑥
𝑃2𝑃 + 𝑃𝑚𝑎𝑥

𝑈𝐺 ≥ 𝑃𝑚𝑎𝑥
𝑒−𝑙𝑜𝑎𝑑

𝑃𝑚𝑎𝑥
ℎ−𝐶𝐶𝐻𝑃 − 𝑃𝑚𝑎𝑥

ℎ−𝑆𝐷 ≥ 𝑃𝑚𝑎𝑥
ℎ−𝑙𝑜𝑎𝑑

𝑃𝑚𝑎𝑥
𝑐−𝐶𝐶𝐻𝑃 + 𝑃𝑚𝑎𝑥

𝑐−𝐻𝐶𝐻 − 𝑃𝑚𝑎𝑥
𝑐−𝑆𝐷 ≥ 𝑃𝑚𝑎𝑥

𝑐−𝑙𝑜𝑎𝑑

         (4) 

3. P2P ENERGY TRADING AND PROBLEM FORMULATION 

3.1. Double Auction Mechanism for P2P Energy Trading  

In this research, a double auction (DA) trading mechanism integrated with the MARL 

model is used to execute P2P energy trading. Participants submit bids and offers at the 

beginning of a trading period, indicating the quantity of energy to be traded as well as the 

required selling and buying prices. Next, the following formula is used to get the final market 

clearing price for this period (MCPt) [17]. 

a) The selling and buying prices with the quantity are sorted as in Eq. (5) in ascending and 

descending order, respectively. 

{
𝑝𝑡
𝑏1  >  𝑝𝑡

𝑏2  > ⋯ > 𝑝𝑡
𝑏𝑛

𝑝𝑡
𝑠1  <  𝑝𝑡

𝑠2  < ⋯ < 𝑝𝑡
𝑠𝑛            (5) 



Jordan Journal of Electrical Engineering. Volume X | Number X | Month 20XX                                                        XXX 

 

b) The buying prices curve and selling prices curve will intersect as given in Eq. (6) at which 

𝑝𝑡
𝑏𝑖  >  𝑝𝑡

𝑠𝑗
 > 𝑝𝑡

𝑏,𝑖+1                         (6) 

c) The final market clearing price is determined using the mid-price method given in                      

Eq. (7) as 

𝑀𝐶𝑃𝑡 = 
𝑝𝑡
𝑏𝑖+ 𝑝𝑡

𝑠𝑗

2
            (7) 

d) Once the MCPt is determined, participants who pass the auction trade through the P2P 

platform. On the other hand, participants who fail the auction need to trade with the UG 

for power balance. 

Fig. 2 illustrates the determination of the MCPt for 9 buyers and sellers. The prices are 

given as percentages of the buying/selling prices of energy of the utility grid. 

 
 

Fig. 2. MCP in a P2P market with N=9 buyers and sellers. 

3.2. Problem Formulation 

3.2.1. The Objective Function 

The objective is to minimize the function given in Eq. (8) 

𝐶𝑡 = 𝜔1𝑐𝑡
𝐸 + 𝜔2𝑐𝑡

𝐷                        (8) 

in which, 1 + 2 =1. 

The resultant cost of traded energy consists of the cost of traded energy with the P2P 

community in addition to that traded with the UG. The trading process of the dairy farm has 

two cases, either buying or selling. These two cases are represented as follows in Eqs. (9)                  

and (10). 

In case of selling, i.e. 𝐸𝑡
𝑃2𝑃 & 𝐸𝑡

𝑈𝐺  0 

𝑐𝑡
𝐸 = {

𝐸𝑡
𝑃2𝑃 𝑀𝐶𝑃𝑡 + 𝐸𝑡

𝑈𝐺  𝑝𝑡
𝑆               𝑖𝑓 𝑝𝑡

𝑃2𝑃 ≤ 𝑀𝐶𝑃𝑡
(𝐸𝑡

𝑃2𝑃 + 𝐸𝑡
𝑈𝐺) 𝑝𝑡

𝑆                       𝑖𝑓 𝑝𝑡
𝑃2𝑃 > 𝑀𝐶𝑃𝑡

                    (9) 

In case of buying, i.e. 𝐸𝑡
𝑃2𝑃 & 𝐸𝑡

𝑈𝐺  0 

𝑐𝑡
𝐸 = {

𝐸𝑡
𝑃2𝑃 𝑀𝐶𝑃𝑡 + 𝐸𝑡

𝑈𝐺  𝑝𝑡
𝐵               𝑖𝑓 𝑝𝑡

𝑃2𝑃 > 𝑀𝐶𝑃𝑡
(𝐸𝑡

𝑃2𝑃 + 𝐸𝑡
𝑈𝐺) 𝑝𝑡

𝐵                       𝑖𝑓 𝑝𝑡
𝑃2𝑃 ≤ 𝑀𝐶𝑃𝑡

                  (10) 

The dissatisfaction cost given in Eq. (12) represents the deviation of the controllable 

loads' levels from their predefined set values taking into consideration a value tolerance of , 

as given in Eq. (11). 
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𝑐𝑡
𝐷,𝑛 =

 {

0                                                                                               𝑖𝑓 (𝐸𝑡
𝑆𝑒𝑡,𝑛 − 𝜏𝑛) ≤ 𝐸𝑡

𝑛 ≤ (𝐸𝑡
𝑆𝑒𝑡,𝑛 + 𝜏𝑛)

𝑝𝑡
𝐷𝛼𝐷√(𝐸𝑡

𝑛 −  (𝐸𝑡
𝑆𝑒𝑡,𝑛 − 𝜏𝑛))(𝐸𝑡

𝑛 −  (𝐸𝑡
𝑆𝑒𝑡,𝑛 + 𝜏𝑛))                                                                  𝑒𝑙𝑠𝑒

  (11) 

𝑐𝑡
𝐷 = ∑ 𝑐𝑡

𝐷𝑛𝑁
𝑛=1            (12) 

3.2.2. Operating Constraints 

 Power balance constraints: electricity is needed in the dairy farm system to provide 

feeding loads, lighting, ventilation, and a portion of the cooling load by running the 

hybrid chiller. The PV system and CCHP provide the farm with its electricity, in addition 

to power exchanged with the utility grid and P2P platform. For electrical energy balance, 

the equality constraint given in Eq. (13) must be satisfied. 

𝐸𝑡
𝑃𝑉 + 𝐸𝑡

𝑒−𝐶𝐶𝐻𝑃 + 𝐸𝑡
𝑃2𝑃 + 𝐸𝑡

𝑈𝐺 = 𝐸𝑡
𝑙𝑖𝑔ℎ𝑡

+ 𝐸𝑡
𝑣𝑒𝑛𝑡 + 𝐸𝑡

𝑓𝑒𝑒𝑑
+ 𝐸𝑡

𝑃𝑉−𝐸𝐿 + 𝐸𝑡
𝑒−𝐻𝐶𝐻   (13) 

As the farm cannot sell to one market and buy from another in the same period, the 

constraint in Eq. (14) must be satisfied for all time intervals. 

 𝐸𝑡
𝑃2𝑃  × 𝐸𝑡

𝑈𝐺  ≥ 0            ∀ 𝑡 ∈ 𝑇         (14) 

Regarding the cooling and heating loads, the energy balance is given in Eqs. (16)                          

and (17). As the storage devices can be charging/discharging as given in Eq. (15). 

𝐸𝑡
ℎ−𝑆𝐷 & 𝐸𝑡

𝑐−𝑆𝐷  {
 <  0            𝑖𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
>   0               𝑖𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

        (15) 

𝐸𝑡
ℎ𝑒𝑎𝑡 = 𝐸𝑡

ℎ−𝐶𝐶𝐻𝑃 − 𝐸𝑡
ℎ−𝑆𝐷         (16) 

𝐸𝑡
𝑐𝑜𝑜𝑙 = 𝐸𝑡

𝑐−𝐶𝐶𝐻𝑃 + 𝐸𝑡
𝑐−𝐻𝐶𝐻 − 𝐸𝑡

𝑐−𝑆𝐷        (17) 

 Load management constraints: when setting the loads' action sets for DSM, the 

maximum and minimum loads' levels must be taken into consideration as given in Eq. 

(18). As given in Eq. (18), all loads are controlled for flexible consumption levels between 

minimum and maximum values except the feeding load.  

{
  
 

  
 𝐸𝑚𝑖𝑛

𝑙𝑖𝑔ℎ𝑡
≤ 𝐸𝑡

𝑙𝑖𝑔ℎ𝑡
≤ 𝐸𝑚𝑎𝑥

𝑙𝑖𝑔ℎ𝑡

𝐸𝑚𝑖𝑛
𝑣𝑒𝑛𝑡 ≤ 𝐸𝑡

𝑣𝑒𝑛𝑡 ≤ 𝐸𝑚𝑎𝑥
𝑣𝑒𝑛𝑡

𝐸𝑚𝑖𝑛
𝑐𝑜𝑜𝑙 ≤ 𝐸𝑡

𝑐𝑜𝑜𝑙 ≤ 𝐸𝑚𝑎𝑥
𝑐𝑜𝑜𝑙

𝐸𝑚𝑖𝑛
ℎ𝑒𝑎𝑡 ≤ 𝐸𝑡

ℎ𝑒𝑎𝑡 ≤ 𝐸𝑚𝑎𝑥
ℎ𝑒𝑎𝑡

𝐸𝑡
𝑓𝑒𝑒𝑑

= 𝐸𝑆𝑒𝑡
𝑓𝑒𝑒𝑑

          (18) 

 Storage devices constraints: the integrated power system of the dairy farm contains both 

heat and cold storage devices (SD). The operating constraints of such devices are given 

in Eq. (19), considering the charging/discharging condition in Eq. (15). 

{
 
 

 
 𝑆𝑂𝐶𝑡

𝑆𝐷 = 𝑆𝑂𝐶𝑡−1
𝑆𝐷 + 𝐸𝑡

𝑆𝐷

𝐸𝑡
𝑆𝐷 ≤ 𝑅𝑆𝐷

𝑆𝑂𝐶𝑚𝑖𝑛
𝑆𝐷 ≤ 𝑆𝑂𝐶𝑡

𝑆𝐷 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
𝑆𝐷

𝑆𝑂𝐶1
𝑆𝐷 = 𝑆𝑂𝐶𝑇

𝑆𝐷

         (19) 

4. DATA-DRIVEN MULTI-AGENT RL FOR P2P-ET AND DSM 

As previously mentioned, due to the large search space produced by the mixed DSM 

and P2P-ET decisions, the calculation challenge. Better decision-making is demonstrated by 

reinforcement learning (RL). There are various RL techniques such as deep Q-networks 

(DQN), actor-critic (AC) frameworks and multi-agent RL (MARL) frameworks. In this paper, 



Jordan Journal of Electrical Engineering. Volume X | Number X | Month 20XX                                                        XXX 

 

the MARL framework is applied as it offers superior stability and convergence compared to 

DQN and AC-based methods in multi-agent optimization problems. Regarding the stability 

issue, DQN relies on experience replay and target networks to stabilize Q-learning. However, 

in multi-agent settings, the environment becomes non-stationary as multiple agents 

simultaneously update their policies, making past experience obsolete.  

Similarly, Actor-Critic (AC) methods use function approximation for both value 

estimation (critic) and policy updates (actor). In multi-agent settings, the policy gradients 

exhibit high variance, making learning unstable. On the other hand, the MARL approach uses 

a centralized critic that observes joint states, reducing non-stationarity while enabling 

decentralized execution for scalability. The Centralized Training with Decentralized Execution 

(CTDE) reduces instability by allowing centralized critics to learn a more structured 

representation of the environment while enabling decentralized agents to act independently 

[23]. 

When addressing the convergence issue, DQN-based multi-agent adaptations often fail 

in Markov games due to policy oscillation. On the other hand, Multi-Agent Actor-Critic 

(MAAC) attempts to mitigate this but still suffers from slow convergence in highly dynamic 

environments, while MARL stabilizes multi-agent training by allowing each agent to maintain 

its own policy while using a shared centralized critic for improved gradient estimation, 

leading to faster convergence [24].  

In this paper, with data-driven framework, the P2P-ET and DSM problem is formulated 

as a FMDP to fit into a model-free multi-agent RL framework for decision support, as shown 

in Fig. 3, dealing with different types of loads, while considering mixed uncertain conditions.  
 

 

Fig. 3. Structure of the proposed data-driven based MARL solution. 

 

The objective function to be minimized is described in Eq. (8) over a simulation period 

of T, which is described in Eq. (20) 

min∑ 𝐶𝑡
𝑇
𝑡=1            (20) 

4.1. FMDP Formulation 

This P2P-ET and DSM problem can be formulated as an FMDP, in which each agent 

takes an action corresponding to the states at a certain time step and is then granted a reward. 

The FMDP model contains three main elements—states, actions, and reward. This problem 

has six agents representing the four controllable loads (i.e. lighting, ventilation, heating and 

cooling loads), the P2P trading price and the P2P traded energy. 

4.1.1. States 

The states vector 𝑠𝑡 at time 𝑡 consists of a number of sub-vectors representing the PV 

generation, the buying energy prices and the selling energy prices offered by the UG and is 

given by:  
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𝑠𝑡 = [𝑠𝐸𝑡
𝑃𝑉, 𝑠𝑝𝑡

𝐵, 𝑠𝑝𝑡
𝑆]          (21) 

4.1.2. Actions 

The actions vector a𝑡 at time 𝑡, which is described in (22), consists of a number of sub 

vectors representing the levels of controllable loads (𝐸𝑡
𝐿𝑜𝑎𝑑), buying/selling P2P energy price 

(𝑝𝑡
𝑃2𝑃), and the amount of energy traded through the P2P platform (𝐸𝑡

𝑃2𝑃), as given in Eq. (23). 

𝑎𝑡 = [𝑎𝐸𝑡
𝐿𝑜𝑎𝑑 , 𝑎𝑝𝑡

𝑃2𝑃 , 𝑎𝐸𝑡
𝑃2𝑃]         (22) 

 

where,  

{
 
 
 

 
 
 𝑎𝐸𝑡

𝐿𝑖𝑔ℎ𝑡
= [𝐸𝑡

𝐿1, … , 𝐸𝑡
𝐿𝑚, … ]                            𝐿𝑚 ∈ 𝐴𝐿𝑖𝑔ℎ𝑡

𝑎𝐸𝑡
𝑉𝑒𝑛𝑡 = [𝐸𝑡

𝑉1, … , 𝐸𝑡
𝑉𝑚, … ]                             𝑉𝑚 ∈ 𝐴𝑉𝑒𝑛𝑡

𝑎𝐸𝑡
𝐶𝑜𝑜𝑙 = [𝐸𝑡

𝐶1, … , 𝐸𝑡
𝐶𝑚, … ]                              𝐶𝑚 ∈ 𝐴𝐶𝑜𝑜𝑙

𝑎𝐸𝑡
𝐻𝑒𝑎𝑡 = [𝐸𝑡

𝐻1, … , 𝐸𝑡
𝐻𝑚, … ]                           𝐻𝑚 ∈ 𝐴𝐻𝑒𝑎𝑡

𝑎𝑝𝑡
𝑃2𝑃 = [𝑝𝑡

𝑃2𝑃1, … , 𝑝𝑡
𝑃2𝑃𝑚, … ]               𝑃2𝑃𝑚 ∈ 𝐴𝑝−𝑃2𝑃

𝑎𝐸𝑡
𝑃2𝑃 = [𝐸𝑡

𝑃2𝑃1, … , 𝐸𝑡
𝑃2𝑃𝑛, … ]               𝑃2𝑃𝑛 ∈ 𝐴𝐸−𝑃2𝑃

                (23) 

4.1.3. Reward 

The reward function 𝑟𝑡 represents the benefit obtained at time 𝑡 corresponding to the 

(action 𝑎𝑡 - state 𝑠𝑡) pair, which is the inverse of the cost function, and the total reward during 

the simulation period R, as given in Eqs. (24) and (25), respectively. 

𝑟𝑡 = − 𝐶𝑡           (24) 

𝑅 = ∑ 𝑟𝑡
𝑇
𝑡=1            (25) 

In order to calculate the reward value corresponding to certain state-actions 

combinations, while considering the operational constraints of the IES, the proposed algorithm 

is shown in Fig. 4 and proceeds as follows: 

 The available PV power generation is known based on the state values at every time 

period. The electrolyzer will be powered by this PV power, which will also meet the 

operational constraint of Eq. (1).  

 To meet the power balancing constraint of Eq. (13), any remaining PV electricity will 

either help supply the farm's electric needs or be traded.  

 The electrolyzer's produced hydrogen will be utilized for fueling the CCHP unit in 

accordance with its operating constraints Eq. (3).  

 The farm's electric loads will be supplied by the electricity produced by the CCHP unit. 

In order to satisfy the power balance constraint of Eq. (13) any remaining electric power 

will be traded.  

 The CCHP unit's heat and cold powers will be utilized to meet the farm's corresponding 

loads while satisfying the power balance constraints outlined in Eqs. (16) and (17).  

 In accordance with the operational constraints of the respective storage units, as stated 

in Eq. (21) the excess/shortage of heat and cold energy, if any, will be traded.  

 The required energy to meet such loads is determined in accordance with the first four 

actions concerning the load levels to be taken into consideration. The quantity and 

direction of energy to be traded (i.e., bought or sold) will depend on whether the power 

balance constraint of Eq. (13) is satisfied. In order to meet the power balancing constraint 

of Eq. (13), the final action will decide what proportion of this energy is to be traded with 

the P2P community. Based on that percentage, the amount of energy to be traded with 

the utility grid will also be decided. 
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Fig. 4. The proposed algorithm for calculating the reward value corresponding to states-actions combinations. 

4.2. Data-Driven Based Multi-Agent RL Algorithm 

First, the predicted PV generation, UG energy prices and different loads consumption 

are acquired using the Decision Tree Regression (DTR) algorithm. For the MARL decision-

making process, the Q-learning algorithm is applied to gain the expected rewards of each 

agent. The Bellman equation, given in Eq. (26), is used for the computation of Q-values for 

each state-action pair (𝑠𝑡,), which provides an accurate approximation for rewards and 

updates. 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 +  𝛾 max [𝑄(𝑠𝑡+1, 𝑎𝑡+1)]                    (26) 

For learning, the previously constructed Q-table is updated in each training iteration. In 

this way, the optimal action with optimal Q-value in each state can be selected according to 

the respective reward [25]. 
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4.3. Modified Multi-agent RL Algorithm with Uncertainties 

While the DTR model provides accurate point predictions, it is important to recognize that 

real-world systems involve inherent uncertainties—such as load demand variability, weather 

fluctuations, and other stochastic factors. Deterministic predictions, even if accurate, do not 

capture these uncertainties. Probabilistic studies are essential to: 

 Quantify the impact of uncertainty on system performance. 

 Provide decision-makers with a range of possible outcomes for robust planning and risk 

assessment. 

 Enhance the resilience of systems by preparing for extreme scenarios. 

The need for probabilistic studies is therefore complementary to deterministic 

predictions, as they provide a more comprehensive evaluation. 

As the data-driven prediction of RES, energy price, and load consumption can have 

different accuracies, the P2P energy trading and DSM problem have mixed uncertain 

conditions. The uncertainties arise due to the uncertain forecasts of PV generation and 

buying/selling energy prices of the UG (𝐸𝑡
𝑃𝑉 , 𝑝𝑡

𝐵, 𝑝𝑡
𝑆) affecting the problem states, in which 

additional states are included with accompanying probabilities. Additional uncertainties arise 

due to different loads forecasts are simulated as stochastic scenarios, which affects the reward 

function. In this paper, different scenarios are probabilistically modeled, in which a probability 

density function is assigned to each source of uncertainty. Different states scenarios are 

generated, and then the corresponding actions are selected. The reward corresponding to each 

state-action pair is then calculated using the modified reward function given in Eq. (27), which 

has two parts. The first part is deterministic (𝐶𝑡), representing energy and dissatisfaction costs 

based on predicted values for PV power generated, loads levels, and UG energy prices. The 

second part is probabilistic 𝐶𝑡
𝑝𝑟

 representing the cost of each scenario (pr). 

𝑟𝑡 = −[𝐶𝑡 + ∑ 𝐷𝑝𝑟
𝑆𝑝𝑟
𝑝𝑟=1 𝐶𝑡

𝑝𝑟
]                     (27) 

Where 𝐷𝑝𝑟 is the probability of each scenario [6]. 

In each iteration of the algorithm, each agent of the participating six agents observes the 

states 𝑠𝑡 given in Eq. (21) and then chooses an action 𝑎𝑡 of the corresponding set given in                    

Eq. (23) using the exploration and exploitation mechanism. To realize the exploration and 

exploitation, the agent selects an action whose current Q-value is maximum. After taking an 

action, this action is used to evaluate the energy cost Ct using Eqs. (8)-(12) then the agent 

acquires an immediate reward 𝑟t as given in Eq. (27). The agent observes the next state 𝑠𝑡+1 and 

updates the Q-value (𝑠𝑡 , 𝑎𝑡)  given in Eq. (26). This process is repeated until the state 𝑠𝑡+1 is 

terminal. After each iteration, the agent checks the iterations’ termination criterion, in this case, 

it is the number of iterations. If this termination criterion is not satisfied, the agent will move 

to the next iteration and repeat the above process. 

5. SIMULATION RESULTS 

5.1. Integrated Energy System 

The integrated energy system of the dairy farm under study consists of a PV-supply 

device, energy conversion devices, energy storage devices, and loads. The operating 



Jordan Journal of Electrical Engineering. Volume X | Number X | Month 20XX                                                        XXX 

 

parameters of different system’s components are given in Table 2. The predicted values of the 

different loads of the dairy farm are given in Fig. 5. 
 

Table 2. Operating parameters of the integrated energy system’s components. 

Component Operating parameter Numerical value 

PV system Capacity [kW] 175 

Electrolyzer 
Capacity [kW] 

Efficiency, 𝜂𝐸𝐿 

100 

0.61 

CCHP 

Capacity [kW] 

Electric Efficiency,  𝜂𝐸𝐿 

Heat efficiency,  𝜂𝐸𝐿 

Cold efficiency, 𝜂𝐸𝐿 

100 

0.29 

0.2 

0.42 

HCH 
capacity [kW] 

efficiency 𝜂𝐸𝐿 

25 

0.6 

Heat storage device 

Capacity [kW] 

Max. SOC [%] 

Min. SOC [%] 

150 

90 

10 

Cold storage device 

Capacity [kW] 

Max. SOC [%] 

Min. SOC [%] 

60 

90 

10 

 

The energy-generating devices in this system are the PV-units, the electrolyzer, and the 

CCHP combined with an HCH. The heating and cooling loads of the farm are satisfied by the 

CCHP and HCH, in addition to the heat and cold storage units. Electric energy is utilized to 

operate the ventilation, lighting, and feeding loads in addition to part of the cooling load when 

the HCH is electrically operated. Therefore, the only energy that needs to be traded with the 

P2P platform and the utility grid is electric energy. 

Consequently, the price used to calculate the electric energy cost is the electric energy 

price ($/kWh), which depends on the supplier, whether it is the UG or the P2P platform. In 

addition, the dissatisfaction price ($/kWh) is used to calculate the cost of dissatisfaction when 

any of the loads are deviate from their set value.  
 

 
Fig. 5. The predicted loads of the dairy farm. 
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As for the energy prices of the utility grid in the case of buying or selling electric energy, 

the predicted prices are shown in Fig. 6. 

 
Fig. 6. The predicted selling/buying electric energy prices of the UG. 

In this paper, there are 6 agents to be considered in the MARL algorithm as given in              

Eq. (23). To determine the action sets corresponding to the first 4 agents representing different 

load types, the acceptable levels of these loads are considered. Considering the ventilation 

load, it is recommended that the rate of ventilation during the summer be around 40 to 60 air 

changes per hour [26]. Therefore, it is set to vary between 0.7 and full load. Similarly, the 

recommended cooling, heating, and lighting levels in dairy farms are considered for the 

corresponding action sets of loads agents [27-29]. On the other hand, the feeding load is not 

considered for curtailment and hence, not considered for DSM. As for the other two agents, 

i.e. P2P trading price and P2P traded energy, their action sets are determined as a percentage 

of the energy price of the UG and a percentage of the total energy to be traded, respectively. 

The different action sets considered are given in Table 3. 

Table 3. The action sets of MARL agents. 

Agent ID Action set 

𝑎𝐸𝑡
𝐿𝑖𝑔ℎ𝑡

 [0.75, 0.85, 0.95, 1] of full load 

𝑎𝐸𝑡
𝑉𝑒𝑛𝑡 [0.7, 0.8, 0.9, 1] of full load 

𝑎𝐸𝑡
𝐶𝑜𝑜𝑙  [0.7, 0.8, 0.9, 1] of full load 

𝑎𝐸𝑡
𝐻𝑒𝑎𝑡 [0.94, 0.96, 0.98, 1] of full load 

𝑎𝑝𝑡
𝑃2𝑃 

[0.98, 0.97, 0.96, 0.95, 0.94, 0.93, 0.92, 0.91, 0.9] of UG price when buying 

[0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99] of UG price when selling 

𝑎𝐸𝑡
𝑃2𝑃 [0.7, 0.8, 0.9, 1] of energy traded 

5.2. Performance of the Decision Tree Regression Model and Considered Uncertainties 

Real-world data is used in this paper for training the DTR model. The hourly data of 

electricity prices, PV generation, and different farm loads for one year, from January 1 to 

December 31, is utilized. As a sample result of the DTR model, Fig. 7 shows a comparison of 
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the predicted and actual ventilation load on January 1-3. The performance of the DTR model 

used to predict the required data was evaluated using the Mean-Square-Error (MSE) metric as 

shown in Table 4. As shown in Fig. 7 and Table 4, compared to real data, the DTR predicted 

datasets have low errors. In addition, consistency in the value of MSE across both training and 

test datasets confirms that the model is neither overfitted nor suffering from data leakage. 

 
Fig. 7. Comparison between the predicted and the actual ventilation load on January 1-3. 

Table 4. The MSE of different predicted datasets. 

Dataset Training-MSE Test-MSE 

Energy price  0.2081 0.2302 

PV generation 0.0053 0.0135 

Lighting load 0.0032 0.0101 

Ventilation load 0.1809 0.2036 

Heating load 0.0005285 0.0021 

Cooling load 0.0672 0.0742 

Feeding load 0.0098 0.0293 

 

For considering the mixed uncertainties of this system, additional states are modeled 

representing different probabilistic scenarios regarding the PV generation and trading prices 

of the UG that arise from prediction accuracy.  

In addition, the stochastic deviations of loads from their predicted values are also 

considered. In this paper, the stochastic variations in these parameters are assumed to follow 

normal distribution for uncertainty modeling [6]. The probability distribution functions are 

calculated with the predicted values of such parameters as their mean (μ) and with a standard 

deviation of 0.3. The probabilistic and deterministic values of the PV generation are shown in 

Fig. 8. 

Fig. 9 (a) shows the convergence of the energy cost through the training process of the 

agents of the MARL algorithm. It can be seen in Fig. 9 (a) that the cost value converges to a 

minimum value as required. The reward convergence of the six agents through the training 

process is shown in Fig. 9 (b).  

As shown in Fig. 9 (b), the reward value of each agent converged to a maximum value 

through the training iterations. In addition to converging to a minimum energy cost as 

required, the proposed MARL algorithm, with the additional probabilistic states-actions pairs, 
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succeeded to converge almost after 4000 iterations as shown in Fig. 9 (a). Furthermore, as 

shown in Fig. 9, the proposed MARL algorithm showed effectiveness in satisfying the objective 

minimum energy cost in spite of the highly mixed uncertainty of predicted data. 

 
Fig. 8. The deterministic and probabilistic values of the PV generation. 

 

 
Fig. 9.  The obtained through the training process of the MARL algorithm: a) the convergence of the energy cost;  

b) the reward convergence of the six agents. 
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5.3. Energy Trading Analysis 

Table 5 presents the total day-ahead energy cost with and without considering MARL-

based P2P energy trading or DSM or both. As shown in Table 5, applying DSM without P2P 

trading resulted in a reduction of 16.28% in the cost of purchased energy from the UG, while 

applying P2P trading without DSM resulted in a reduction of 14.21% in the overall cost of 

purchased energy. Finally, applying both P2P trading and DSM reduced the overall cost of 

purchased energy by 23.57%. This proves that the proposed MARL-based P2P-DSM solution 

can be more beneficial to the farm’s financial system and is able to modify the energy 

consumption and trading behavior by managing and trading energy through the P2P market. 

 

Table 5. The total day-ahead energy cost. 

Case DSM P2P trading Energy cost [$] 

1 X X 19.77 

2  X 16.55 

3 X  16.96 

4   15.11 

 

The intervals at which the farm system is buying and selling energy, and the 

corresponding energy cost are shown in Fig.10. Through the P2P trading algorithm 82.1% of 

the needed energy was bought from the P2P community, while the remaining 17.9% was 

bought from the utility grid. On the other hand, all of the excess energy was sold to the P2P 

community, which resulted in a considerable reduction in energy cost as shown in Fig. 10. 

 
Fig. 10. The cost of energy trading for 24 hours. 

5.4. Energy Management Analysis 

As stated earlier, the integrated energy system of the dairy farm incorporates a 

hydrogen-fueled CCHP with a hybrid chiller in addition to the PV units. With the help of 

MARL-based DSM, the system can internally supply part, and sometimes all, of the required 

demand. Fig. 11(a) shows the PV power energizing the electrolyzer and the remaining PV 

power used/traded by the system, while Fig. 11(b) shows the total electric demand and the 

electric power supplied by the CCHP and PV units. 
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Fig. 11. a) The PV to electrolyzer power and the remaining PV power; b) the total electric demand and total 

electric power supplied by the CCHP and PV units. 
 

As shown in Fig. 11(a), at the intervals in which the electrolyzer receives its rated power, 

there exists a surplus PV power that can be used/traded. The surplus PV energy represents 

about 22.41% of the total PV energy generated. On the other hand, as shown in Fig. 11(b), some 

intervals experience surplus electric energy when the generated power is greater than the 

demand, which is traded either with the P2P community or with the UG as shown in Fig. 10. 

Regarding the DSM, Fig. 12 shows the farm’s loads with and without applying the MARL-

based DSM. As shown in Fig. 12, reductions of 27.55%, 16.28%, 3.05% and 10.62% in the 

ventilation, lighting, heating and cooling loads, respectively, are achieved. Table 6 presents a 

comparison of different loads with and without applying MARL-based DSM in terms of load 

factor and energy savings. As shown in Table 6, the load factors of the lighting, heating and 

cooling loads encountered a reduction as the average loads were reduced while the peak loads 

were nearly the same as shown in Fig. 12. In the case of the ventilation load, the reduction of 

the peak load was greater than that of the average load, which resulted in a slight increase in 

the load factor. However, all of the farms’ controllable loads experienced different degrees of 

energy savings as shown in Table 6. 

 
Fig. 12. The farm’s loads with and without applying the MARL-based DSM. 
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Table 6. Comparison of different loads with and without applying MARL-based DSM. 

Load type 
Load factor  Energy savings 

Without DSM With DSM  Saving [kWh] Percent [%] 

Lighting load 3.8073 3.1874  14.8785 16.28 

Ventilation load 0.7114 0.7363  103.5016 27.55 

Heating load 0.668 0.6479  4.0266 3.05 

Cooling load 0.6133 0.557  32.8144 10.62 

Considering heating and cooling loads with respect to heat and cold power generation, 

Fig. 13 shows these powers. As shown in Fig. 13, at some intervals, the demands are lower 

than the available respective energies, which results in storing the surplus energies in the 

respective storage devices (SDs). At other time intervals when the generated energy is less 

than load demands, the stored energies are then used to compensate for such a supply 

shortage.  

As shown in Fig. 13 (a), the heat energy generated by the CCHP along with the energy 

stored in the heat SD are adequate to supply the heat load, while keeping the SOC of the heat 

SD within a permissible range. On the other hand, as shown in Fig. 13 (b), at the interval 

between 2h and 10h, the SOC of the cold SD reached its minimum limit of 10%, while the cold 

energy generated by the CCHP is lower than the energy required to supply the cooling load. 

At this interval, the HCH is electrically operated to fulfill the required load. 

 

Fig. 13. a) Heating loads, heat power generation and SOC of heat SDs; b) cooling loads, cold power generation 
and SOC of cold SDs 

5.5. Multi-Agent RL Algorithm Performance Compared to other Optimization Algorithms 

In order to evaluate the proposed multi-agent RL algorithm, the P2P-DSM problem was 

solved using a multi-layer individual-based algorithm that was first proposed by the author 

in [30]. In the first layer, the DSM was addressed. Then, the P2P energy trading was addressed 

in the second layer. Mixed uncertainties were considered, and the algorithm was applied using 
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the firefly algorithm (FA), particle swarm optimization (PSO), and genetic algorithm (GA), for 

decision-making and optimization.  

First, the FA is a nature-inspired metaheuristic optimization technique based on the 

flashing behavior of fireflies. It optimizes DSM and P2P energy trading by balancing energy 

demand and supply while minimizing costs. FA is particularly useful in handling non-linear, 

multi-objective optimization problems in energy management due to its ability to escape local 

optima. Second, the GA is an evolutionary algorithm that mimics natural selection, where 

candidate solutions evolve through selection, crossover, and mutation. In DSM and P2P 

energy trading, GA helps optimize energy scheduling and trading strategies by finding near-

optimal solutions through an adaptive search process. It is widely used for solving complex 

optimization problems with multiple constraints. 

Finally, the PSO is a swarm intelligence-based algorithm inspired by the collective 

movement of birds and fish. It optimizes DSM and P2P energy trading by iteratively 

improving potential solutions based on the experiences of individual particles (agents) and 

the swarm as a whole. PSO is well-suited for real-time energy management due to its fast 

convergence and robustness in dynamic environments. 

These algorithms offer different strengths in optimizing energy cost reduction and 

improving system efficiency, making them valuable tools for managing uncertainties in DSM 

and P2P energy trading. 

The simulation is run with 100 individuals and 10000 iterations on an Intel i7, 8 GB RAM 

laptop. The convergence of the cost function through iterations of each algorithm is shown in 

Fig. 14 and the computational times and minimum cost values are given in Table 7. 

 
Fig. 14. Convergence of the cost function through iterations of each algorithms 

 

Table 7. Computational times and minimum values of different algorithms. 

Algorithm Computational time Minimum value [$] 

MARL 27.9 s 15.11 

GA 31.25 min 20.76 

PSO 2.62 min 30.33 

FA 1.53 min 30.24 
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As shown in Fig. 14, the proposed multi-agent RL algorithm succeeded in converging to 

the lowest value of energy cost, lower than any of the other three algorithms and its 

computational time was the lowest too as shown in Table 7. GA, PSO and FA also succeeded 

in converging to a minimum cost value but higher than that reached by multi-agent RL. As 

shown also in Fig. 14, the nearest algorithm to multi-agent RL was GA but with the highest 

computational time. As PSO and FA are almost near in nature, they both converged to nearly 

the same minimum value, but FA had a lower computational time. 

6. CONCLUSIONS 

This paper presented a clean and sustainable integrated energy system for a dairy farm, 

with a focus on DSM and P2P-ET for improved energy efficiency and cost savings. The 

investigation addressed the increased complexity of decision-making caused by the uncertainty 

of decision variables in DSM and P2P-ET, as well as the computational challenges arising from 

a large search space. To tackle these challenges, a modified MARL approach - formulating the 

DSM and P2P-ET problem as a FMDP - was developed and applied. The proposed MARL 

algorithm demonstrated - compared to other AI-based optimization methods - significant 

improvements, reducing the average daily energy cost by 23.57% and the average load by 

20.73%. Moreover, it not only enhanced cost efficiency but also improved computational 

performance. These findings underscore the scientific contribution of integrating MARL into 

energy management systems, offering a scalable and adaptive solution for complex energy 

trading and DSM problems. The results demonstrate the practical applicability of the proposed 

approach in real-world energy systems, particularly for decentralized renewable energy 

management in agricultural and industrial sectors. 

The proposed approach can be implemented using existing smart grid infrastructure and 

IoT-enabled energy management systems. Future research will focus on real-world 

deployment, testing the MARL-based framework in operational dairy farms or similar 

agricultural and industrial settings. Additionally, further investigation can address potential 

challenges such as data privacy, cybersecurity risks, and regulatory constraints in decentralized 

energy markets. By refining the model through pilot studies and integrating real-time energy 

pricing mechanisms, the approach can be fine-tuned to ensure robustness and adaptability in 

diverse real-world scenarios. 
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